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Abstract

We solve the queueing system (QS) Ck/Cm/s, where Ck is the class of

Coxian probability density functions (pdfs) of order k, which is a subset of

the pdfs that have rational Laplace transform (R). We formulate the model as

a continuous-time, infinite-space Markov chain by generalizing the method of

stages. By using a generating function technique, we solve an infinite system

of partial difference equations and find closed form expressions for the system-

size, general-time, pre-arrival, post-departure probability distributions and the

usual performance measures. In particular, we prove that the probability of

n customers being in the system, when it is "saturated" (n s) is a linear
s+m-1

combination of exactly ( s ) geometric terms. The closed form expressions

involve a solution of a system of nonlinear equations that involves only the

Laplace transforms of the interarrival and service time distributions. We con-

jecture that this result holds for the more general model GIRls. Following

these theoretical results we propose an exact algorithm for finding the system-

size distribution and system's performance measures, which has an algorithmic

complexity of O(k3(+' s)3). We examine special cases and apply this method

for solving numerically the QS C 2 /C 2 /s and Ek/C 2/s.

Subject classification: 705 Markovian queues, 693 Multichannel queues.
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Introduction
Throughout this century queueing theory has been studied thoroughly, but still

many problems remain unsolved, in spite of the effort and intelligence devoted to

them. Among these problems, the analysis of the G/G/s queueing system(QS)

has survived the "attacks" of many excellent mathematicians, obviously due to its

inherent complexity.

In this paper we generalize the method of stages, introduced earlier in the cen-

tury by Erlang and combine it with a generating function technique to achieve the

solution of the general class of problems C,/C,/s, where C, is the Coxian class of

probability density functions (pdf's) with rational Laplace transform.

A brief critical presentation of alternative solution methods

When it comes to exact solutions of multi-server QS's, the more one departs from

the assumption of exponentiallity, the more thorny problems become (especially if

this happens for the service time pdf or, worse, for both the service and arrival-time

pdf). Thus the only solution approaches that have up-to-now been established as

supposedly "general-purpose" are, in chronological order of appearance:

1. The method of succesive exponential stages

2. Complex variable theory

3. Imbedded Markov chain

4. Inclusion of supplementary variables

We believe that the following very short commentary on the application of these

solution approaches to multi-server models assesses fairly their inherent potential to

produce theoretical and, especially, exact numerical results (which should usually

be their ultimate goal).
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The Imbedded Markov chain method

In the past decade it was mainly Neuts and a number of other authors who, by

exploiting the phase-type (PH) distribution and by developing the powerful but

still "esoteric" formalism of the associated matrix-analytic methods and algorith-

mic approaches (as presented in Neuts (1981), (1984)) have managed, by bridging"

this method with the method of stages, to considerably extend its potential. Yet,

for multi-server systems with non-exponential service times the relevant solutions

(although providing qualitative insight) lead to major dimensionality problems. For

the EkI/Cm/ model this approach requires the solution of a non-linear matrix equa-

tion involving matrices of order mn, so that (even for C 2) Bellman's dimensionality

curse precludes the derivation of any exact results (except for very small values of

s).

The inclusion of supplementary variables method

Despite the initial great expectations concerning its capabilities, the method has

been used for multi-server systems in a limited number of analytic investigations

(not to mention numerical implementations). In the last decade Ishikawa (1979)

tried to tackle the G/E,m/s system through this method, but he restricted his at-

tention to the G/Es/3 system. In parallel, Hokstad (1978) started his investigation

of the MIGIs system by writing the associated equations, which he managed to

"solve" in Hokstad (1979) but only for the M/R/2 case, where R is the class of

distributions with rational Laplace transforms. Then he specialized to the M/C2/2

(and thence to the M/E 2/2 and M/H 2/2) producing some limited results. In his

next (Hokstad (1980)) paper he uses a "refined and modified" version of his previ-

ous analysis, which he claims to be in principle applicable to the general MI/CIs

model (but with complicated results). He was compelled to restrict attention to

the M/C2/s and (after various simplifications) to present very limited results for

s = 3. Finally, in Hokstad (1986) he gave bounds for the mean queue length of the
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M/C 2 /s QS. Both the above approaches are complicated, while Hokstad's general

algorithm (according to van Hoorn (1983), p.29) is numerically unstable and not

reliable for higher s values.

The complex variable theory method

Pollaczek's method (Pollaczek (1961)) is by its structure limited to First-Come-

First-Serve (FCFS). The method was exploited by de Smit, whose venture started

with some abstract results for the G/G/s QS (de Smit (1973a)), which were then

specialized to G/M/s (de Smit (1973b)), and continued with a method of approach

for G/H,/s (de Smit (1983a),(1983c)). Yet, this approach needs deep arguments

from complex variable theory, leading to a numerical solution in the G/H2/s case,

but with a high computational complexity which is proportional to s6 , to be com-

pared with O(sS) of our method.

The method of succesive exponential stages

Erlang's ingenious method of stages has for some time been neglected, obviously

because of researchers' concern about the fact that it does lead to systems of equa-

tions which usually are complicated (but certainly not looking more formidable than

those of the previous methods) and become almost intractable if one attempts to

tackle them directly by various seemingly powerful techniques. For example in the

EkA/E/Is case this intractability is apparent both

1. In many of the earlier attempts at an exact solution via multidimensional gen-

erating function techniques (see, e.g., the annotated, but not totally complete,

bibliography by Ovuworie (1980))

2. In Yu's (1977) ambitious theoretical treatise, via an intricate partitioning of

the system-states and an exploitation of the cyclic structure (exhibited by the

corresponding transitions) through the use of polynomial matrices.

Concerning in particular the latter approach, (see, e.g., Hillier and Lo (1971)),
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the computations necessary for the derivation of numerical results involve the nu-

merical expansion of such matrices, which is still an enormous task even for mod-

erate values of k, m and s.

The above mentioned attitude is reflected in the comments of Kleinrock (1975),

p.146-7. But on the contrary, and more in line with Cohen (1982), p.346, we

believe that this method with a proper solution strategy, like the one presented in

this paper, is so powerful that it is difficult to overemphasize its importance for the

exact solution of intrinsically difficult multi-server queueing systems.

On the class of Coxian distributions C,

The general Coxian class C, was introduced in Cox's (1955) pioneering paper

and is clearly presented in Kleinrock (1975). It is remarkable that even if we permit

transitions from a stage with rate ti to a stage with rate uj in figure 1 we do not

obtain a new class of distributions. We can still formulate this situation with a C,

distribution with different transition rates. The salient feature of the class C, is its

high versatility (see e.g. Neuts (1981), Whitt (1982)) based on its ability to:

1. Generalize well-known distributions such as the exponential, the hyperexpo-

nential and all the forms (i.e., special, general, weighted, compound, etc.) of

the Erlangian.

2. Be dense in the set of all probability distributions concentrated on (0, oo) and

thus to be able to approximate a general pdf.

3. Permit coefficients of variation V2 greater than 1.

Figure 1: The C, class of distributions

The important feature we exploit in this paper is the decomposition of the C, pdf
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into exponential-stages, so that we can use a powerful modification of the method

of stages.

Our result

Our result generalizes the well known G/G/1 theory to multi-server systems

in a natural probabilistic way. Our approach, in comparison to the methods used

earlier in the evolution of queueing theory is easier to grasp and easier to implement.

More importantly, it leads to an algorithm of relatively low order of complexity. On

the other hand, in comparison to the purely numerical methods of Allen, Andersen

and Seneta (1977), Takahashi and Takami (1976) (which was recently specialized by

Groenevelt, van Hoorn and Tijms (1984) for the solution of the much simpler models

M/H 2 /s, M/E 1, 2 /s, M/E1,3 /s) and Seelen (1986) the present approach offers full

qualitative insight by providing closed-form expressions, which apart from their

computational value, are also of theoretical interest. Furthermore, our solution

strategy leads to an exact waiting-time analysis under FCFS, which is going to be

presented in a forthcoming paper.

From an algorithmic point of view we propose an O(kS('+-l)3) algorithm for

the calculation of the performance measures and the probability distributions of this

QS, which for a given m is polynomial in the number of servers. In other words, we

prove that for a given service time pdf the solution of the related queueing problem

is polynomial in the number of servers.

To test properly the potential and reliability of this method, we prepared com-

puter programs for the numerical solution of the QS's Ek/C 2 /s, C 2 /C 2 /s . These

exact results are in full agreement with all others available in the literature and can

be exploited for the always desirable sensitivity analysis and comparative evaluation

in the continuously active areas of

1. approximations for multi-server models (e.g. those on the M/G/s QS recently

reviewed by Tijms, van Hoorn and Federguen (1981), Sze (1984)).
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2. inequalities, bounds and stochastic order relationships

on both of which there is a rapidly increasing literature.

In the next section we formulate the model as a continuous time Markov chain

using the method of stages. In section 2 we apply a generating function technique

for solving the difference equations that describe the system. In this section, which

is central to the analysis, we combine results of the complex-variable-theory method

developed by Pollaczek (1961) and de Smit (1983a) with results of the present paper

to prove what we call the "separability property": The probability of n customers

(n > s) being in the system is a linear combination of ( s ) geometric terms. In

section 2.5 we examine as special cases the QS's Cn,Cm/1, C,,IMs, Ek/E,/Is and

En/C2 /s.

The derivations of closed form expressions for the system size probability distri-

butions and the usual performance measures are outlined in section 3. In section

4 we include some computational and complexity considerations, while the final

section contains some concluding remarks and open problems.

1 Formulation of the model as a continuous-time

Markov chain

We shall examine, henceforth, an s identical-single-waiting-line QS with interarrival

and service time distributions of Coxian type of order k and m respectively. There

are no restrictions in the queue discipline except that no server can be idle if the

queue is not empty.

1.1 Probabilistic interpretation of the QS

To analyse the model we conceive of the arrival process as an arrival timing channel

(ATC) consisting of k consecutive stages with rates A1, A2,..., Ak and with proba-
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bilities P,P2,..-.Pk - 1 of entering the QS after the completion of the 1st, 2nd,

... kth stage. We remark that as soon as a customer in the ATC enters the QS

a new customer arrives at stage 1 of the ATC. For the service time distribution

we consider as above a service timing channel (STC) consisting of m consecutive

stages with rates Al, I2, .., Arm and with probabilities ql, q2, ... , qm 1 of leaving the

system.

1.2 Notation

For the steady-state we introduce the random variables

1. N The number of customers in the system.

2. N- The number of customers seen by an arriving customer just before his

arrival.

3. N+ The number of customers seen by a departing customer just after his

departure.

4. Ra A The number of the ATC stage currently occupied by

tomer.

A
5. Rj - The number of customers being served at the jth

1, 2, ... ,m).

6. R - The number of customers being served at the jth

1, 2,..., m), just before the arrival of an entering customer.

the arriving cus-

STC stage (j =

STC stage (j =

7. Tq - The waiting time of an arriving customer.

For simplicity of notation we introduce the vectors of random variables

(R ,.,R) R- (R-,..., R)
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and also we will use the notation:

a, A (0 ,... , , 1,o0..,) a(s,m) A ( +s )

II = a meaning that E=l ij = 8.

With the above definitions the system can be formulated as a continuous time

Markov chain with infinite state space:

{(N,RaR,... Rm), N = 0,1,..., Ra = 1,2,...k, R = min(N,s)}
j=1

where the states with N < s (i.e., the states with at least one server free) and N > s

(or all servers busy) will be termed "unsaturated" and "saturated" respectively.

We now introduce the following set of probabilities, some of which will be used

in later sections.

Pn,Ij Pr{N = n, R. =, =

P-- Pr{N = n,R- = i}
n,%

Pn-Pr{N = n}

Pn Pr{N- = n}

P+ Pr{N+ = n}

We also define:

f;. (0), f (0) A The Laplace transform of the interarrival and service time distri-

butions respectively.

The mean interarrival time.

A The mean service time.

pz = The traffic intensity.

1.3 The equations

After drawing the rather complicated state-transition diagram in figure 2 (for the

case I = 2,..., k, the case I = 1 is similar) we write down the following system of

8



equations:

1. I = 1, Iil = min{n, s}

k

:E
l=l

m

nl{+ ij} =
j=1

m

E qpi(ij + i)P.+j,',+i_; +
j=2

2. = 2, .. ., k, = min{n, s}

Pl.,,L + E injj} = (1 -
:=1

j (ij + 1) Pn+,1,'i6jt
j=2

(1)-(1- qj)j(ij + 1)P,,,i+sji+
j=l

PI- 1)X 1-1P,- 1 , + qltjlilPn+l,l,i-

+ Z(1 - q)tAj(ij + 1)P,,i+-i
j=1

(2)

Figure 2: The state-transition diagram for I = 2,..., k

2 Analysis of the equations

2.1 Separation of variables technique

Initially we consider the infinite number of equations (1), (2) for n > s. Using the

separation of variables technique, we assume that the saturated probabilities are of

the form:

Pn,,i = Di Rr w" n>s

with the obvious conditions

R. =O for
m
E ij S
j=1

9
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Then from equations (1),(2) for n > s we get:

1. 1=1, iiI = s

m
D 1R-{A 1 + 

j=1
iiij} =- plAIDIR; + wqAilDR-+

W =1

+ 1)DIR+f-_ + -(1- qi)si(ij + 1)D 1R+-i_ +
j=1

DRA,I + E ijj} = (1 - l-,l)
j=1

XI-_lD-lR; + wqllzlilDiR+

m sm

w E qijj(ij + 1)Di Ri-+j;._ + Z(1 - qj)Lj(ij + 1)DIR;Z
j=2 j=l

Then (4) can be written:

R{DIA - (1 - p-l)Al_,D_}= Di{wqllilR,-+

m m

w q qjj(ij + 1)R-+_j. + (1 - qj)Aj(ij + 1)R+fs_6+
i=2 j=1

m

- RZ- ij=j}
j=l

Using the usual "separation of variables technique" arguments we demand that

DlAl - (1 - Pi-I)A-lD-1 = -xD 1 I = 2, ... , k

wqllilRt + w n qilj(ij + 1)RZ-+j E6 + Z(1
j=2 j=1

- qj)Aj(ij + 1)R-+,-_i+-

m

R; Z ijs = -R;, It = s
j=1

for some constant x that depends on w. Solving (5) we find that

DI=D1 I = 2,...,k
r=Substituting (7) to (3) and using (6) we find the relation between x and w.r+

Substituting (7) to (3) and using (6) we find the relation between x and w.

= pA I 
1=1x + A r=

(6)

(7)

(8)(1-pr)Ar = f.()

X + A\r

10
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(4)

(5)

2. 1 = 2 ... , Ik, jil = 



(the product for = 1 is defined to equal 1)

Equations (6) form a linear homogeneous system of a(s, m) with a(s,m) un-

knowns. The only way for a nontrivial solution to exist is for the determinant of

the system to equal 0, i.e.

Det(w)= 0 (9)

2.2 A generating function technique

From (9) we can in principle find the roots w inside the unit circle that satisfy (3),

(4). Since the numerical determination of the roots w is of extreme computational

complexity, because of the large dimensions of the determinant, we will use a method

based on generating functions in order to find the roots w. For this purpose we

introduce the m multivariable generating function:

u( ) R = z ,1 .. , i= (i ... i), z = (Zl ... zm)
Ilq-.

Multiplying (6) by z' ... z. we get the following partial differential equation of

first order:

dU az (izjz - wz - (1 - qj)zj+l) = xU(z-) (10)
/=1 z

For the derivation of (10) we have used the identities:

zau() - E Riz . .. z

Zr a(2-) R(ij+ 1) z ' , r=1,j +1
az j T

The new idea we introduce in this section, the exploitation of which is presented

in section 2.3, is that the solution of (10) combined with the requirement that this

solution must be a multivariable polynomial, will lead to the determination of the

roots w.
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2.3 The method of characteristics

Our goal is to solve (10) which is a linear partial differential equation (pde) of

first order involving m variables. We will use a well known method, the method

of characteristics, from the theory of pde's in order to solve it. Then we form the

system of ordinary d.e's:

dzl dzi

(1 - wql)julzl - (1 - ql)AllZ 2 --wqjjzl + ZjZj - (1 - qi).LjZj+l

dzm dU(z
W=-Umz = = mZm dt

-WAmZ + .mzm ,X U(Z-)
(11)

which can be written:

(12)
dz

= Amzdt

where Am is the m x m matrix:

-wqlll + L1 -(1 - ql)11

-wq2A2 A2

-wqlAm,-I

--Wq1,Am

In order to solve the system

. In the following proposition 1

Am satisfy.

0

-(1 -q2)2

0

0

0 M..... m-1 -(1 -qm-l)m-

0 ..... 0 Am

(12) we must find the eigenvalues of the matrix Am

we find the equation that the eigenvalues of matrix

Proposition 1

The eigenvalues of matrix Am are the m roots Oi(x) i = 1,...,m of the following

equation:

(13)fa.()f.(- (x)) = 1

12
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Proof

We will prove (13) inductively using the following induction hypothesis:

Induction hypothesis:

where

f.,, (0) the Laplace transform

., (0f) f (). -

IA,- I = (1 - f,,(-6)) H= 1(Aj - 6)

of the service time pdf with k poles

For k = 1 we have

IA, - I = -wqll + A1 - 0

But since ql = 1 , then

lA 1 - OI = (A - 0)(1 - wf;,, (-))

Assume that the induction hypothesis is true for k - 1. Then expanding the deter-

minant At - OIl we take

k-I

IA, - OI = (k - 6) IA,_1 - OI - wqk II (1 - qj)j
j=l

Then, using the induction hypothesis:

k

jAk - VII = (1 - wf,.,_ (-o)) (j
j=l

k-i

- 9) - wqAsk 1 1(1 - qj)j
j=1

Therefore

k

IAk - OIl = I ( - 0){(1 - wf~',_,_ (-O)) -

k

(1 - f., (-0)) Hll (j - 0)
j=1

Therefore the eigenvalues of A, are the roots of the equation:

(1 - wf.(-6)) = 0

13

- q:Ii " (1 - j)tilyW-- l Ii -- 

A~kt j l i= -



which combined with (8) gives (13).V 

Therefore from (12) and (13) we find

m

Z = 1 ej(z ) t

j=l
(14)

where -[cl,, ,,j,.]T is the eigenvector of matrix Am corresponding to the

eigenvalue Oj(x) . Also from (11)

U((t)) = Cet (15)

Since Cj is an eigenvector of A, its components C2,j,.. ., Cmj are multiples of cj

and thus

ciJ = ai,jclj, ali = 1

where aid can be found explicitly. Simplifying t from the equations (14), (15) and

defining bj cj/C (bi are still undetermined) we find:

z bjajU (z-3 i = 1...m
j=l

We solve this system for the m coefficients bi (j= 1,... ,m) using Cramer's rule

14



and we find that:

1 ... 1 z1 1 ... 1

a 2,1 ... a2,j-1 Z2 a 2 j+I ... a2,m

am,l ... amj- Zm amj+l .. am,m
I_(seI .v.-

bij U- (z- = (bl.iz + ... + bmz,)U.z (--

1 ... 1 1 1 ... 1

a 2,1 ... a 2 j- 1 a2 j a 2 j+l .- a2,m

... a, a a ...

a,l ... amj- am, amj+l ... am,m

(16)

where bi, can be computed analytically from aij by expanding the determinants in

(16). From (16), after solving with respect to U(z', we find that

U .2 = b (bljzl +-.+bmjz.) (j = M) (17)

We want to find a general solution of (10), which satisfies the condition that U()

is a multivariable integer polynomial of zl,..., zm of degree s.

Raising (17) to some integer ij and multiplying these m equations we find:

U ( = K II (bl,,zi + ... + bmjz)' (18)
j=l

where K L . is an undetermined constant.

Clearly (18) satisfies (10). In order for U(z) to be a multivariable integer polynomial

of z of degree s we demand:

)= = = 1 ij = ij Z+ (19)
2: j=1

15
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Therefore, if the above conditions hold, we have found a solution of (10) that sat-

isfies the "polynomiality" condition. Hence the generating function U(z that cor-

responds to the combination i = (il,... , m) is of the form:

m

U,-( = K II (bljz + ... + bjZ)'i (20)
j=1

Let us summarize what we have shown up to this point. Our goal was to

find the roots of the determinantal equation (9). For this goal we have defined

the auxiliary generating function U(z) and we have shown that for every of the

a(s, m) combinations of the vector i, such that il = s (i= i = s), there exists

a polynomial solution U;() of the form (20), if there exists an (wj) (and thus

a wi = f.(x)) that satisfies (19). The functions ij(z) which appear in (19) are

computed from equation (13).

In the next section we prove that for each of the a(s,m) combinations of the

vector i, such that il = s there is at least one root w inside the unit cycle. Fur-

thermore if p < 1, by using a result from the method of complex-variable-theory we

prove that this root is unique and all the roots of (9) for p < 1 satisfy a nonlinear

system of equations (see equations (21), (22) and (23)). Thus the use of the gener-

ating function will enable us to completely characterize the equation that each root

w satisfies (note that each root w satisfies a different equation).

2.4 The basic separability theorem

From the results of the previous section we have to solve the following equation in

order to find the roots w that satisfy (9):

+,() = i161(X) + i2 2 (x) + ... + i,mO,() = X, i + 2 + + i... = .(21)

where j(z) (j = 1,..., m) are the m roots of the equation:

fT. ()f; (-sji()) = 1 (22)

16



Since w = f. (x) we are interested in the roots z that satisfy the following equation

If.(x) < 1 (23)

In order to investigate the number of roots of (21) we prove the following theorem.

Theorem 2

If p < 1, for every of the a(s,m) combinations of , [i = equation (21) has at

least one root x that satisfies (23).

Proof

First we prove that there are no roots x such that

Re{xz < 0

If Re{x} < 0 then from (21) there exists a j (1 < j < m) such that Re{Oj(x)} < 0.

Then

lfW{J-Oj(x)}) I e i( )fT.(t)dtj <f jei(')tfT.(t)dt =

R eR({'())tfT.(t)dt < 1

Therefore, combining the above strict inequality and (22) we conclude that since

f~.(x)f~,(-Oj(x)) = 1 then lf.(x)l > 1. Therefore the assumption Re{x} < 0

violates (23) and hence there are no roots x such that Re{x} < 0.

We now prove that for every combination i there exists a root z in the right half

plane (Re{x} > O) which satisfies the system of equations (21), (22) using the fol-

lowing fixed point theorem.

Fixed point theorem

Every continuous function f(x) defined from a convex, bounded and closed region

into itself has a fixed point z 0, i.e. there exists an x0 such that f(zo) = z 0.

We will prove that there exists an M such that *(x) defined in (21) has a fixed

point in the region DM {x : Re{x} > 0 , Ix < M}, in other words that there
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exists a root x in the right half plane.

Clearly DM (see also figure 3) is convex, bounded and closed (compact).

Figure 3: Fixed point theorem in region DM

Also all functions ej(x) defined from (22) are continuous, since they are roots of a

polynomial equation, where all coefficients are continuous functions of x. Therefore

i(:x) is a continuous function, since it is a linear combination of continuous func-

tions. In order to complete the proof that there is a fixed point it suffices to prove

that there exists an M such that +,[(x) takes values in DM. From (22), we have

that for every j = 1,...,m Re{(j(x)}) 0, because if Re{(j(x)} < 0 then

f(-O Ai(x)}l - I 'ei(')tfT.(t)dtI < 1

Also

If;. (x) I | I SfT, (t)dt < 1

Then

IfT.; (X)If{-j()} < 1

and therefore (22) cannot possibly be satisfied. Thus Re{((x)} > 0.

We now claim that there exists an M such that IOj(x)I < Ml M -

If not, for all M there exists a y such that [Oi(y)l > M1 , that is Oi(x ) tends to

infinity as x - y. Since limjl_,.o f (x) = 0 , then from (22) in order for the

product f(x)f,.(-Oj(Z)) to be non-zero, -(z) must tend to a pole of f(.).

Thus

lim j(x) = i ,j=-,...,m
I~:--+oo
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But since Oi(z ) is bounded at infinity; y is finite and

lim (z) = oo

which contradicts the continuity of ej(z). Therefore there exists an M such that

lei(x)l < M and therefore from (21) (zx) < M, which proves that x-(z) is from

DM into DM and thus, since DM is convex and compact, has a fixed point in DM.

Therefore we have shown that for every combination of there exists a root of

the system of equations (21) and (22). Furthermore, if Re{xz > 0, x 0 then

If/(x) < 1. Yet, the solution x = is not excluded. In fact, for = (0,... , s)

x = 0 is a solution to (21), (22). If there are two non-zero components ik, i of the

vector , we can easily check that x = 0 cannot be a solution to (21), (22).

Therefore, in order to prove the theorem, we are led to the investigation of the

roots for the m combinations of i where m -1 components are 0 and one is equal to

s. Using Rouche's theorem we prove that when p < 1 then these roots are unique

and non zero. Then equation (21) becomes

f(z)f;. (--) = 

We are going to apply Rouche's theorem in the region of figure 4. Then

1. Re{xz = 0 ( 0)

We easily get that If;.(z)I < 1 and Ifi,(-,) < 1, from where

If;(X) I <

2. Re{x > , Ij -oo

Then limljl, f(z) = ' and limll-. f .(-~) = O. Thus for I1x = L for

some big enough L and Re{x} > 0

If.(X)l <
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3. z-- 0 +

Using Taylor expansion we find

f() ; =- X + o(X) f= ( + -- + o(Z)

Thus If.(x) = 1- + o(z) and I = 1 - + o(x).

Hence If~.(z)I < I; I1 if and only if p - <1

Figure 4: Rouche's theorem for t = (0,..., , s, 0,..., 0)

Since in order to apply Rouche's theorem the functions f(z) and ( should

be analytic we must exclude from the region in figure 4 all the zeros of f,(-~)

(which coincide with the poles of ), points where is not analytic. But

in the vicinity of the zeros of f((-): tfu(x) < IJ. Z)I , i.e. the required strict

inequality holds so we can apply Rouche's theorem in the region of figure 4 to find

that (21) has m roots which obviously satisfy (23) since Re{x} > 0 . Since we

have proved that there are no roots for Re{x} < 0 we conclude that if p < 1 (21),

has exactly m roots which satisfy (23), for the m combinations of i where m - 1

components are 0 and one is equal to s. Combining the above result and the general

proof that there exists a root for every combination of i we conclude that for every

combination of the type = (0,... ,0, s, 0,..., 0) there exists a unique root if p < 1.

As a result, we conclude that if p < 1, for every of the a(s,m) combinations of

a, I* = s equation (21) has at least one root z that satisfies (23). V

Up to this point we have established existence for every combination of i of a root

x that satisfies (21), (22) and (23). Furtermore we have shown that for a particular

type of combination i this root is unique, provided that p < 1. Under the condition

that these roots are distinct and since there are a(s, m) combinations of il,...,i,
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,such that E?=' is = a, we proved that there are at least a(s, m) roots of equation

(21). This condition is clearly 'almost always" satisfied, in the sense the subset of

distributions for which this condition does not hold has Lebesgue measure 0. We

have, however, not been able to construct any example in which this condition is

violated. We conjecture that this condition will always be satisfied. In fact, we were

able to prove this for the special case m = 2. For m = 1 this condition holds from

the well known G/M/s theory (see also special case 3 in section 2.5).

We did not prove the uniqueness of the roots z in the general case using results

of the present theory exclusively, but this is seen to hold by combining our result

of theorem 2 and the results of Pollaczek (1961), who showed that the waiting-time

distribution for the G/C,/s QS is a mixture of at most a(s, m) exponential terms,

which implies that there are at most a(s,m) roots for (9). In Bertsimas (1986)

it is shown that if there are t roots of (9) then the waiting-time distribution is a

mixture of t exponential terms. Furthermore, de Smit (1983a) proved that, under

some conditions, which do not seem to have any probabilistic meaning, and using

an interesting matrix generalization of Rouche's theorem, if p < 1 there are a(s, m)

roots for the GIH,/s QS.

As a result of the above discussion we conclude, by combining our result of

theorem 2 and the results of Pollaczek's and de Smit's, that there are exactly a(s, m)

roots of equation (9), which satisfy (23), provided that p < 1. Furthermore, we have

found explicit equations that the roots w satisfy. It is remarkable that the equations

for the roots w depend only on the Laplace transforms of the interarrival and service

time distributions.

In order to prove the uniqueness of the roots for every combination of i,

using results of the present theory exclusively, one might use Rouche's theorem,

but the problem that arises is that the functions j(z) defined from (22) might not

be analytic. In section 2.5 we examine some special cases in which we were able to
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prove the uniqueness of the roots w.

Remarks:

1. Since we proved that there are a(s, m) roots w that correspond to the a(s, m)

combinations of i = (il, .. ,im) such that ?l ij = we label these roots

Wj (j = 1,..., a(s, m)). We denote by D1j, R,j the coefficients corresponding

to wj . Also Uj(z) denotes the generating function corresponding to wi . Then

from (20) Uji( is equal:

m

Uji(- = Kji I(bl,,(wj)z + ... + b,,(wj)zm) i' (24)
r=1

From the definition of U(' - li=, R;,jz ... z the coefficient of is

equal to Ro ... ,)J. From the expression (24) the coefficient of z, is equal to

Kbi,l (j).. b ,m(wj). Thus

u =(e R I f(bl,(Wj)Zl + . . + bmr(wi)zm)I (25)
r=1 bm,,r(W)

2. The above analysis explains the title of section 2.4. We proved that there are

a(s,m) roots wj, each of which satisfies a different equation, corresponding

to the a(s, m) combinations of , such that s- = s. This separability prop-

erty of the equations from which the roots wj can be computed is not only

theoretically interesting, since the equations for the roots w i involve only the

Laplace transforms of the interarrival and service time distributions, but also

computationally useful.

2.5 Some special cases

1. C/Cm/1.

Since the only combinations of i for s = 1 are of the type i = (0, 0, ... , 0, 1, 0,..., 0)

we have already proved that there are exactly a(l, m) = m roots if p < 1.
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If we permit complex transition rates (AXi, Ai) the proof is still valid, but the

points where is not analytic are not necessarily on the real line anymore

(see also remark 3 in section 2.6).

It is interesting for computational purposes to investigate when these m roots

are real or complex. We assume first that the m poles of the service time

distribution are dinstinct and there are no zeros of f3. (x) which coincide with

any pole of f~(-x).

If g(x) f,(x)f, (-z)-1, then lim_ 0o+ g(x) = _ < and limz g(x) =

-1. Graphically g(z) is presented in figure 5.

Figure 5: g(x) with all m poles of f.(z) real

Therefore all the m roots are real. If there are zeros of f; (z) that coincide

with poles of f; (-x) then there may be roots which are complex.

An interesting case is also C,/E,,1. Then g(z) in this case is presented in

figure 6.

Figure 6: g(x) with only 1 pole of f,(z) real

If m is odd then there is only one real root (figure 6). If m is even then there

are 2 real roots.

As a result, since the algorithmic complexity of the determination of the roots

increases if the roots are complex, we can say that the algorithmic complexity

increases when the service time distribution becomes more homogeneous (E,,

for example, in the sense that the rates of the stages are the same ).
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2. EEm/8.

In this case (22) becomes

kA z)k(mm = 1 j(xz)=mJ(1e kA )) j=1 ...

(26)

Substituting (26) to (21) we get

kA di .w (j-1);
smA - m(k,+ t -ie = =

If we define c - =1 ije " (IEVI < 8) then we must solve the equation:

kA k
sm/s - m(kA )+ = z

Then on the boundary C2 of D (figure 7) as Ixl - oo

Im(k+ ),EI < S mis < zk - smilI

Figure 7: Rouche's theorem for Ek/Em,I QS

In particular, for x = 0 and i = (s,O,...,O) the above strict inequality be-

comes equality. Thus, in order to have the required strict inequality, so that

we can apply Rouche's theorem we consider a small semicircle and use Taylor

expansion to take as x O+ with Re{x} > 0

Im#(kA )A,t = IsmP(i -- +o(x))l < lzx - smIl if p < 1
IkA + X)j Am

In the boundary C 1 (x = ia) one can verify after straightforward algebraic

manipulations that the above strict inequality holds.

Thus if p < 1 we conclude from Rouche's theorem that for each e, there is a
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unique root in D, which satisfies (23). Furthermore, since we have proved that

there are no roots for Re{z} < 0 and the radius of C2 of the closed domain D

can get arbitrarily large we conclude that if p < 1 there is a unique root for

every combination of which satisfies (23). V

3. C,,/M/s.

For m = 1 we find that (22) becomes

f~.(X)f(- ) = 1 z = s(1- f(z))

Then w is the unique real root of the equation

w = f;,(s,(1 - W))

which is the well known result from G/M/s theory. At this point we remark

that our result which was obtained for the class of C, interarrival distributions

is still valid for a general distribution. This observation comes to support the

conjecture in section 3 that our solution is still valid even for the GI/R/s QS.

4. EnIC2/s

This QS, which was studied by Bertsimas and Papaconstantinou (1986), has

the very attractive property that all the a(s, 2)- s +1 roots are real and thus

the algorithmic complexity of this QS is low. In fact an O(s3) real arithmetic

algorithm was proposed.

2.6 General remarks

1. We now investigate under which conditions we can find an explicit equation

for , in the sense that (21) is an implicit equation involving the functions

ej (x) (j = 1, ... , m), which are not in general known explicitly. This property

is algorithmically useful since an explicit equation for can be easily solved

by numerical means. We exploit the fundamental result in the theory of
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polynomial equations. Since (21) is a polynomial equation for (z) (which

has m roots, 1(z), ... , 0(z)), a closed form expression for j(z) can only be

found for m < 4. For m > 5 we cannot in general find an explicit formula.

For example for m = 2 the + 1 roots z(wj) (wi = f(z(wj))) satisfy the

·following equation:

(s-2j)A(fT .(X(Wi))-(+-sl+2)+qlsAl,.(x(wi))+2x(wi) = O, j = O,...,s

where

A(Y)- (,2 - 1 + YqCs) 2 + 4A12(1 - ql)y

2. The complexity of the problem increases extremely fast with the number of

roots, which increase exponentially in s,m, when both s,m vary. For this

reason, it is better to use low values for m (m = 2,3,4) to approximate

a service time pdf avoiding the venture of determining exponentially many

roots. In the opinion of the author, for all practical purposes the value of

m = 2 is a tradeoff between accuracy and simplicity, which has the additional

advantage of the rather unexpected real arithmetic.

3. In the attempt to investigate Cox's idea of introducing complex transition

rates, to obtain complete generality in synthesizing any pdf with rational

Laplace transform, we observe that the general proof that there are a(s,m)

roots of equation (21) did not depend on the assuption that IL, ...,c , or

Al,..., Am are real. Since, in order to have a valid pdf with complex poles

we have to have m > 2, the simplest multi-server model involving complex

transition rates is Cs/Cs/s which has (,+2)(8+1) = 0(s2) complex roots.

4. A very promising idea lies in the exploitation of an old and very widely used

idea in the field of Electrical Engineering, namely transfer functions. By re-

ducing the order of a transfer function (which corresponds in queueing theory
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terms to the rational Laplace transform of the pdfs) we can find an excel-

lent approximation of a large order pdf by a low order pdf. This decreases

tremendously the algorithmic complexity of the problem.

2.7 The algorithm for the unsaturated probabilities

Returning to the assumed form of the probabilities P,, n > , = 1...,k, tN =

s we observe that the most general solution must be

a(v,m)

Pn,,= D, Rj w n> s, = 1,...,k, I = s (27)
j=l

where from (7)
-(1p) = 2,...,rk

= = D(w,) + Ar+l

and RIj satisfy (6). For each j (corresponding to the root wj) the coefficients R 

satisfy a system of a(s,m) linear homogeneous equations (6). Thus for a fixed j.

we can find the ratios RrO f(i, wj) recursively. Thus the unknowns are the

coefficients Bj Dl,jR(o,...,o,o)3 i.e. there are a(s,m) unknowns. Therefore

a(o.,m) 1-1 (1 - p )= k
P,, = B H ,+ ) f (i, w j ) w n > s, =1 k l

S j=l r=l (w,) + k7 '

Furthermore, from (25) we observe that the generating function of f((t, wj) is

Gj(f) = U = - 1 1(blr(wj)Zl b+.. + bm 1 r(Wj)Zm)it (28)
R(o), 1,= b ,(W,)

Up to this point the remaining unknowns are the coefficients Bj and the unsaturated

probabilities P,,:, n < s, I = ,...,k, it = n. There are two strategies for

finding these unknowns.

Strategy A

1. Using the equation (2) for n < s we express the unsaturated.probabilities Pn,a,,

as linear combinations of the coefficients Bj, i.e. finding recursively from (1),
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(2) the coefficients g(n,l,ij) in the expansion:

o( ,m)
P,= Bj g(n,l,ij) n<s,l=1,...,k, I =n (29)

$=1

Thus after this step only the coefficients Bj(j = 1,...,a(s,m)) remain un-

known.

2. Using the identities Pn-1,k, = 0 n < s, [N = n we find =0( +n 1) = ('+s )

linear homogeneous equations for Bj. Selecting ( + )-1 of them and using

the normalization equation

E P,,,~ = 1 (30)

we find a linear non-homogeneous system of a(s, m) equations with the a(s, m)

unknowns B i .

Strategy B
There are (n+m-1 

There are kE' (n) = k(s-1) unsaturated probabilities Pn, and ( + )

unknown coefficients Bj. Using equations (1), (2) for n < s we find k(s- 1)
*+rn-1

equations for Pn,,,.. Also, the equations (1) for I = 1 and n = s give another ( i)

equations that involve the unknown quantities Pn,1,1 (n < s) and Bj. So, we have a

linear homogeneous system of k(s- 1) + ( ) equations with the same number of

unknowns. Using the normalization equation (30) we find a linear non-homogeneous

system, which can be solved by numerical methods.

3 The system-size probability distributions and

the usual performance mearures

In this section we find closed-form expressions for the quantities Pn, P-,, P, P+

(see section 1.2) for n > s. Also closed-form expressions are provided in section 3.2

for the usual performance measures.
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3.1 System-size probability distributions

Concerning the distribution of N we state the following proposition.

Proposition 3

The general-time probabilities of the number of customers in the system have the

following form:

if n>sp -j=Gli Bj I u(J) -wj) w,

=(J'm) Bj EL=I EI=n g(n, 1, ,j) if
(31)

n<8

where Gj(i) is computed from (28).

Proof

In general

Pn=

Then for n > s, using (27), we take:

k

=1 jE=min(n,*)

o(,,m) k

P = E (Dlj) ( Rj) wu"
j= = F1=o

But E1I= R;,j = Uj(1) = Gj(R(o ... ,o)j from the definition of the generating func-

tion Uj(z-) and using (28). Also from (7)

k l (1 -p,)Ar
1=1 r=1 z(w,) + Ar+i

= Dj X + (wi)( - Wj)
x~uwj)

where we have used the identity that

k pf) 1-1

Wi = f/ ((j)) = (w) + A, II
1-1 x(Wj) + Al r=1

(1 - p,)A,

z(W) + Ar

Therefore

P a(m) D A1 + z(wj) U (1) (1 w,)
j=1

n>s (32)

Using the definition of B = DljR(o,...,o,,)j (31) follows for n > a. For n < s, using

(29), (31) follows easily. 
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Conjecture

Although the method of stages we presented is not immediately extendable to dis-

tributions, which do not have rational Laplace transform, we believe that this sep-

arability property holds for the more general model G/R/s, but does not hold for

GIG/s where G for the service time pdf does not belong to the class R. The reason

for this difference is that it is the structure of class R and its probabilistic interpre-

tation that enable us to "separate" the equations for the roots w i . Summarizing we

conjecture that for the G/Rm/s QS

Pn= Z Ljw n > s
j=1

where wj are the ( s ) roots of the following system of equations

w=f.() (Iwl<l)

Zijej()=z such that >i= 
j=1 j=1

f.(x)f(- Oi(x)) = 1 (i = l,...,m)V

Concerning now the pre-arrival probabilities we prove the following proposition 4

Proposition 4

The pre-arrival probabilities P¾, P, P and the post-departure probabilities Pn+ for

n > s can be expressed as follows:

1 G(*,M)
P =, = E Bj f(iwj) ( + x (j))n+l n s, i = (33)

j=1

1 (4m)

P P = 1P+ n2 E BjGj(i(A 1 + x(wj))w+ n > (34)
j=l

Proof

If we define the event AAO =Arrival about to occur in (t, t + t) then we take

z =P =,=Pr{N = n n R =i n AAO}
P-;= PrIN = n, R = AAO) 0n,R Pr{AAO}
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Pr{(u,=(N = n nR = i n R, = l) n AAO} _

Pr{u =R, = n AAO}

EL Pr{AAOIN = n R = n R. = }P{ = n n = n = I}

-=1 Pr{AAOIRo = })Pr{R = 1)

But since

Pr{AAOIN = n n R = n R = l} = Pr{AAOIR. = I} = xAp6t

and

Pr{R = } =
Eri {Pr Il_ (1 - pm)}

1
A .

we take
=1 AplP,l,;S

=1 API r=l{Pr 1 (1m)}XIYt

since E=l pt Zr,={Pr , (1 - Pm)} 1.

Therefore, using (27) and (35) we have:

1 a(,rm) k

P-n= , {Z jplD,} RJ- W
j=1 5=1

Also from (7)
k

ApjDj=1
l=1

k

= AlplD 1,j
1=1

l-l (1 - p,)A,
r=1 x(W,) + A7+1

= Dj(AXI + x(wj))wj

Thus from (36), (33) follows.

Also

Pn = P=
0i=J

1 a(s,m)
=- 

Aj=

From l=, f(is w;) = Gj (i) and the general relation Pn-

G/G/s QS (34) follows. 7

3.2 System performance measures

1. Mean queue length

If Lq is the length of the queue then

E{Lq} = Z(n - s)Pn
n=

= P+ which holds for the

= P+ which holds for the

(37)
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1=1
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Bj (X1 + z(wi))w} +1 E f (i, Wj)



We substitute (31) into (37) and find

a(0,m)

E{Lq}= E
j=1

BjGj(l)+ x(w) j1 -W
X(Wj) 1 -Wi

2. Proportion of time all servers are busy, Pb,,v

oo0

Pebsv = E
n=.

o(,,m)
P = BGA( + 3(Wj)

3. Probability of non-zero waiting time

00

Pr{T > 0} = 
n=

1 a(,,m)

P = BGj ((A
i=1

+( )) W+i
1- W

4 Computational and complexity considerations

4.1 The algorithm

In order to extract numerical results from the formulae presented in sections 2, 3

we propose the following algorithm based on strategy A (see section 2.7).

e+m-1
1. Determination of the ( s ) roots wj of the system of equations (21), (22),

(23), (8).

2. Determination of the coefficients f(s, wj) from (6).

3. Determination of the Pn,.aT for n < s as linear combinations of B i .

4. Determination of the ( s ) unknowns Bj as a solution of a linear system

with ( - ) equations.

32

(38)

(39)

(40)

It



4.2 Complexity considerations

In table I we show the computational complexity of each step of the algorithm with

respect to memory and time requirements.

Table I: Computational requirements for the solution of the Ck/Cm/s [

From table I we can make the following observations. Since from a computational

point of view the "heaviest" part of the algorithm is the third step, the time com-

plexity of this algorithm is of O(ka 3s(s, m)) . We consider the following cases:

1. For a fixed m, the algorithm is polynomial in the number of servers s since

O(kSa3 (s,m)) = O(ksS(m-I))

2. For a fixed s, the algorithm is still polynomial in m, since

O(ksa3(s, m)) = O(km 3')

3. When both m, s vary then the algorithm becomes exponential, since

O(k 3 a3 (s, m)) = O(ke ' + 'm)

As a result, this algorithm has a polynomial time complexity when only one of the

parameters m, s vary, but it is exponential when both parameters vary. We can

also observe that this algorithm is always polynomial in k. The above results verify

that the complexity of the analysis of the Ck/C,/s QS increases much faster with

the service time than with the interarrival time pdf. That is, we expect for example

that the derivation of numerical results for the M/C,/s QS is much harder than

for the C,/M/s QS.
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4.3 The numerical solution of the C 2 /C 2/s QS

To fully gauge the performance of the proposed algorithm we programmed it in

FORTRAN, because of its inherent superiority in accuracy and speed and in BASIC

because of its greater availability in microsystems. The first program has been run

on a CYBER 171 and the second on a SPECTRUM 48K, in order to prove that even

for such a "difficult" model exact numerical results can be obtained by a practitioner

on a small personal computer.

The reasons we selected this model are:

1. It is representative of the general behavior of the algorithm for more general

models.

2. It is in real arithmetic.

3. Its complexity 0(s 3 ) is not very high.

4. This model allows the determination of exact results when the coefficients of

variation of the interarrival and of the service time pdf are both greater than

1.

Merely as an illustration of the stability and accuracy of the present algorithm,

we present in table II a few typical results for the C 2/C 2/15 case with p = 0.9

and the conditions ul = 2, ql = 1- v?, 2 = (l - q), Al = 2A, Pi = 1 -v,

A2 = A1(1 - Pl) (two moment-fit; V,V,2 are the coefficients of variation of the

interarrival and service distributions respectively).

Table II: E{Tq} as a function of V.2, V2 for the C 2 /C 2 /15 QS

4.4 The numerical solution of the Ek/C 2/s QS

This QS is solved by Bertsimas and Papaconstantinou (1986). In order to illustrate

the dependence and the sensitivity of this algorithm on k we prepared another
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program for the analysis of the Et/C2 / QS.

After careful and time-consuming tests of our computer programs we have pro-

duced extensive numerical results for a wide range of the parameters 8, p, k, 1, 2

and q which complement or extend (being always in full agreement with ) the re-

sults of Kuhn (1976) for the E 1,2 /M/s, Sakasegawa (1978) for the Ek/E 2 /s, Ishikawa

(1979) for the M/E 2/s, Hillier and Yu (1981) for the Ek/E 2 / , Hokstad (1982) for

the M/H 2 /s, van Hoorn (1983) or Groenevelt, van Hoorn and Tijms (1984) for the

M/H 2 /s and M/E, 2 /s and finally of de Smit (1983b) for the M/H 2 /s, E 2 /H 2 /s

and E 5 /H 2 /s systems.

In table III we illustrate the dependence of the mean waiting-time Iz E{T} (in

units of service time) for the model Ek/C 2 /15 (p = 0.9, Al = 0/2 for V,2 < 1

and q = "I for V,2 > 1). This selection of parameters coincides with that of

Groenevelt, van Hoorn and Tijms (1983) but differs from de Smit's (1983b).

Table III: tz E{Tq} for the Ek/C 2 /15 QS as a function of V,2 = - VJ2|

This typical example demonstrates the well known for the M/G/1 QS deleterious

effect of irregularity in service times. We observe that the numerical results as k

increases converge quickly to the corresponding limiting (for k - oo) D/C 2/s

and thus render any computations for k greater than a certain small value almost

unnecessary.

Finally in figure 8 we present the computational times in CPU seconds on a

CYBER 171 as functions of k and s.
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5 Some concluding remarks

Several discussions of the major computational problems arising in the numerical

solution of multi-server queues with non-exponential service time can be found in

Yu (1977), in Tijms and van Hoorn (1981) and Neuts (1981).

For high values the fact that

1. the monumental, ten-year computer-oriented project of Hillier and Yu (1981)

was hinderd by severe computational feasibility limitations, and

2. the approaches of de Smit (1983b) Groenevelt, van Hoorn and Tijms (1984)

lead to rather extreme levels of computational complexity,

seem to indicate that the key to success in making an intrinsically difficult QS

solvable lies in the selection of a suitable solution strategy, like the one presented

in this paper.

Strongly critical remarks have been made in the past both on the merits of

queueing theory (see e.g. Neuts (1981), p.42 or van Hoorn (1983), p.101) and

on unwarranted algorithmic claims in the applied literature on stochastic models.

Being fully aware of the need for the probabilist to be very closely involved with

the algorithmic analysis of a problem, we have undertaken ourselves the painful"

task of programming and testing our algorithms.

5.1 Open problems

In this paper we extended the method of stages to its complete generality solving the

general class of multi-server Markovian queues. In our opinion, the major problems

that are of importance in the field of theoretical and applied queueing theory are

the following:

1. Find the waiting-time distribution under different queue disciplines, e.g. LCFS

(Last Come First Served), SIRO (Service In Random Order). This problem
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seems extremely hard, since very limited results are known. Even for MIMIs

the expressions for the pdf of the waiting-time of an arriving customer are of

extraordinary complexity.

2. Find the steady-state probability distribution for the class of non-Markovian

multi-server queues, thus settling the conjecture in section 3.1.

3. Perform busy-period analysis.

4. Perform transient analysis.

Concerning possible extensions of the present approach we believe that the following

problems are tractable:

1. Extend this theory to solutions of multi-server QS where priorites are allowed.

2. Generalize this theory to the domain of transient behavior of queueing sys-

tems.

3. In the field of computational queueing theory develop a general purpose algo-

rithm to approximate a general distribution not generally in the class R with

one that belongs in this class preferably of low order. Then by exploiting the

results of this paper we will have an approximate solution of the G/G/s QS .

4. Introduce complex transition rates to obtain complete generality in synthe-

sizing any pdf with rational Laplace transform.

We end this paper by expressing the hope that the solution strategy we presented

might be the Ariadne's thread to a general but tractable calculus of rational distri-

butions for multi-server queues.
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Table I: Computational requirements for the solution of the C/Cm/s

41

Step of Time Memory

algorithm requirement requirement

(1) o (a(s, m)) O(a(s, m))

(2) O(a'2(, m)) O(a2(, m))

(3) O(k a(s, m)) O(ka2 (s,m))

(4) O(a3(s,m)) O(a2(, m))



Table II: tE{Tq} as a function of V 2, V,2 for the C 2/C 2/15 QS

42

Vat \ V,2 0.5 0.8 2.0 5.0 10.0 50.0

0.5 0.1816 0.2375 0.4489 0.9498 1.7542 7.9025

0.8 0.2561 0.3133 0.5283 1.0334 1.8416 8.0838

2.0 0.5677 0.6259 0.8472 1.3662 2.1889 8.5139

5.0 1.3939 1.4490 1.6620 2.1953 3.0519 9.5035

10.0 2.8251 2.8676 3.0575 3.5764 4.4513 11.0235

50.0 14.5984 14.6074 14.6636 14.9542 15.6819 22.7259



Table II: tz E{Tq} for the Ek/C2/15 QS as a function of V,2 = i, V,2.

43

k \V,2 0.5 0.8 2.0 5.0 10.0

1 0.3067 0.3647 0.5784 1.0810 1.8902

5 0.1124 0.1661 0.3685 0.8558 1.6507

10 0.0909 0.1431 0.3431 0.8279 1.6207

15 0.0839 0.1356 0.3347 0.8186 1.6107

20 0.0805 0.1319 0.3305 0.8140 1.6057



Figure 1: The C, class of distributions
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(1 -t-1

Figure 2: The state-transition diagram for I = 2,
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Figure 3: Fixed point theorem in region DM
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Figure 4: Rouche's theorem for = (0,.... O, s,0,. .. ,0)
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Figure 5: g(x) with all m poles of f;.(x) real
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Figure 6: g(x) with only 1 pole of f(z) real
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Figure 7: Rouche's theorem for Ek/E,,I QS

50

I



1000

500

100

50

10

5

1

.5

.1

Figure 8: Computational times in CPU seconds for the Ek/C 2 /s QS
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