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Abstract

We address the question of determining good discretizations for stochastic
programming problems with recourse. We consider problems in which the second-

stage RHS is defined by a vector of independent continuous random variables.
Though we consider the problem from a practical viewpoint, some interesting

theoretical results come out of the analysis. Two algorithms are described. The first
provides a provably good discretization, but is difficult to implement. The second is

easily implemented, but may not provide as good a discretization. It is of practical
significance that solving the expected value problem is the first step in the
discretization procedure. In practice, that is usually the last step. Thus, the results
in this paper extend current practice in a simple and natural way.



Introduction

In this paper, we consider the two-stage stochastic programming problem with

fixed recourse and random right-hand side. Walkup and Wets [12] showed that if

one restricts the stochastic structure of such problems to discrete random variables,

there exists a well defined deterministic problem which solves to the same optimal

solution and has the same set of optimal first-stage decisions. In this paper, we

consider the stochastic programming problem with continuous random variables.

We will derive a procedure for approximating the continuous problem by a sequence

of discrete problems which can be solved using any of the well-known stochastic

programming algorithms (see [2], [4], [5], [11], or, for an excellent overview, [14]).

Olsen [9] showed that general multistage stochastic programming problems

containing continuous random variables could be approximated by appropriately

chosen problems with discrete random variables. Furthermore, he proved that the

sequence of solutions of these discrete approximations would converge to the solution

of the continuous problem under some relatively loose assumptions. The question we

address in this paper is how best to refine the partition for the simple class of two-

stage problems with random right-hand sides. We will develop simple criteria for

selecting among a class of discretizations such that the sequence of solutions

converge to the optimal solution quickly.

In practice, the expected value problem, that is, the problem with all random

elements replaced with their expected value, is generally solved in place of the

stochastic programming problem. This approximation is considered necessary since

the latter is large and difficult to solve when all the distributions are discrete and is

completely intractable when continuous distributions are present. However,

researchers and practitioners are becoming aware of the dangers of this single

simplistic approximation. Theoretically, one can invent problems in which the

errors introduced by this approximation can be arbitrarily large. Furthermore,

practical problems have been solved in which the errors have been large enough to

justify the additional effort required to solve the stochastic programming problem

(e.g. [7]). Though one can determine a bound on the error introduced by solving the

expected value problem in place of the stochastic problem (see [1], [3], [6], [8]), it is

difficult to get tight bounds. Thus, for most practical applications, one is unable to

determine just how bad the expected value approximation is.
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We present a method for solving the stochastic programming problem by

starting with the solution to the expected value problem. The expected value
problem is refined and resolved, and then further refined and resolved, until the

error tolerance is acceptable. The analyst must determine the appropriate trade-off

between the accuracy of the solution and the cost of its resolution.

By applying the algorithms described in this paper, one not only obtains

better approximations to the problem, but also gains insight into the stability of the
first stage solution by examining its damped oscillitory behavior from the solution of

one discretization to the solution of the next.

Each discretization serves to balance the overall approximation in the

following sense. We call a discrete approximation to the stochastic problem balanced

if the approximations derived by aggregating any adjacent pair of realizations of the

discrete random variables a single realization all have nearly the same optimal

value. The algorithms derived in this paper balance the approximation since at each

iteration, the next discretization is defined by disaggregating the most out-of-

balance element of the problem.

We propose two methods for solving the successive discretization problem.

The first method is difficult to apply, but provides a provably good discretization.

The second method is extremely easy to apply, but will in general exhibit slower

convergence properties than the first. It is our belief that the time/performance

tradeoff will generally suggest using the latter method. However, this conjecture
has yet to be tested emperically.

The paper is presented in 5 sections. In the first section, we define the

problem and the notation. Then, in section 2, we derive the partition selection

problem which is the central construct of our analysis. In the third section, we

analyze the problem and present our first algorithmic solution procedure. We derive

an algorithm for heuristically solving the problem in the fourth section. The

algorithm in section 4 is the one that we believe has the most merit from a practical

point of view. It is easily implemented and should provide substantial improvement

over the current practices of solving the expected value problem or, at best,
eyeballing the discretization. Finally, in section 5, we provide a simple numerical
example and discuss how the algorithms presented in this paper may be embedded in
fast solution procedures for solving larger problems
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Section 1: The Problem

The stochastic programming problem with fixed recourse and random right-

hand sides can be written as follows:
Min C x + E[Cy] (1.1)

x

(P) s.t. Ax b (1.2)

Ax + By = (1.3)

x20, y0O

In the continuous stochastic programming problem we wish to analyze, is a

vector of continuous random variables, k = { [1, 2,...,~m}, with distribution F(k) and
probability density function f() both defined on the support of , denoted by E. We

make the following assumptions about the distribution of k.
Assumption 1: 'i and [j are stochastically independent when i j. Thus, the

multivariate distribution for k is

F(Q = F(1). F2(
2 )* ...- Fn(nm) (1.4)

and the support of k can be written as

= (1 xE 2 x. .. x m) (1.5)

Assumption 2: The support of [ is bounded, ie. , = (X1i,u'), and
-oC: < i< i< +cX.

I u
Assumption 3: fi(A) >0O for all A1

i ' _ < XU.

Assumption 4: fi(-) is continuous on (i,Xui).

The approach usually taken in practice to solve (P) is to solve the expected
value problem, (EV), defined by replacing in (1.3) by the expected value of [,

defined as [o.

i is, tdFinPco

with this substitution, the expected value approximation to (P) becomes a
deterministic LP.

3



Min CxX + C 

(EV) s.t. A x =b :n (1.7)
x

Ayx+By =%0 :y (1.8)

x2O, y20

Problem (EV) can be seen as a trivial discretized approximation to problem
(P). The discretization is defined by replacing each random variable by a single
element defined as its expected value, and weighting this point by a probability of 1.
We wish to refine the trivial discretization of (EV) in an intellegent way.

Before we proceed, we must define what we mean by refining a discretization.
Toward this end, we use Olsen's definition of a finite grid [9]:
Definition 1.1: [ ;B1] is called a finite grid for (P) if E' is a finite subset of E,

and B 1 is a multifunction, B 1: ' - - , where:
a) i EBl([i) and B'(,i)EB(E), for all ki E , where B(E) is the
underlying u-algebra of Borel sets in -.
b)B (V) =;

c) B'(ki)nBl() = 0 if ti .

Using this notation, the finite grid [°;B°] which defines (EV) has Eo = {,0}, and
Bl(o) = E. We shall refine the trivial grid, [°;B°], to the grid [';B'] by partitioning
E into two subsets, Q1 and Q2, each with positive measure. 1= {,, 2} where

1 = E{lI(Q 1} = J , dF(Q

and

E{dlefl2} 2= fndF(s
b2

The deterministic equivalent of the refined stochastic programming problem
becomes:

4
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Min CxX + Cy(ply1 + P2 Y2)

(P1 ) s.t. A x =b (1.10)

A x +By1 (1.11)

Ax +By 2 =2 (1.12)

x>0, y20

In order to preserve the independence of the stochastic right-hand side
elements in our refined problem so that we may reapply the refinement procedure,
we must define our partition sets, Q1 and Q 2, carefully. In general, the only way we
may partition into two subsets while preserving independence is by partitioning
across a single element of E. This specific type of partition may be uniquely defined
by a partition index, r, and a partition cut, X, as follows:

-1 -2 X-r-1 [r -r+ -m (1 .13)

= 21 x-2 -r- 1 r]x-r+l X -m (1.14
2 A X...X X...X

2 U

Define

pl(r,X)=Pr(EQ) = Fr(X), and (1.15)

P2 (r,X)=Pr(E( Q2) = 1 -Fr(X) (1.16)

The pair (r,X) defines the new finite grid [~';Bl], which is a refinement of the grid

[?;B°].

Once we have solved the problem (P1), we may proceed to refine [l';Bl] in a
similar way, generating a new problem (P 2). At each iteration, we are increasing the
size of the problem, adding m rows and n columns, where m is the number of recourse
constraints and n is the dimension of the recourse decision variable, y. This
refinement process may be continued until either 1) the bounds on the optimal value

of the original problem are tight enough, 2) the first stage decision variable, x,
settles on a fixed value, or 3) the problem becomes intractable. Therefore, given a
procedure for determining the initial discretization, we may apply the same
procedure iteratively to refine the discretization. We describe this process in detail
in section 4.

5
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The problem we wish to analyze in this paper is how to choose the partition.
That is, how do we select the r and A? We assume that we have solved the problem
(EV) and have an optimal basis, its corresponding first and second stage solution,
(x*,y*), and the optimal dual multipliers (ri*,y*) on constraints (1.7) and (1.8)
respectively.
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Section 2: Derivation of the Partition Selection Problem

Olsen showed that the values of (Pi) will converge to the solution of (P) (in the
weak sense of c-convergence). Moreover, it can be shown that
(EV) < (P1) (P2)_ ... • (P) (e.g. see Hiller, 1985). Therefore, the primary criterion for

determining a "good" partition is that it should maximize the rate of convergence. In
a local sense, it should maximize the difference between the objective value of (P 1)
and (EV).

In practice, the analyst is usually interested in the optimal setting of the first

stage decision variable, x. Therefore, a secondary criterion for choosing a "good"
partition is that the problem (P1) resulting from the partition should, if possible,
force a change in the first stage decision variable. That is, x*(EV) should differ from
x*(p,. With this criterion, the analyst may be relatively sure that the discretized
problems have selected the optimal value of the first stage decision vector, x, when it

stablilizes for several iterations of the procedure.

Our primary objective is met by solving the following problem:

Max z(r,XA)= {z - z }

Min ly 2 x + pl(r,A)cly1 + p 2(r,)cyY2 - (2.1)

(P1) s.t. A x =b (2.2)

A x + By = l(r,) (2.3)

Ax +By 2 = (r XA) (2.4)

x>0, y20
We take the dual of this problem and rescale the dual variables by setting

Y1 = y1/pl(r,X), and Y2 = y/p 2(r,A) to get the equivalent problem:

z(r,A) = Max n'Yb + ylpl(r, l(r,) + Y2P2(rX)2(rA) - (n*b+ ) (2.5)

(D1) s.t. nAx+ yll 1(rX)Ay + Y2P2(rA)Ay • Cx (2.6)

y 1B <c (2.7)
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Y2 B <cY (2.8)

We call problem (D1) the modified dual problem of(Pl).

Dualizing the complicating constraint, (2.6) with the multiplier x gives us the

following lagrangean:

L(x;r,X) = Max n(b-Ax) + y 1pl(r,X)[l(r,h)-A x + y 2p 2(r,h)[2(r,)-A x (2.9)

+ (cXx-nb-yr)

n uis y1E F y2 F (2.10)

where we have defined the linear constraint set r = {ylyB < cy}.

We know that L(x;r,X) z(r,A) in general, and in particular, L(x*;r,X) z(r,h)

where x* is the optimal first-stage solution for (EV). Furthermore,
L(x*;r,Alr) = L(x*;r,Xur) = 0 for all 1 r• n since (P1) and (EV) are the same problem if

X is set at its lower or upper bounds given our assumption that f(k) is continuous. If

we fix the lagrangean multiplier at x*, (2.9)-(2.10) decomposes into

Max n(b-A x ) Max yl[(r,X)-A x ] Max Y2[(r,)-A x *

* * pl) · 2(r,) X)
+ c x - b + -Y y + -Y 0

s.t. n uis s.t. ylEF s.t. y2Er

The first subproblem is solved at n*, the optimal dual multipliers for the first stage

constraints in (EV). The second and third subproblems are exactly the same except

for the rth coefficient of the objective function. They may be solved quickly with LP

objective function parametric programming from the bfs Y1 = Y2 = Y*'

We propose to examine the problem Maxr,[L(x*;r,X)] rather than the harder

problem, Maxr x[z(r,X)]. We justify this with three observations: first, the latter

problem is a nonlinear programming problem with nonlinear constraints, a problem

that is difficult to solve at best and completely intractable at worst, while the former
problem is a problem with linear constraints which exhibit very special structure,

albeit the objective is nonlinear and in general nonconvex. Secondly, in most
practical problems, the optimal first stage decision for the (EV) problem is a good

estimate for that of the problem (P1) since the first stage constraints in (EV) are the

same and the recourse constraints in (EV) represent a simple aggregation of the
recourse constraints of (P1 ). Finally, and most importantly, if we solve the problem
Maxrx[L(x*;r,A)], we are confined to two cases:
Case 1: Maxr ,[L(x*;r,A)] is only slightly greater than 0. In this case, since

8



MaxrX[L(x*;r,A)] _ Maxr,X[Minx[L(x;r,A)]] = Z(P,)-ZEV), we know that no
other partition (r,X) can achieve a greater objective value for (P1) and
our primary criterion for a "good" partition has been met.

Case 2: Maxr,X[L(x*;r,)l )]> 0. There are two possibilities:
Case 2a: the optimal first stage solution to (P1) is x* in which case the

objective value of (P 1) = Z(EV) + Maxr,X[L(x*;r,X)] > Z(Ev) and our
primary criterion for a "good" partition has been met.

Case 2b: the optimal first stage solution to (P1) is not x* in which case
the partition (r,X) will force a change in x and our secondary
criterion for a "good" partition has been met.

Thus, regardless of what the outcome of the optimization is, we may make a "good"
partition. (We note as an aside that L(x*;r,A) is bounded due to our assumption of

complete recourse.)

Thus, we wish to maximize (2.11) wrt (r,h). One simple procedure for doing

this is to define the 2n functions g1(X)W,g 2(A), ... , gn(X) and h,(A), h2(A), ... , hn() as

gr) = Maxyjll,l)-A x y - Y (2.12)
s.t. y1EF

r s.t. Y2( r

For each r, we maximize the one dimensional nonlinear program

Max { pl(r,A)gr(X) + p2(r,h)hr(A)}
(2.14)

s.t. r<•<Ar
l U

For expositional purposes, we define the function Vr(A) as

yr(X)- pl(r,h)g r() + p2(r,h)hr(X) (2.15)

We call problem (2.14) the partition selection problem since its solution will provide

us with an efficient procedure for selecting a good partition to refine the
deterministic approximation of the stochastic LP with recourse.Given the solution to
(2.14) for each r, we simply choose the r which gives the largest value.

Unfortunately, even for fixed r, (2.15) is neither concave nor convex for
general distributions F(). If F([) were uniform, (2.14) would reduce to a set of
quadratic programming problems, which could be solved quickly to optimality. We
postpone our discussion of this and other special cases and continue with our general
discussion in the next section.

9



Section 3: Analysis and Solution of the Partition Selection Problem

In this section we prove a series of results that will give us more insight into

the behavior of problem (2.14). We then propose an algorithm that is guaranteed to

solve (2.14) in a finite number of steps. The algorithm is difficult to implement in

practice because it requires the inverse of the conditional expected value function.

Moreover, it may require a substantial amount of time to solve to optimality.

Therefore, we do not recommend the implementation of this algorithm for most

practical problems. In the next section we will propose an efficient algorithm which

will provide an approximation to the solution.

Figure 3.1 shows a plot of Wr(A). The following lemmas reveal the possible

variants of figure 3.1.

Ar(A)

- (y*AyX*) I I I
I I I
I . I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I

I I Ili

li

li

li

A3s 4 A 1r
11

Figure 3.1: Plot of (2.14)

Lemma 3.1: [TIr(Alr) = hr(Alr)] = [Tr(AUr) gr(Ar)] = - (y*Ayx*).

Proof: By definition, the components of the vector k,(r,A) are

Simi(rlarly, the components of the vector ,+ 1are )
Similarly, the components of the vector k2(r,X) are

10
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I
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I
II
I
I

I
I
I
I
I
I
I
I
I
I
I



E(r,+,) = (,

The proof is complete by the simple observations that p1(r,Alr) = 0,
p2(r,Al r ) = 1, [r(Alr) -E( >kA lrh)] = 0 r, and pl(r,r) = 1, p 2(r, u)= 0, and

[Rlr(A)=-E([-< Ar )] = or' . Therefore,

Max y 1[%-A x ]-y 

s.t. y F

} = { Max Y2 [k -A x ] = ( A i)

s.t. 2E F

IxI
Lemma 3.2: r(A) -(y*A x*) for all A' Am Au .TA ) ~~~' YI 

Figure 3.2 shows a plot of gr( 1r) and hr( 2r) as functions of lr(A) and

2r(A) (note: not as function of A). Figure 3.2 can be interpretted in two

Figure 3.2: RHS Parametric on (EV)

ways: 1) as a simple LP parametric plot for (EV) as a function of the rth
component of E,, and 2) as a combined plot of gr( 1l r) and hr(k2r) where the
domain of gr() is Alr=~ ~ 0r and the domain of hr(k) is 0,r [_< A. Now,
define t = lr(A), t 2 = 2r(A), a = p(r,A), and (1 -a) = p2(r,A). Our result
follows immediately from convexity of LP right-hand side parametrics
and the fact that at + (1 - a)t 2 = 0 . F

11
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Lemma 3.3: ,r(X) is continuous and bounded on ('r,u).

Proof: [lr(A) and 2r(X) are continuous bounded functions of A in the open
interval (ir,XUr). Furthermore, gr([ 1r) is continuous and bounded in 1r .

The same is true for hr(E, 2r). Therefore, gr(A) and hr(A) are continuous
and bounded. Similarly, p1(r,X) and p2(r,A) are continuous by our
assumption that F(-) is continuous. Therefore
qJr() p,(r,X)gr(X) + p 2(r,X)hr(X) is continuous and bounded.

Theorem 3.1: There exists a A* such that (2.14) is maximized at A* and
A r< X* < .U·

Proof: (2.14) is bounded for all A by our assumptions of fixed recourse and
bounded support for ,. Now, using Lemmas 3.1 and 3.2, we have that

r(A) >-,r(Ar) = tJr(Aur) for all AXE(Ar,A'U). Furthermore, the maximum is
attained since TWr(X) is continuous and bounded by lemma 3.3.

Now we may continue our analysis of problem (2.14), with the knowledge that
an interior solution will exist. (We do not dismiss the possibility that
pl(r,A)gr(A) + p2(r,)hr(A) = - (y*AyX*) for all Xhr = h < A Ur.) Although Wr(T) is neither
concave nor convex on [r,Aur], we do have a convexity result fot gr(h) and hr(A).

Theorem 3.2: gr(A) and hr(A) are strictly quasiconvex on [AIr, AUr].

Proof: Recall the definition of strict convexity: gr(A) is strictly convex on a
convex set -r if for all XO E-, the following holds: for any A ( E,
gr(A) < g(X) implies that gr((1 -Ca)Ah + a) < gr(Ao) for all O < a < 1.
We prove the theorem for gr(A) by contradiction. The proof is exactly
the same for hr(A). Assume that there exists a Ao E[A1r, AUr], a AE [A1r, AUr],

and an aE(0,1) with g(A) < gr(A) and gr((1 -Qa)X + a)_ gr(Ao). Now, we
define the function ,lr(A) mapping the "cut", A, into the value
,l r=E[,I, < A] (figure 2.2 is a plot of gr(Elr(.))). klr(A) is a continuous 1-1

increasing function because of our assumption that f () is continuous
and positive on Er. Therefore, there exists a PE(0,1) such that
,lr(( - a)A + aA) (1 - )1 r(o) + plr (A).

gr[(1 -- a)A0 + aA] = gr[l r((1 - a)AO + aX)]
= gr[(1 -1p)lr(Ao) + plr(A)]

12



- (1 -p)gr[Er(A0)] + 13gr[lr(A)] by convexity of gr[Sr]
=(1 -lP)gr[X o ] + Pgr[A]

<(1 - )gr[o 0] + [gr[A0] since f3 O and g(A) < gr(Ao)
= gr[Xo]

Hence, gr[(1 - a)Ao + ah] < g[A] , which contradicts our assumption to
the contrary.

Further analysis must be completed on the function Wrr(X) in order to render
problem (2.14) tractible. The following theorems provide us with a convenient
method for solving (2.14). We prove that (AlrXur) can be partitioned into a finite
number of intervals, (O 0 Alr',A, ) (l A9) ... (kN-1,'N -- XUr), such that Tr(A) is
continuously differentiable on each. Moreover, on each interval, the funtion has at
most one local maximum that is not an extreme point of one of these intervals.
Therefore, we may restrict our search for K* to a finite set. To solve (2.14), we need
only compare the value at each endpoint, Ai, (except the two endpoints Alr and A Ur
since we know an interior solution exists) and possibly one other interior point.
Thus, we need compute and compare at most N values of pl(r,A)gr(A) + p 2(r,A)hr(A). It
is of practical significance that N is usually not too large.

Theorem 3.3: TWr(A) is continuously differentiable on (Ai,,i'. Furthermore, the
nondifferentiable points, A0 Al, A2, AN, correspond to vertices of
the graph of figure (3.2).

Proof: First note that jl(r,A) and k2(r,A) are strictly increasing functions in C'
on (lr,AUr) since f(A) >0. Furthermore, gr( ,r) and hr(E 2r) are piecewise
linear functions of ,r and 2r as figure 3.2 shows. Therefore, g(A) and
hr(A) are piecewise continuously differentiable everywhere except
where r(A) is at a breakpoint of gr(,r) or where 2r(A) is at a breakpoint

of hr( 2r). However, there are a finite number of such breakpoints and

,lr(.) and 2r(-) are one-to-one, hence, gr(A) and hr(A) are continuously
differentiable in (A r,AUr) -{A,,h 2,...,ANl}. pl(r,A) and p 2(r,A) are
continuous and continuously differentiable everywhere on (Ar,AUr), so
we conclude that Wyr(A) is continuously differentiable on ( -Ar,A,),
(XA2), ... , and (N, N-U ).

13



Theorem 3.4: There exists at most one critical point of (2.14) on ( 1r, Ar), and if
f(k) is differentiable, then the critical point must be a local
maximum.

Proof: Consider some interval, (il, Xi). There exists a unique vector
yli- [lliY12i,...,Ylmi]T which solves (2.12), and a unique vector
y2i[Yliy22i...,Y2mi] T which solves (2.13). Hence,

r(X) y= y I (r-Ay)fU)d + Y2 (f-Ayx)!, )d[ - y*0

By theorem 3.3, this function is differentiable wrt A, and its derivative
is

dur(X) 
rA) (XAyX )(Yir-Yr) | (3.1)

Now, since f(X) > 0 on (Aii1, hi), there is no critical point if yri = Y2 ri, in
which case, r(X) is linear, and one critical point at

'* - Arx (3.2)

if ylr'i: y2ri and if the X'* so defined falls within the segment (i 1, Ai).
(3.2) is independent of the segment (AXi, Xi) selected. Hence, it A'* is the
same for all intervals and it lies in the interior of at most one segment.
If f(A) is differentiable, then

d2 r( * f(x'* ) (A' -Arx*)(YLY + f(A )(yL 

lr 2r

But y Y2r' since A 2 rA A) = for all r and

(2.12) and (2.13) are LP maximization problems. Furthermore, if there
is a critical point, then we know that Ylri: Y2r' and hence, Ylri < Y2ri.

Therefore, d2WTr(A)/dA 2 IA'* < 0, so A'* must be a local maximum.

Theorems 3.3 and 3.4 suggest a method for solving (2.14). We know that the
optimal solution is in the finite set {Al, 2 ..., A N-, A '*}. Therefore, we need only
compute ,r(Ai) for i = 1,2,...,N, and Wr(A'*) to find the maximizing A*. One algorithm
for doing this is the following.
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ALGORITHM 1

Step 0: Initialize r to the first stochastic index. Set a = 0 and s = 0.

Step 1: To compute Ai and A'* for the current partition index, r, we solve a

parametric programming problem to obtain figure 3.2 for the

range A A_- AUr. This gives us the set of pivot points,
k1, 2, ... , N-1}.

Step 2: Define ('i) as the inverse of the conditional expectation
function.

r:/d = n d i r/t() d~ if i<

x(~). Ai , s.t. xr
r r

| tfrudee= 'tf f de if ''t

Calculate Ai = A(~i) for all i = 1,2,...,N-1 and sort all the values to

obtain the ordered set ({A, A2, ... , AN1}.

Step 3: Calculate '* = A rx *, and discard the value if it does not lie

within the range A r < A'* =-- AU .

Step 4: Steps 1-3 provide us with the finite set {Al, A2, ... , A N-i, h'*} some

member of which we know maximizes Itr(A). We simply compute

Iyr(A) for each element and choose the largest to locate the
optimal partition cut Ar for the candidate partition index, r.

Step 5: If ,r(Ar) > a, then set a = ,r(Ar), s = r, and A* = Ar.

Step 6: If all the candidate partition indices have been processed, then

STOP, the optimal partition is (s, A*). Otherwise, set r = r + 1, and

go to step 1.

Although algorithm 1 will solve our partition selection problem to optimality,

it may require an inordinate amount of time to do so. Even though it is guaranteed

to solve the problem in a finite number of steps, we must execute the body of

algorithm 1 (steps 1-4) for each candidate r. That is, we must execute it m times.

Moreover, we require the inverse of the conditional expectation function to complete

step 2 of the algorithm. This is in general not available. Therefore, though we can in

theory determine the optimal partition with algorithm 1, we must look for a more
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applicable algorithm to solve practical problems. We address this issue in the next
section.
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Section 4: Solving the Partition Selection Problem Locally

In the last section we developed an algorithm guaranteed to solve (2.14) in
finite time. In practice, however, we wish to obtain an adequate partition using as
little time as possible. In this section, we develop a fast operational procedure for
selecting the partition (r,A).

In place of solving (2.14), we propose to select the partition cut, Ar, to give us
the largest subgradient of simplex ascent in (2.14), at the initial solution of
Y1 Y2 = Y*' This is justified by noticing that with A fixed (2.14) decomposes into a
weighted sum of the two LP problems, (2.12) and (2.13), with initial solutions of
y = y* and Y2= y* respectively. These initial solutions are nearly optimal and if
either is nonoptimal, the optimal solution is only a few pivots away.

This procedure, which for obvious reasons we call Algorithm 2, can be
embedded in the overall solution procedure for two-stage stochastic programming
problems with fixed recourse (P) as shown in figure 4.1. In this case, the selection
criterion for A proposed in this section will give us the largest reduced cost for the
first pivot of the ascent from the solution of (Di) to the solution of (D i 1) This
selection criteria at first seems very myopic. We are not choosing A to maximize
(2.14) globally. We are not even choosing it to maximize (2.14) locally. We are
simply setting A to give us the steepest direction of steepest ascent for (2.14).
Nevertheless, the results we obtain in applying this rule are intuitively appealing
and are very easy to calculate in practice. No numerical integration is required on
f(). Hence, we may apply the method to problems with very complex density
functions. Moreover, unlike algorithm 1, algorithm 2 uses information about the
optimal solution to the current discretization in determining the next discretization.
This type of feedback is extremely appealing from a practical standpoint since the
algorithm can direct itself into the more promising regions as it discovers their
existence.

Given r and A, the partition selection problem (2.14) decomposes into

Max yl(r) Max y 2c2 (rA)

st yB < c s.t. YzB < c (4.1)

where cl(r,A) = Fr(A)[[(r,)-Ayx*], and c 2(r,A) = (1 -Fr(A))[IE 2(r,) -Ay x*]. For each
subproblem we have a good initial bfs from the solution to the modified dual of (EV).
(Note: The modified dual and the dual of (EV) are exactly the same. It is only the
latter problems (Pi) where the modified dual is different than the dual.)
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Figure 4.1: Procedure for Solving (P)

Before we proceed, we define the following notation:
[ABIBB] is the optimal basis for the modified dual of (EV).
clB(r,X) is the vector of elements of c1(r,X) corresponding to the basis BB.
c 2B(r,A) is the vector of elements of c 2(r,X) corresponding to the basis BB.
er is the r th unit vector, [0,0,...,0,1,0,...,0].

y* is the optimal recourse vector for (EV).
Y1 is the vector of dual prices for the first set of constraints in (4.1).

Y2 is the vector of dual prices for the second set of constraints in (4.1).
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c represents the reduced cost of the element with objective coefficient c.
(Ay )i is the ith row of Ay.

In the following analysis, we derive results for the first subproblem of (4.1)
only. The results are exactly analagous for the second subproblem unless stated
otherwise.

We wish to derive an expression for the reduced cost of element y 1i as a
function of r and X. This reduced cost element, , i(r,X) is

ql(r,X) = c(r,A)-ylB (4.2)

where, y,, the vector of simplex multipliers for (4.1) at the bfs yI =Y2 = Y., is

Y, = CB(r)B (4.3)

F(X) y ifr is nonbasic{= ~~~ ~ * ~ ~~~~(4.4)
F (A) y*+ er [[(r,X)- BB 1]} if risbasic

Thus, we have two cases:

Case 1: r is basic.

q1(r,h) = Fr() [( -A x )+er([l(r)- + er[ BI (4 5)

Case la: i is nonbasic. B B- 'B i = B' i where B' i is a column of the optimal

tableau for the modified dual of (EV), and B'ir is the element
corresponding to y1 r.

'(r,A) = Fr(X){( -(A )x - Bi+ [(r, ) % irB (4.6)

But oi - (Av)ix* - y*Bi =O, so

c1(r,) = Fr(,) {[l(r,,A)- ) ir }

Similarly, we can derive the reduced cost for y2i.

q(r,X) = (1 -F ()) [(r,)- Q] B'i} (4.8)

Setting (ds1i(r,A)/dX) = 0 gives necessary conditions for the
maximum (if the resulting AX*E [r,A r]). To do this, rewrite

li(r,X) as

(1r ) =- r (, -X )B'ir fr( d (4.9)

The derivative of which is easily evaluated as (A - or)B'irf().
For this to be zero, either a) fr(h)= 0, b) B'ir = 0, or c) h = or. a) is
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impossible due to our initial assumption that f() > O0. Thus, if
B'ir 0, A = 'r maximizes or minimizes c1i(r,A).

Now, notice that (dc2i(r,A)/dXA)* = (dc1i(r,)/dA),* =0 and

furthermore, that at A', either c1 i(r,A) is maximized and q2i(r,A) is
minimized or c2i(r,X) is maximized and c 1i(r,) is minimized.
Thus, a partition at A* will maximize the next subgradient along
all directions of simplex ascent.

Case b: i is basic and i = r. In this case, the analysis is the same, but
B' =1.

Case c: i is basic and i r. Here, gli(r,X) = 2i(r,A)= 0 for all A since
,0 - (Ay)ix* -y*B = 0 by primal feasibility of the (EV) solution.

Case 2: r is nonbasic.

ql(r,X) = F() (E-Ayx*)+er[[l(r,X) -] YB (4.10)

But O - (Av)ix* -y*B = 0, so (4.10) simplifies to

l(r,) = Fr(X) e[[l(r,X)-[} (4.11)

which is nonzero only if i = r. In this case, we use the same analysis as above
(with B'ir replaced by 1). The result is the same, Al = [or will maximize

q 1i(r,A) and minimize q2i(r,A) or vice versa.

Regardless of the case we are in, if we are partitioning along dimension r, we

should set the partition cut, Ar, at the current expected value, or to maximize the
simplex subgradient.

Now we want to use this information to develop an efficient procedure for

determining the best partition index. To be consistent with our analysis so far, we

should select the r that maximizes the maximum simplex subgradient. That is, we
should calculate gli(r,,or) for each (r,i) combination and select the r* such that

r argmax max max [gl(r,), ~(r,,%J)1} (4.12)

We need to calculate cli(r,Or) if r is basic and i is nonbasic, or if r = i.

Therefore, there are 2(m(n - m) + n) calculations. If f () is a general density
function, each calculation requires a numerical integration as in (4.9). This could
conceivably require a substantial amount of time. Therefore, as an approximation,
we take the first-order expansion of Fr(or) and Fr([or)klr to perform our analysis
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(note: the approximation is exact ifFr(-) is the uniform distribution).

Fr() = rf(Qd ( l)± (4.13)
r A Jrr(-) 2

r Ar 2Fr(<)g =f[O fr(J)d.rr (CO-X 1 ) 2 (414)

With this approximation,

g(r,)= -2- fr(r)' Bir ( 2-Al )

(4.15)
{(r,)= + - fr(~.;) B (X415 )

and, though we still have 2(m(n - m) + n) calculations, each one consists of simple

arithmetic operations with values readily available.

We are now prepared to state algorithm 2 formally:

ALGORITHM 2

Step 0: Initialize r to the first stochastic index, and set a = 0, s = 0.

Step 1: Calculate the two values of (4.15).

Step 2: If either value is greater than a, then set a= max[ili(r,A), 2i(r,X)]

and set s = r.

Step 3: If all stochastic elements have been processed, then STOP, the

selected partition is (s, 0S). Otherwise, set r=r+ 1, and go to

step 1.

After performing this analysis, we have a partition index, call it s, and a

partition cut, Sos. After solving the resulting problem (P 1), we may again perform

this analysis with the lower and upper bounds on Is for each of the two recourse

subproblems set at [ 1, 0S] and [,os, AUS] respectively.

Figure 4.2 shows a graphical representation of a possible partition sequence

for a problem with 2 stochastic RHS elements. Figure 4.3 shows the resulting

discretization after the fourth partition. At this stage, problem (P 4) has 5n recourse

variables and 5m recourse constraints. In this example, the partition sequence may
have been {(1,F 1),(21 , 12),(1 2,1 1),(222, 2)}.

Algorithm 2 will automaticall refine components of the grid in "promising"
areas. That is, it will eliminate those elements of the deterministic equivalent
problem that serve to make the LP large without adding to the structure of the
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2

Figure 4.2: A Sample Partition Sequence

problem. It is our belief that algorithm 2 provides a good balance between ease of
implementation, speed of execution and outcome of results. Furthermore, the result
of our analysis in this section serve to both support and extend ones intuition. It is
intuitively appealing that the result is to partition at the conditional expectation
point. However, ones intuition could not be relied upon to determine the partition
dimension. For that, one must rely on the analytical results above.
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Figure 4.3: The discretization after the fourth partition
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Section 5: A Numerical Example

In this section, we illustrate the application of the algorithms to a small
problem. The problem we consider has simple recourse structure. That is, the
recourse constraints are of the form Ayx + Iy -Iy- = , where I is the identity matrix.
This type of stochastic programming problem has many practical applications.
Moreover, Wets has developed an extremely efficient algorithm for solving such
problems with discrete random variables using a variant of Dantzig and Beale's
generalized upper bounding algorithm [15]. For these simple problems, there is
great potential practical value for combining Wets algorithm with our discretization
scheme.

Our sample problem is derived from the following scenario. A manufacturing
plant is preparing to produce two products for the coming demand season. The
production process requires two machines. There are 250 manufacturing hours
available to product the required inventory. Producing the first product requires 2
hours on machine 1 and 2.5 hours on machine 2. Producing the second product
requires 3 hours and 2.5 hours on each machine respectively. The total
manufacturing costs are 500 dollars for product 1 and 700 dollars for product 2. In
the event that demand exceeds inventory next season, the plant can manufacture the
products during the demand season at a unit cost of 1000 dollars and 1500 dollars
respectively. If inventory exceeds demand, the excess inventory goes to waste at a
cost of 1200 dollars per unit.

The model of our sample problem is:

Min 5x + 7x2 + E[ 10y + 15y2 + 12y- + 12 y 2 ]

s.t. 2x 1+ 3x 2 - 250

xl+ X2 100

X1 +Yl -Y, 1

X2 +Y2 -Y2 2

x lO, x2 -O,yi 0, Y -0
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The demand is modelled by the independent random variables, k, and 2',

which are in turn defined by the probability density functions shown in figure 5.1.

f,(~l)

35 60 85 280 100 ,50

Figure 5.1: Demand Distribution Functions

These distribution functions may be written as:
2 +

1F(1) = 300 (_50)U 50 +7 k + 300 (1-80)U8 -

1 k2
F 2 (Y= - ( 2-35)U3 5 +

100

2 2

-- (2- 65)U65 -
where Ud= {0 if <d and 1 if 'd}.

2 1
300 ([1- 60)U60 +

8 90)U
300 (1 9 0)U9-

1 (2-45)U +
100 

1-(2- 75)U75 -
100

2 0 

300 (q-70)U70

2 1
oo (-55)U55

1 00

100 85)U85

The first step of algorithm 1 is to solve the expected value problem. E(S,) = 80

and E([ 2) = 60. In practice we solve the modified dual of the problem, which, we

recall, is exactly the dual problem in the first iteration. The primal and dual
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solution of the expected value problem is: Z(EV = 1045, x* = (35,60), n* = (2.5,0),
y* = (10,14.5). (Note that if we implemented this solution, we would produce 35 units

of product 1 and 60 units of product 2, and the expected cost would be {5(35) + 7(60)

+EJ[10(k, -35) + + 12(,1 -35)- + 15([2 -60) + + 12(2 2-60) -]}100 = $125,600.

We now proceed with algorithm 1. First set r = 1, and calculate gl( 1(AX)) and

hj([l(A)) using parametric programming.

Maxy 1 ( 1-35)+ 2(60-60)-(10,15) (8 0 , 6 0 )T
or ss ss ~ ~ Y

g l(l(A))=

g ((,(X)) =

s.t. -12<y1<10,and-12<y2 < 15

Maxyl(80-35)+ Y2(2-60)-(10,15) (80,60)T

- z -Z s.t. -12<yl-10, and-12<y2<15

Figure 5.2a shows the plot of g, (, (A)) and h,(,l ()) as a function of ,l (). Note that

g2 (02 )

10

-1700 -1250 60 85

Figure 5.2bFigure 5.2a

35 50 80 100 [,

Figure 5.2: Plots of gr and hr

there are no vertices in the range 50 - 100. This implies that rl(A) = - 1250 for

all A. We next check all possible cuts for the second partition index, r= 2. Figure
5.2b shows g2(, 2(A)) and h2([ 2(A)). There is one pivot point at E2= 60. This point
corresponds to the expected value of 2, so we need not execute step 2 of algorithm 1.
Continuing with step 3, we calculate A'* = 60, and since 35 < 60 < 85, this value
corresponds to the only valid partition at this iteration. Thus, we apply it to obtain
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our second approximation. To generate our second problem, we must calculate

E [A21 2 < 60] = 51, p, = .5, and EA[2IE2> 60] = 69, P2 = .5.

The modified dual of our new approximation is:

Max -250n 1 - 250n 2 + (.5)80yl+(.5)51y+ (.5)80y2+ (.5)69y2

s.t. -2nl-2.5n 2 +(.5)yl+(.5)y2 < 5

-3ril-2.5n 2 +(.5)yl+(.5)Y2 < 7

ylEr, y2 Fr, wherer-{(y,Y 2 )j -12<y1 10, -12 y 2 < 15}

n>i 0, n2 >0

The solution to this problem is Z = 1049.5, x* = (48.5, 51.0), rI* = (2.5,0), yl* = (10,14),

y 2* = (10,15). If we implemented this solution, the expected cost would be $115,200,

an 8% saving over the expected value solution.

We define the functions gri(X) as gr(X) for the jth partition block. At this point,
we have 2 partition blocks: block 1 = {(1,2)150< < 100, and 35 60}, and

block 2= {(l,,2)150< 1 '-- 100,and 6 , a <- 2< 85}. These functions are defined using
equations (2.12) and (2.13). We continue solving the sequence of refined problems.
Table 5.1 shows the sequence of solutions generated. Our final solution of (52.8,48.2)

Table 5.1: The Sequence of Solutions Generated with
Algorithm 1

is within 0.2% of the optimal. This solution was obtained with the five partitions

shown in figure 5.3.
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First Stage Value Expected Cost partition
Solution (bik, indx,cut)

(35.0,60.0) 1045.0 1256.0 (1,2,60.0)

(48.5,51.0) 1049.5 1151.9 (1,2,51.0)

(55.6,44.4) 1066.9 1123.5 (1,2,44.4)

(52.2,47.8) 1077.0 1082.3 (4,1,52.2)

(52.8,47.2) 1077.5 1079.7



Figure 5.3: The Final Partition Structure
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Conclusion

We analyzed discretization procedures for two-stage stochastic programming
problems with fixed recourse and continuous stochastic right-hand sides. By
assuming independence of the stochastic elements, we were able to develop two
algorithms for successively refining a discretization of the problem. The
deterministic equivalent of this discretized version of the problem can be solved
using any algorithm for stochastic programming with recourse.

With the results presented here, it may no longer be advantageous to require
that all the random variables to be discrete. The analyst has no way of knowing a
priori which stochastic elements are most critical to his problem. Thus, he/she is
unable to determine which elements should have a fine grid and which should have a
coarse grid in his/her discretization. By allowing the algorithm to determine which
elements to refine as it goes, we may use information gleaned during the solution
process as it becomes available. In this way, we are assured of having a balanced
grid structure throughout the entire procedure.

The first algorithm presented will determine a provably optimal
discretization in finite time at each stage. However, it is difficult to implement for a
general class of problems and it may require an excessive amount of time to solve.
Thus, its value is theoretical for the most part. However, it does provide us some
good insights into the discretization problem as well as providing a firm foundation
upon which other heuristics may be built.

The second algorithm, on the other hand, is intuitively appealing, trivial to
implement, and requires little time to solve. The partition derived from this
algorithm will maximize the next dual simplex subgradient. Thus, it is natural to
embed it in a dual simplex procedure for solving the two stage stochastic
programming problem with random right-hand sides. Moreover, with minor
modifications, the algorithm could be implemented for the general multistage
stochastic programming problem.
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