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ABSTRACT

We give a short overview of expert systems and discuss the potential applications of
these systems in urban police services. Two applications in the prioritization of
incoming 911 emergency calls and the dispatch of police units to service these calls
are discussed in detail.
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1. INTRODUCTION

What are expert systems and why is this term suddenly catching the attention of

so many people? How are these systems any different from the computer programs

created in the past? And, more importantly, how will they help enhance our daily

lives? In this paper, we will try to answer some of these questions and provide some

references which the reader may consult for additional information. Also, we will

study applications in the area of urban police services where we feel that expert

systems can make a significant impact.

In urban police services, the resources are limited and bad decisions may result in

the damage of property or loss of lives. Any overworked urban police department

would welcome some assistance in the management of its resources. The existing

computer technology in most police departments serve as electronic file drawers

where information can be entered and retrieved easily and also as expensive

calculators where certain statistics can be computed from the data entered into the

system. Rarely do these systems provide any strategies or advice on how to carry

out a service, such as the dispatching of a patrol car to answer a 911 emergency call.

Frequently, overworked and underpaid police personnel make crucial decisions

based only on their intuition and experience. It is evident that there is a need for a

more advanced technology, like that of expert systems, to help in decision-making

processes of the police department so that the quality of police services to the

public can be improved.

The paper is organized as follows. In section 2, we present an overview of expert

systems. This section will provide the reader with some information on the

structure of expert systems and also describe an expert system called MYCIN, which
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is used in medical diagnosis. Section 3 examines the 911 call categorization process

and identifies two categories of calls where expert systems technology can be of

use. Section 4 investigates the addition of an expert systems factor into an

Operations Research (OR) algorithm called the Exact Hypercube Queueing Model,

which is used to analyze problems of vehicle location and response district design in

urban emergency services.
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2. AN OVERVIEW OF EXPERT SYSTEMS

To help us define expert systems, we first need to discuss the motivation behind

building such systems. Expert systems evolved from research into developing

computer programs to solve very difficult tasks. Medical diagnosis and mineral

exploration are two examples of such tasks. Researchers realized that most complex

tasks are not solved by following straightforward algorithms and hence can not be

solved by conventional programming techniques. What the researchers needed

instead were computer programs that were similar in design to the human

reasoning process and that could capture the knowledge of human experts. They

needed intelligent computer programs; programs that could represent knowledge

about complicated tasks and that could make inferences from this knowledge.

Another motivation was that conventional programs are understood by those that

create them but not always by their users. It is rare for a user to be able to make

changes or additions to these programs. If a program could be replaced by sets of

rules that express some fundamental knowledge about the domain of the problem

to be solved, then making modifications would only involve adding new rules or

changing old ones.

Inevitably, these researchers turned to the field of artificial intelligence in their

quest for intelligent computer programs. The result was some problem-solving

computer programs called expert systems. Expert Systems are an attempt to

identify, formalize, encode, and use the knowledge of human experts as the basis

for a high-performance program [Davis, 1984]. These systems are used to solve very

complicated tasks that require a high level of expertise and are designed in a
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radically different way from previous problem-solving programs. Conventional

computer programs were mere coded instructions to the computer on how to carry

out a task. Just like amateurs carrying out an assignment, these codes knew what

to do but had no knowledge of why they were doing it. The new systems, on the

other hand, possess the knowledge about the problems they are given to solve and

are able to make inferences from their knowledge to solve specific tasks just like

human experts. Because of their ability to understand what they are doing, like the

experts, these systems are able to explain the solutions they find and are flexible

enough to learn from their mistakes. Therefore, it is of no surprise that these

programs were called expert systems.

2.1 STRUCTURE OF EXPERT SYSTEMS

Expert systems can be made up of two or more components; the number of

components varies according to the type and function of each system. The

following are some basic components present in most systems:

*the knowledge base

This contains all the necessary knowledge about the expert system's domain.

The domain is essentially the problem space which contains all possible types

of problems that the expert system might be given to solve.

* the inference engine

This component is the interpreter that selects the relevant information from

the knowledge base in order to solve a particular task. It only uses the

knowledge about the specific task in order to solve the task.
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* the database

This component stores all the data about the domain. When the inference

engine is working on a specific task, it might occasionally refer to the

database for some data about that task.

An important feature of an expert system is that the knowledge base is separated

from the inference engine. The reason why the knowledge base is kept apart from

the inference engine is to make the knowledge more easily identified, more

explicit, and more accessible [Davis, 1982]. Knowledge about a particular domain is

stored in the knowledge base; so whenever changes or additions to the domain

knowledge are required, it is easy to know exactly where to do it. Similarly, if an

error in the inference engine needs to be traced, the problem can be located easily.

Moreover, since the inference engine is not dependent on the domain knowledge,

it can be used with different knowledge bases. An example of a domain-

independent system is EMYCIN [van Melle, 1979]. EMYCIN's knowledge base can be

replaced with a knowledge base from another expert system, and it will function in

the same way as the system where the knowledge base was taken from. MYCIN, an

expert system that will be discussed later in the chapter, has a knowledge base that

is compatible with EMYCIN's inference engine; the combination of MYCIN's

knowledge base and EMYCIN's inference engine performs just as well as the original

MYCIN system.

The first step in building an expert system in any domain is to obtain the

knowledge. Acquiring the knowledge from the experts is not an easy task since it

requires that experts formalize their knowledge and express intricate relationships

between the basic concepts in their domain [Hayes-Roth, et al. 1983]. This
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knowledge-acquiring process is called knowledge engineering. Recent developments

have produced some knowledge engineering tools that can assist in the building of

a knowledge base. EMYCIN, which was introduced earlier, possesses this ability to

help transfer expertise from the expert to the knowledge base [Buchanan,

Shortliffe, 1984]. Another knowledge engineering tool is EXPERT which was

developed for building consultation models based on classification problems and is

used primarily in medical diagnosis [Weiss and Kulikowski,1979].

The next step in the process of creating an expert system is to find a suitable form

of representation for the knowledge acquired. The method of representation

chosen depends largely on the domain and the results to be achieved; the method

should be able to model all the intricate relationships in the system's domain. It is

important that the selected representation make the knowledge as transparent as

possible for future changes and improvements. Then after ten years, any user of the

system will still be able to understand what is in the system and can update the

knowledge. The most common method of representing knowledge is by using

rules. The rules are usually if-then statements, i.e., if certain conditions are satisfied,

then the action will be carried out. The action carried out by the rule usually

involves the calling of another rule, and this sequential calling of rules continues

until a solution has been found for the given problem. Examples of expert systems

that use rules to represent the knowledge base are MYCIN which is used in the

diagnosis of infectious diseases [Shortliffe, 1976] and R1, an expert computer

configuration system at Digital Equipment Corporation [Mcdermott, 1982].
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2.2 MYCIN - AN EXAMPLE OF AN EXPERT SYSTEM

MYCIN is an expert system developed by E.H. Shortliffe in 1974 at Stanford to

assist in antimicrobial selection. An antimicrobial agent is any drug designed to kill

bacteria or to arrest their growth. Only specific antimicrobial agents are effective

against particular types of bacteria. Drugs which are useful against certain types of

bacteria are often not effective against other types and in some cases, they have

adverse effects. In a study conducted in a community hospital, about 50% of the

patients treated with antimicrobial agents were victims of the misuse of the drugs

[Roberts, Visconti, 1972]. Misuse of antimicrobial agents includes wrong selection

of the drug, wrong dosage, allergic reactions to the drugs and inappropriate

combination of the drugs [Shortliffe, 1976]. Because of the misuse and the overuse

of antimicrobial agents and the lack of human experts, assistance was needed to

help select the right drug for a specific patient.

MYCIN, like the physician, follows four steps in the process of antimicrobial

selection [Shortliffe, 1976]. It first decides whether the patient has significant

infection and if the answer is positive, it then tries to determine the likely identity of

the offending organism. Next, it decides what drugs are effective against the

organism and chooses the most appropriate drug given the patient's condition .

These steps are encoded in 500 decision rules which are in the knowledge base of

the MYCIN system. These decision rules, which are obtained by interviewing expert

physicians, are in the form of if-then statements where each if-then statement

represents a small chunk of knowledge. Besides identifying the bacteria causing the

infection and prescribing a drug for the infection, MYCIN is also able to explain how
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it arrived at these conclusions. In addition, it permits the user to change a rule or to

add a rule to its knowledge base. A typical rule in MYCIN looks like:

IF: 1) the stain of the organism is gram-negative, and

2) the morphology of the organism is rod, and

3) the aerobicity of the organism is aerobic

THEN:

there is strongly suggestive evidence (0.8) that the class of organism is

enterobacteriaceae.

The number in the round brackets, i.e., (0.8), is called the certainty factor (CF). A

special feature of MYCIN is that the uncertainty in medical diagnosis, due to the lack

of perfect information, can be reflected by the assignment of a certainty factor to

each MYCIN rule. The CF measures the belief that the decision rule will be true

given the premises of the rule are satisfied and it is initially assigned by expert

physicians during the development of the knowledge base. The CF has a range from

-1 (the rule is false) to + 1 (the rule is true). When the CF is in between the values of

-0.2 to +0.2, no conclusion can be drawn. At each step in the MYCIN's deduction

process, the certainty factors are combined so that the final conclusion has a

certainty factor assigned to it.

In MYCIN's inference engine, the rules are invoked in a backward-chaining

deduction process. All the rules which state the identity of the bacteria are

evaluated first. Then the process uses other rules to infer backwards so as to check

if the clinical information available agrees with the premises of the initial

identification rule. After the bacteria is identified, MYCIN uses other rules to select

the appropriate antimicrobial agent. This method of deduction allows MYCIN to
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justify every step of its deduction process to the user. For example, if MYCIN asks

the user if his patient has a particular symptom, it can justify this question by saying

that the presence of that symptom is one of the premises of the rule which would

identify the bacteria causing the infection. The following excerpt from Buchanan

and Shortliffe's Rule-Based Expert Systems shows how MYCIN justifies its questions:

** indicates user input

-WHY 00 YOU ASK WHETHER THE PATIENT HAS A FEVER OF UNKNOWN
ORIGIN?

The es listed below use:
whethr the patient has a hue fever of unlown orgin

RULE180

IF: 1) The site of th culture is blood, and
2) The number of cultures in te ses including the

culture is greater than or equal to 1, and
3) The number of cultures in this sense which were

positive for the organism is less than or equal to 1,
and

4) The patent has a true fever of unkown origin, and
5) Cadic-sugery is a relevant iem from th history of

th patient
Then: There is suggestim evidnce (.6) t th infecti is

WHAT DOES GU MANIPULATION TELL YOU ABOUT THE IDENTITY OF AN
ORGANISM?

The ruies lid below use:
whethr the patint has had a genio-unnary manpuative

procedure
to conceJud about

ith idity of te organism
156, 163, 190
Which do you wish to see?

'1M

RULE156

IF: 1) The sit of th culture is blod, and
2) The gram stain of the orgMnim is gramneg and
3) The morphogy of the orgnism is ro, and
4) The ortal of enty of e organism is urne, and
5) The patient has noat had a gento-unnary manpuatrve

procdure, and
6) Cystiis is not a probiem f which th patint haa

baen lated
THEN: There is suggestive mid (.6) that th idntity of

the organism is e.coi
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The following diagram from Shortliffe's Computer-Based Medical Consultations:

MYCIN presents an overview of the structure of MYCIN:

STRUCTURE OF THE MYCIN EXPERT SYSTEM

2.3 THE POTENTIAL OF EXPERT SYSTEMS

The rate of emergence of expert systems in a wide range of fields has been

growing rapidly in the past years. What started out as a research project in an

academic environment has ended up in numerous industrial facilities and

commercial offices. Today, expert systems have been developed in such diverse

fields as medical diagnosis, chemistry, mathematics, mineral exploration and

management. This rise in popularity of expert systems is not only due to their ability

to capture the knowledge of human experts. The systems have other appealing
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features such as their portability, i.e., they are independent of computer

architecture and hardware. They are not restricted to run only on the machines

where they were initially designed; it is conceivable that expert systems could be

build to run on personal computers in the future. Another attractive feature is the

transparency of the programs. Since the programs are usually written in LISP, which

resembles English text to some extent, any user can understand how the program

works, and can easily make changes to suit his goals.

The future ahead for expert systems looks very promising and challenging

indeed. Just as changes were brought on by the industrial revolution and later by

the computer age, so also will there be major improvements in our society from the

emergence of expert systems. These systems will have tremendous social and

economic impact on our daily lives; expert consultations will become very

accessible, inexpensive and reliable since expertise will be available wherever an

expert system can be set up.
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3. IMPROVING THE 911 CALL CATEGORIZATION PROCESS

In most cities, there are emergency numbers for citizens to call the police, the fire

stations or the ambulance service twenty-four hours a day. The 911 number in

Boston is one such emergency number. Incoming 911 calls are first screened at a

central police communications center by phone operators whose job is to determine

what types of services are needed. If police service is required, the necessary

information is channeled to the police dispatchers who then assign patrol cars to

service the call.

The 911 operator plays an important role in determining the outcome of life-or-

death situations. For example, in the Village of Kenmore in Buffalo, New York, a

woman was brutally murdered by a burglar because the 911 operator mistook the

street address which the woman gave as another street in the city of Buffalo. The

police officers were sent to the wrong location and the error was not detected until

fourteen minutes later when it was much too late. Yet another example occurred

when the misinterpretation of the urgency of a call resulted in the death of a

woman in Dallas, Texas. The nurse who was handling the 911 calls repeatedly asked

to speak with the woman who was having difficulty breathing although the caller

said that the woman was unable to talk. Finally, an ambulance was dispatched but

the woman could not be saved.

More importantly, policemen rely heavily on the information obtained by the 911

operator to determine what types of incidents they are responding to and how

defensive they should be upon entering the locations of the incidents. From

interviews with patrol policemen, it was pointed out that there were certain
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occasions when the policemen were not given any other information except the

address of where they were to go to check out a disturbance report. These

policemen were not told the cause of the disturbance; for all they knew, it could

just have been a group of youngsters hanging out on a sidewalk. However, as it

turned out in some serious cases, the disturbances were caused by a person with a

dangerous weapon.

The 911 operator's role is clearly a crucial one and demands accurate diagnosis of

the 911 emergency call. Expertise in the categorization process of 911 calls is

acquired through the experience of dealing with many different types of cases as in

the medical diagnosis process. Therefore, employing expert systems in the

categorization of calls is natural. Such systems would diminish the reliance placed

on the experience of the 911 call-taker. This is particularly important given the

high turnover rate of civilian operators. For instance, the turnover rate of 911

operators in Boston's Police Department went up to as high as 200% in 1984.

3.1 The 911 Call Categorization Process

The response time for each incoming 911 call depends on the initial

categorization and prioritization of the call by the operator. The number of

categories for the 911 calls can range from fifty to over a hundred and these codes

cover criminal incidents, minor disturbances, traffic offenses and many other

incidents that are frequently reported to the 911 system. Most police departments

operate on a three-priority system. Priority 1 calls involve life-threatening incidents

or crimes in progress and require immediate response. Priority 2 calls include

property-threatening incidents or crimes that have already been committed and do
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not need an immediate response but will be serviced immediately if there are no

priority 1 calls awaiting service. Priority 3 calls include minor violations and will be

serviced only when there are no longer any higher priority calls left to be serviced.

In larger police departments, the 911 operator types the information given by

callers into a terminal attached to a computer-aided dispatch (CAD) system. When a

new call comes in, the 911 operator calls up an information tableau on the terminal

screen and proceeds to enter the required information in the tableau. Most

tableaus require the caller's name, address and telephone number and the exact

location of the incident being reported. In emergency cases, the 911 operator only

needs to get the address of the incident before sending the information to the

dispatcher. Depending on her experience, the 911 operator may ask for the time of

the incident, whether there were any injuries, whether any weapons were present,

and other information relevant to the incident being reported. This additional

information is important in helping the operator to correctly categorize and

prioritize the call. On most CAD systems there are no specific information tableaus

to help the 911 operator to elicit the information needed for different types of

incidents. The same basic tableau is usually used for all the different types of

incidents. It is usually left up to the operator's discretion to ask for more

information to help her in the decision making process.

Most 911 operators hold low paying jobs with small pay increases over time.

Their jobs can be very demanding and stressful on busy weekend nights. They are

also very easy targets for abuse by irate citizens and by children playing pranks on

the telephone. Because of this working environment, it is no wonder that the

turnover rate of civilian operators is quite high. Also, the formal training that 911

operators receive is minimal; a 175-city study by the Police Executive Research
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Forum revealed that less than 70% of the surveyed police departments provided any

training and the training that was provided usually only involved 1 to 2 weeks of

basic training [Sumrall, et al. 1981]. In addition, the 911 operators are under little

supervision as their role is not considered as crucial as that of the patrol policemen

[Percy, Scott, 19831.

The high turnover rate of civilian 911 operators coupled with the minimal

training and supervision of the operators can lead to relatively ineffective call-

taking procedures. The 911 operators have to make quick decisions on every call

they receive and if they are unqualified to do so, there is a higher chance of making

fatal errors. Incoming 911 calls which are obvious emergencies will get assigned

high priorities by the operators. So, instead of looking at these emergency calls, we

will focus on calls where it is not evident that there are emergencies but where

there is a possibility that they might in fact be or might escalate into priority 1 calls.

We will set up some protocols which will help the 911 operators evaluate two

examples of the types of calls that tend to be ambiguous, i.e., the family trouble

incidents and the barking dog incidents.

These protocols are illustrative of a broader expert system's methodology that

has yet to be tested on the CAD system. A possible scenario is the following: when

the 911 operator receives a call, he first channels the call to fire station or the

ambulance service or the police or decides that the call does not need any service. If

the call needs police service, he types in the category of the call into the CAD expert

system. Depending on what category it is, the appropriate protocol is called up and

the CAD expert system leads the 911 operator through asking the caller a sequence

of questions. The aim of these protocols is to help the 911 operators correctly
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prioritize the calls and obtain sufficient information to help the police service the

call.

Like the MYCIN system, the CAD expert system should be able to explain why it

chose a particular sequence of questions and how it assigned a priority to a certain

call. It should also allow the user to change or to add rules to existing protocols.

Besides being used in the actual 911 categorization process, the CAD expert system

can also prove to be a useful tool for the training of new 911 operators.

An important distinction between a medical diagnosis expert system like MYCIN

and a CAD expert system is that there is no real-time constraint in the medical

consultation session whereas in the 911 categorization process, there is. In the CAD

system, if the caller faces an emergency, there is no time to go through an extended

sequence of questions. The 911 operator should be able to call up an alternative

protocol to handle emergency calls so that the minimum amount of information can

be obtained from the caller as fast as possible. Also, some callers are not co-

operative and might not be willing to answer the questions asked by the 911

operator. The CAD expert system should be flexible enough to handle these types

of situations.

3.2 FAMILY TROUBLE CALLS

Family trouble incidents reported to the 911 system can range from simple verbal

abuses to homicides. Because of their ambiguous nature, the 911 operators need

more information before they can determine the correct priorities of the family

trouble calls. In a study conducted by Eva Buzawa in 1972, more often than not,

after having screened the calls, the 911 operators delayed or prevented the dispatch
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of officers to domestic violence incidents. Questions about the extent of the injuries

or the presence of a weapon or the imminence of the offender's return do not

appear to have been asked in most cases by the operator unless the caller explicitly

volunteers the information [Parnas, 1971]. It is evident then that there is a need for

some protocols for the 911 operators to follow when they receive family trouble

calls.

To further emphasize the importance of protocols for domestic violence

incidents, we note that the FBI's Uniform Crime Report (UCR) states that

approximately two-third's of all murders were committed by relatives or friends of

the victims and that family trouble calls were the third highest cause of death

among police officers killed in the line of duty. Also, according to the statistics

released by the Boston Police Department, family disturbance calls were one of the

ten most-reported incidents in Boston.

The first step in setting up useful protocols for the 911 phone operators is the

identification of those characteristics common to most family trouble calls. In a

study conducted by the Police Foundation in Kansas City, the three main predictors

of physical violence in family trouble incidents were the presence of a weapon, a

history of previous disturbances and the presence of alcohol. The presence of a gun

was the strongest indicator that the family dispute would involve physical violence

and it accounted for 29% of the difference between disputes involving physical

violence and those that did not. The second highest indicator was a history of

previous disturbances with a 11.4% difference. This same study also revealed that

over a two-year period, in 85% of the family trouble calls that resulted in homicides,

the police had been called in to intervene in previous disturbances before the

homicides occurred. In fact, in about 50% of the calls the police were called in five
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or more times to previous disturbances before the homicides occurred. There was a

case in Boston where the police were called to intervene in a family disturbance

about eight different times and on the last call the police found that the man had

killed his wife and seven children. The third highest indicator, with a difference of

11.3%, was the presence of alcohol. Alcohol when abused, presents a startling

correlation with crime and violence. One possible explanation, as noted in a staff

report to the National Commission on the Causes and Prevention of Violence, is that

alcohol has the effect of removing a person's inhibitions and reducing control of his

actions.

From interviews with experienced 911 operators and from tapes of 911 calls, it is

apparent that the expert 911 operators do rely on the three above-mentioned

indicators of physical violence to help them determine the urgency of the family

trouble calls. Our research also showed that the callers reporting family trouble

calls fall into two categories: observers or participants. The category of observers

also includes partial observers and listeners. Thus, we need two different protocols

for the family trouble calls as the caller who is the participant has a different

perspective of the incident than the observer.

Based on the above results, we have suggest the following protocols for family

trouble calls:

-18-



PROTOCOL FOR FAMILYTROUBLE CALLS

( caiieris a victim

911 FAMLY TROUBLE CALL
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PROTOCOL FOR FAMILYTROUBLE CALLS

cailer is an oserver

911 FAMLY TROUBLE CALL

get exact location of
assault and phone #
and name of caller

YES

NO NO
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3.3 BARKING DOG INCIDENTS

Barking dog reports are rarely regarded as emergency calls and are usually

designated as priority 3 calls by the 911 operators. However, there have been some

cases in the past where barking dog incidents have escalated into priority 1

incidents. For example, a complaint about a barking dog in the early hours of the

morning actually turned out to be a burglary attempt that resulted in the murder of

the dog's owner. In another case, when police responded to a barking dog

complaint, they discovered that a rape had occurred. Our aim then is to set up a

protocol which will make the 911 operators aware of the possibility that some

barking dog incidents might escalate into more urgent calls.

Based on our interviews with experienced 911 operators and police patrolmen,

we suggest the following protocol to handle barking dog incidents:
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BARKING DOG CALLS

NO

911 operator
callIs owner

If no answer

>15

911

barking

dog call

I -

r

I

PROTOCOL FOR
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3.4 FUTURE RESEARCH

In this paper, we have only studied two categories of the many types of 911 calls.

Protocols similar to the protocols we have presented can also be set up for the other

types of calls, in particular, for calls which are usually ambiguous such as

disturbances and suspicious persons. Devising these protocols takes a lot of time

since interviews need to be performed with experienced 911 operators, other police

personnel, and sometimes with psychologists, and other social workers. These

interviews with the experts in the various related fields will help determine what

questions the 911 caller should be asked and in what sequence these questions

should be presented. Listening to tape recordings of 911 operators handling

incoming 911 calls can also help in the design of suitable protocols.

After the protocols have been set up, careful and vigorous testing should be

performed on these protocols. Tests can be performed by reenacting 911 calls

which were recorded on tape. In these reenactments, the protocols will guide the

911 operator through the call categorization process. The advice of these protocols

will then be compared to the actual decisions of the 911 operators who handled the

calls and the eventual outcomes of the calls. If the protocols are found to perform

badly, then corrections should be made and the tests should be run again. Needless

to say, the protocols should not be implemented until they perform as well as any

experienced 911 operator.
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4. EXTENSIONS TO THE EXACT HYPERCUBE QUEUING MODEL

The Exact Hypercube Queueing Model is a model developed by Professor Richard

C. Larson to analyze facility location, and redistricting problems in urban emergency

services [Larson, 1978]. The hypercube queueing model is essentially an analytical

OR tool which explores the operational behavior of an urban emergency service

system under various resource-allocation strategies.

The main criticism of OR-type programs, such as the hypercube model, is that the

programs do not take into account the human factor present in most decision-

making processes. OR Techniques and algorithms are usually too rigid and often

disregard idiosyncrasies in the system that a human decision-maker would

otherwise consider. One solution to this drawback is to incorporate expert systems

techniques into the OR algorithms. In this section, we will study the addition of the

expert systems factor to the hypercube model as an example of the marriage

between expert systems and OR.

4.1 DESCRIPTION OF THE EXACT HYPERCUBE MODEL

A detailed account of the structure of the hypercube model can be found in the

second chapter of Larson's Police Deployment: New Tools for Planners. Briefly, the

region in which the model provides service is divided into small geographical atoms

which can be assigned to a patrol unit's beat. Over a long interval of time, it is

possible to obtain the data for the arrival rates which is the average number of calls

for service originating from each atom and the service rates which includes the

travel time of each patrol unit to the atom and the on-scene service time .
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Exactly one unit will be dispatched to service a call from any atom. If the first

preferred unit is busy, then the next available unit will be sent. We will use the

hypercube model to help us analyze this queuing system. There are two possible

states a patrol unit can be in: the unit is either free (which is denoted by 0) or the

unit is busy (which is denoted by 1). Each state in the state space of the hypercube

model is a combination of the states of all the patrol units and can be pictured as a

corner of a regular cube. For example, the states in a two-server system can be

represented by the corners of a square:

Server 2 is busy

10

00

Two servers free

Two servers busy

11

01

Server 1 is busy

Only one-step transitions are allowed and the transition from one state to another

occurs along the edges of the cube. The upward transitions are transitions that

occur when a unit is dispatched and their rates can be calculated given the arrival

rates of calls for service and the dispatch preferences for each atom. On the other
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hand, downward transitions are transitions that occur when a unit becomes free

and their rates are just the service rates.

Over a long period of time, the rate of transitions into a state equals the rate of

transitions out of a state. The system is then said to be in a steady state. By writing

down the steady-state equations for each state and then by solving for them, we

obtain the steady-state probabilities, i.e., the average proportion of time spent in

each state. These steady-state probabilities can be used to calculate the

performance measures of the system such as the workload rates for each patrol

unit, the travel times, the workload imbalance and the interatom dispatch

frequencies. These performance measures will allow the user to explore different

beat designs in order to find the best design suited for their goals. For example, one

user might like to design her beats to minimize the travel times of the patrol units,

while another might prefer to have equal workloads in all his beats. The latter

criteria is usually chosen when police beats have to be redesigned so as to reflect the

changing distribution of criminal incidents and beat population. This is because if

the distribution of workloads becomes the same in all the beats, then the police

response to each call could be much faster than for an uneven distribution of

workloads.

4.2 ADDITION OF THE EXPERT SYSTEM FACTOR

The current hypercube queueing model only recommends that the first free and

preferred server be sent to service calls from a given atom. However, in most real-

life situations, the police dispatcher also considers other patrol units as possibilities

to be dispatched. Although the travel times of these other units might be longer,

there are other factors that the dispatcher might consider. For example, an
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experienced police dispatcher takes into account the need for a bilingual patrol

unit and the expertise of each unit in dealing with certain types of calls. Also, the

dispatcher might know that the most preferred unit is overworked and fatigued,

and would not dispatch that unit to service a call.

We propose making an extension to the exact hypercube model which will allow

the possibility that the next three free and preferred servers will be dispatched. In

our extended version of the exact hypercube queueing model, the probability that

we will dispatch the second preferred server instead of the first preferred server is

expressed as a function of the difference in travel time between the two servers.

The rationale for making this probability a function of the difference in travel times

is to reflect to some extent the costs involved when we choose a longer travel time.

The probability that we will use the third preferred server is also a function of the

difference in travel time between the first preferred and third preferred servers

multiplied by the probability that we did not use the second preferred server. These

probabilities are then used to calculate the new upward transition rates and

consequently, the steady-state probabilities in the hypercube model.

We will consider the general case of N servers in the system. The following

notation is used:

A k = Arrival rate of calls in atom j where the car dispatched is

the k th preferred and available car for atom j

pjk = Probability that the kth preferred and available car will be dispatched

to atom j
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where

k = 1,2, ......... N and j = 1,2, ................. ,#of atoms

There are N types of equations for the upward transition rates in our N-server

system. For the general case when i servers are busy, the upward transition rate is

given by the following equation:

- l(p l ) + '. j(p 2) + .................................... + ........ P

J J J

Note that in this example, we will use a simple exponential function, f (t) = et , to

obtain the pjk 'S. The simple exponential function is a reasonble choice because

there is a higher probability that we will use the next preferred car if the difference

in travel times is small and we would expect this probability to decrease rapidly

when the difference in travel times increases. The pjk 's are obtained by the

following equations:

p,2 = f (t1) where t is the difference in average response time between

the first and second preferred servers

Pj3 = f (t 2) (1- pj2 ) where t2 is the difference in average response time

between the first and third preferred servers

pJ = 1 - 2 p 3

Then with these revised upward transition rates, we can set up the steady-state

equations to find the steady-state probabilities for the 2N states and consequently,

obtain the performance measures for the system.
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4.3 NUMERICAL EXAMPLE FOR A THREE-SERVER SYSTEM

We will now consider the three-server system example in Section 5.4.3 of Larson

and Odoni's Urban Operations Research. There are 10 geographical atoms in the

system with the following arrival rates of calls for service:

Xl= 0.25, X2= 0.25, X3= 0.10, X4= 0.25, X=0.15, X6= 0.10, X7=0.10, X8=0.10, X= 0.10, oX= 0.10

The dispatch preference for the three-server system is given by the table below

which was extracted from Urban Operations Research.

Dispatch preferences for three-server city.

First Second Third
Atom Preference Preference Preference

Number Unit Unit Unit

1 1 2 3
2 1 2 3
3 2 1 3
4 1 3 2
S 2 1 3
6 2 1 3
7 3 1 2
8 3 1 2
9 3 1 2

10 3 1 2
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The graphic illustration of the hypercube model for the three-server example with

the new transition rates is:

**1.1 1

0.4
* 0.7

* 0.4

* * 1.09

**0.64

**0.86

**0.41

------------ l

(The * indicates which equation was used to calculate the upward transition rate)

The upward transition rates are obtained by using the following equations:

* For the case when all servers are free, the upward transition rate is:

.. 1 (P + X2 (p 2 )+ ( 3 (p3)
J J - J J J J

J J J

*For the case when one server is busy, the upward transition rate is:

v AI (pI) + 2(p2)

J

J
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After solving the steady-state balance equations, we have the steady-state

probabilities:

= 0.21053 [0.21053]

= 0.13173 [0.13669]

= 0.09380 [0.08863]

= 0.09025 [0.09047]

= 0.05488 [0.05031]

= 0.08655 [0.08894]

= 0.09542 [0.09489]

= 0.11842 [0.11842]

Note: the values from the original hypercube

model are in square brackets

The performance measures obtained from the steady-state probabilities are:

(1)The workload rates for servers # 1, 2, 3 :

= 0.55054 [0.5574]

= 0.48094 [0.4734]

= 0.46852 [0.4693]
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(2) Interatom dispatch frequencies:

Unit Number (n)

Atom Number (j) 1 2 3

0.07491[0.07376]

0.08807[0.08692]

0.07491[0.073761

0.08807[0.08692]

0.00991[0.00994]

0.01517[0.01470]

0.07491[0.07376]

0.08807[0.08692]

0.01487[0.01416]

0.02276[0.02205

0.00991[0.00994]

0.01517[0.01470]

0.00968[0.00957]

0.01494[0.014831

0.00968[0.00957]

0.01494[0.01483]

0.00968[0.00957]

0.01494[0.01483]

0.00968[0.00957]

0.01494[0.01483]

0.03638[0.03760]

0.04954[0.05076]

0.03638[0.03760]

0.04954[0.05076]

0.03461[0.03511]

0.03987[0.04037]

0.01442[0.01482]

0.02758[0.02798]

0.05192[0.05286]

0.05982[0.06056]

0.03461[0.03511]

0.03987[0.04037]

0.00577[0.00593]

0.01103[0.01119]

0.00577[0.00593]

0.01103[0.01119]

0.00577[0.00593]

0.01103[0.01119]

0.00577[0.00593]

0.01103[0.01119]

0.01590[0.01581]

0.02906[0.02897]

0.01590[0.01581]

0.02906[0.02897]

0.00636[0.00633]

0.01162[0.01159]

0.03786[0.03860]

0.05102(0.05176]

0.00954[0.00949]

0.01743[0.01738]

0.00636[0.006331

0.01162[0.01159]

0.03543[0.03538]

0.04069[0.04064]

0.03543[0.03538]

0.04069[0.04064]

0.03543[0.03538]

0.04069[0.04064]

0.03543[0.03538]

0.04069[0.04064]
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For the table on the previous page:

Upperfigure is f [1 = fraction of all dispatches that send unit n to atom j and i

incur no queue delay

Lower figure is fni = fraction of all dispatches that send unit to geographical

atom j

(3) Mean Travel Times:

Average Travel Average Travel Time Average Travel
Time to Atom j, to Response Area n, Time of unit n,

j T. (minutes) TRA n (minutes) TU n (minutes)

1 3.35[3.37] 3.14[3.13] 3.14[3.14]

2 4.31[4.29] 3.41[3.42] 3.18[3.18]

3 5.29[5.26] 3.29[3.30] 3.45[3.45]

4 1.73[1.75]

5 1.79[1.771

6 3.60[3.64]

7 2.67[2.64]

8 2.31[2.31]

9 4.54[4.55]

10 4.18[4.19]

- 33 -



The changes in the upward transition rates resulted in changes in the steady-state

probabilities which ranged from 2.9% decrease for state 101 to 9.1% increase for

state 110. The differences in the new workload rates reflected to some extent the

possibility that the second and third prefered cars could be considered for dispatch.

The workload rate of patrol unit 1 decreased by 1.2% since it no longer had as much

responsibility as it did in the old model where it was the first preferred unit for 50%

of the city's workload and the first backup unit for the rest of the city. On the other

hand, units 2 and 3 had more likelihood of being dispatched in the new model and

so their workload rates increased by 1.6% and 0.2% respectively. The range of

changes in fnj were from a 2.4% decrease to a 3.2% increase. The changes for the

mean travel times also were not very significant.

For this three-server example, we observed only minor changes in the

performance measures. However, we expect to find in future research, other cases

where the differences will be more significant.
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5. CONCLUSION

In this paper, we have presented two possible applications of expert systems in

urban police services. We have proposed expert systems protocols for assisting 911

operators to prioritize two categories of ambiguous calls and also added an expert

systems factor to the hypercube queueing model, which is an OR planning tool for

police dispatchers.

It should be emphasized that these two areas are just a small sample of the

countless number of applications of expert systems in urban police services. For

example, a potential use is in the analysis of the frequencies of the different types

of crime in each neighborhood. This analysis is helpful in predicting future

occurrences of certain types of crime in the neighborhood. An expert system can be

designed to monitor current levels of crime in each neighborhood and

subsequently, to project future trends in criminal incidents. The expert system can

also help the police department plan its allocation of resources such as manpower

and equipment, based on its projection of future occurrences of crime.

Expert systems can also serve as training tools for police patrolmen. The expert

system can create simulations of criminal incidents and analyze the responses of the

patrolmen. From its analysis, the expert system can then identify the weaknesses of

each patrolman and propose suitable remedies. Yet another larger and more

crucial application is during major emergencies caused by floods, fires or other types

of catastrophes. An expert system can be used to effectively 'mobilize police

resources and to deploy rescue teams. The argument for using expert systems in

such disasters is that the disasters rarely occur and very few people know what to do
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when they do occur. Storing the knowledge of a person experienced in dealing

with such critical situations, in the expert system, can prove to be very valuable in

times of sudden emergencies.

On a broader scope, expert systems can also be used in areas that are related to

police work such as criminal justice. One such possible application in criminal justice

is the assignment of prisoners to suitable cell blocks. Incompatibility of prisoners in

the same block can lead to unnecessary abuse and violence. An expert system can

be used to assess each prisoner's preferences and based on this assessment, it can

make suitable assignments. Another application is the selection of appropriate

sentences for offenders of the law. There are no hard-and-fast rules for choosing

sentences for specific types of crime; the judge has to consider many issues before

deciding on the appropriate sentence. Expert systems can help in the sentence-

selection process by evaluating the evidence against the offender and then

suggesting suitable sentences.

It is evident that there are many interesting applications of expert systems in

urban police services and other related areas. Although theseapplications have yet

to be explored, the recognition of their existence is a significant step towards their

implementation in the future.
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