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1. INTRODUCTION

Regional coal models, such as those developed at ICF [7] [8], CRA [2] [91,

DRI [3], and MIT [15], forecast regional prices, production and consumption of

coal, given assumptions about coal market behavior, government policies, and

other key factors that affect the market. The developers of these models had

a common objective -- to build structural models that reflect price, produc-

tion, and consumption under alternative policies and other key market deter-

minants. The common objective led to important similarities among the early

versions of these models and their more recent variants.

First, the models estimate market clearing prices for particular market

conditions subject to specified policy or other constraints. To date, the

models represent competitive markets. Second, these models represent, in

various levels of detail, all the components of a spatial market -- producers,

consumers, transporters -- and their interaction in the market. Third, the

models use the same general approach for forecasting. All the models use

mathematical programming techniques to obtain equilibrium prices and quantities

that satisfy mathematical relationships defining a competitive market.

As the coal models evolved, more detailed treatment of various sectors

(supply, demand, transport) was attempted. This resulted in larger models or,

alternatively, in the need to link models of several sectors. The expanded
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treatment of markets produced a need to decompose large models, or equivalently,

to integrate submodels of coal supply and demand markets.

The purposes of this paper are to discuss how spatial equilibrium models

can provide a useful conceptual base for comparing and contrasting the coal

models listed above, and to show how mathematical programming decomposition

methods can be applied to compute the equilibria. In the process, the methods

provide an integrative structure for combining the various supply, transportation

and demand submodels. The paper begins with a qualitative review of coal market

representations. The following two sections contain an exposition of the under-

lying spatial equilibrium models, and decomposition methods for solving them.

Section 5 discusses the practical aspects of generating and optimizing coal models

using decomposition methods. The final section consists of a few concluding

remarks and areas of future research.

2. COAL MARKET REPRESENTATION

Market structure is an important determinant of regional coal prices and

production. Under different market structures (competitive, monopolistic, and

monopsonistic), regional coal prices and production will differ. For example,

in a competitive market, competition on both the producers and consumers side

results in a set of equilibrium prices such that mine-mouth price equals the

opportunity cost of production and delivered price equals marginal utility.

In a monopolistic market, the producer is able to hold price above the oppor-

tunity cost of production, to maximize producers' revenues. In a monosponistic

market, the consumer is able to hold price below the opportunity cost of produc-

tion.
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Since the market structure is important in price formation, each coal

model utilizes an assumption about the type of market structure in predicting

prices and production. The major regional coal models, such as the ICF,

DRI, and CRA models reported in the Coal in Transition study [3], and sub-

sequent versions of coal models reported separately ([7], [8], [15], [19])

assume that the coal market is a spatial competitive market. Since there are

policies that constrain the use of certain coal types (S02 emission limits)

and that affect the cost of using various coals (taxes, required scrubbing,

etc.), the models represent the assumption that producers and consumers

behave competitively subject to these constraints.

When the market is competitive, the market clearing price in a demand

region (delivered price or demand price) and the market clearing price in a

supply region (mine-mouth price or supply price) satisfy certain conditions.

These conditions include:

Consumer Equilibrium

The market clearing delivered coal price in a region equals the maximum

price the consumers in the region are willing to pay for the marginal unit

consumed. If all delivered coal prices are greater than what consumers are

willing to pay, there is no consumption in that region. Since there are

differences in the combustion and clearing costs for various coals, the
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maximum that a consumer is willing to pay for delivered coal depends on the

coal type. The difference will reflect the difference in end-use cost and

BTU content.

Producer Equilibrium

The market clearing mine-mouth coal price equals the minimum price at

which producers in the region are willing to supply the marginal unit (average

cost of production plus normal return for the coal produced from marginal

mine). If the mine-mouth price is less than this minimum, there is no pro-

duction in the region.

Locational Price Equilibrium

If all coal types were the same, the market clearing delivered price

in a region is less than or equal to the sum of the transportation costs

plus market clearing mine-mouth supply price of coals for each region. The

market clearing demand price exactly equals the transportation costs plus

mine-mouth price of coal from the region supplying the demand. When there

is more than one coal type, the demand price for a prototype coal minus the

incremental costs required to use another coal type is greater or equal to

the transportation costs plus the market clearing supply price of the alter-

native coal.

Market Equilibrium

There is a single market clearing demand price and market clearing supply

price for each region at which all markets clear. There is no excess demand

or excess supply in a region and there is efficient pricing. That is, the

amount demanded at the regional market demand price is less than or equal to
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the amount demanded from the region. If the amount supplied to a region is

greater than that demanded, the regional market demand price is zero. If

the amount produced in a region is greater than the amount demanded from the

region, the regional market supply price is zero.

Balance of Fuel Payments

Consumers' expenditures for coal equals producers receipts; there are

no excess economic profits in the coal sector. All the coal market models

represent producers within a region by a regional coal supply function that

describes the quantity of coal that will be forthcoming at various price levels.

These price quantity pairs represent the minimum price at which producers in the

region are willing to supply the incremental quantity of coal. Several versions

of the models represent consumers coal demand by a point estimate rather than

a demand schedule. These point estimates describe the quantity of coal expected

to be consumed in the demand region. This estimate is based on an assumption

about delivered coal prices. The prices estimated by the market model should

be checked against these demand levels for consistency.

The ICF model begins with a point estimate of total electric utility

generation requirements and chooses among coal and other fuels within the model,

thus representing the elasticity of coal demand with respect to fuel substitu-

tion. Later work carried out at CRA concerns the use of a coal supply model and

an electric utility capacity expansion planning model to represent this type of

elasticity of demand. In all of these models, transportation is represented

as a single cost between origin destination pairs. Ideally, these transportation

costs would represent the cost of the marginal unit shipped between the origin
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and destination. A more comprehensive treatment of transport supply would

prove useful.

With one exception, the models discussed in this paper use primarily

concepts from static economic analysis. One aspect of the dynamics of the

market, in particular the effect of mine openings on future supply, is

included in most models. However, in these cases new production is modeled

using long run economic analysis, assuming that new production can adjust

to demand within the time period. These models assume that decisions on

mine openings are determined by the current, not future market. The work

carried out at MIT is an exception; it assumes that the producer makes

decisions based on perfect knowledge of future markets.
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3. SPATIAL EQUILIBRIUM MODELS

In this section, we discuss briefly how the coal market representations

presented in the previous section can be integrated into a spatial equilibrium

model. We also discuss briefly how this model can be constructed and optimized

using mathematical programming.

Suppose there are n demand regions for coal, indexed by j. Let dj denote

the variable demand in region j, measured in tons, which depends on the varia-

ble price per ton of coal delivered to that region. For the purposes of charac-

terizing and computing spatial equilibria, we need to assume that we know the

d
function pj (dj) which gives the marginal price that consumers in region j are

willing to pay for coal when they are receiving d. Suppose further that there
J

are m supply regions, indexed by i, and let si denote the variable supply,

measured in tons, from region i. Again, we need to assume that we know the

s
function p(si) which is the marginal price suppliers in region j are willing

to sell coal when the supply level is s. Finally, let cij denote the cost per

ton of transporting coal from supply region i to demand region j.

The mathematical programming statement of the spatial equilibrium model,

assuming competitive markets, is

n d. d m n m n
v* = max Z | (C )d - Z Zc..x.. - Z i )d 

j=l i=l j =l 13 13 i l

n
s.t. Z x.. s= 0 i =

1j=l 13

(1)
m
Z x.. - d. = 0 j = 1,...,n
i=1

s > O, d > 0, x.. > > 0
i 3- 1 -
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Problem (1) is a well known model studied in detail by Takayama and Judge [17]

who also describe similar models representing a variety of market conditions

(competitive, monopolistic and monopsonistic). The model can be derived in two

different ways. The more direct way is to use first principles of economic

theory to derive the consumers' surplus terms,fdjp (ij)dj, and the producers'

- r i sO I-____ _ - ___ t X -X

surplus terms,]o P1iVycLV

Kuhn Tucker conditions ch~

preted as competitive equJ

the markets we wish to stt

on supply row i, and aj de

conditions require that s_

p(d

s
-Pi(S

c..ij + H.
ij 1

Lj (tor example, see varian LI/]). AlternaLiveLy, ine

.racterizing optimality for problem (1) can be inter-

.librium conditions implying (1) correctly captures

Ldy. Letting Hi denote the dual variable (shadow price)

Enote the dual variable on demand row j, the Kuhn-Tucker

dj and xij be feasible in (1) and satisfy

) - j. < 0 and (pd(d.) - Gj)dj = 0

)+ Hi 0 and (-Pi (Si) + Hi)Si = 0 (2)

- a. > 0 and (cij + i - j)x = 0
j -i 3 ij

We can readily deduce from these conditions that, whenever there is a posi-

tive flow xij from supply region i to demand region j.

s + d (3
Pi(si) + cij .. .(d) (3)

Namely, a competitive equilibrium exists because the marginal delivered cost of

coal equals the marginal value of the coal to the consumer. These are necessary
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conditions for optimality; they are also sufficient when

d s
dp. (') dpi ()

> O and < 0,
dd. ds.
J 1

implying the spatial equilibrium problem (1) is a concave maximization problem.

Henceforth, we will assume this to be the case.

The spatial equilibrium model appears to be quite simple and possibly in-

adequate to describe the complexity of U.S. coal supply, transportation and

demand markets. However, we should not lose sight of the fact that the marginal

price functions p((-) embody a great deal of information about their

respective markets. For example, consumer j might be an electric utility whose

operations are described by a large scale linear programming model. In this

case, the function p(dj) gives the shadow price on the model's coal constraint

das a function of the quality d supplied to the utility. In this way, pj

measures interfuel competition in meeting exogenous electricity demands, and

the effect of additional constraints related to coal use, such as adherence to

emission control standards.

Extensions and complications of the basic model can be made and similarly

analyzed. The transportation sub-model can be extended to include capacity con-

straints on flows and nonlinear costs. Moreover, all of the sub-models, supply,

transportation and demand, can be expanded to a multi-period planning horizon.

In so doing, the models can then include capacity expansion and other capital

investment decisions that have the effect of changing the basic structure of the

competitive markets.
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4. COMPUTING SPATIAL EQUILIBRIA BY DECOMPOSITION METHODS

There is a natural application of mathematical programming decomposition

methods to the solution of the spatial equilibrium model (1). The methods are

conceptually attractive because, under suitable assumptions about the model,

they are guaranteed to converge to an equilibrium solution. As a practical

matter, the methods can be effective in integrating diverse submodels describing

the various markets. Practical considerations are discussed in the following

section.

We will consider two distinct decomposition approaches, resource directive

and price directive. There are several variations possible within each of

these, depending on how we choose to split up the problem. We will present only

one version for each decomposition approach, however, and refer the reader to

Mehring and Shapiro [11] for more details.

Resource Directive Decomposition

Suppose we have previously computed or otherwise selected the trial supply

and demand quantities

k
Si for k = 1,...,K; i = l,...,m

d. for k = 1,...,K; j = l,...,n.

Define the quantities

k
s k si s

F (si) = I Pi(Vi)di

and

dk
Fd (dk) = d ()d

1 PJ(d J J
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The resource directive approach proceeds by solving the following linear pro-

gramming approximation to problem (1), called the Resource Directive Master

Problem

n m m nK d M S M z =max Z. - . - Z Z c..x..
j=l I i=l 1 i=l j=1 J 

s.t. V.d j Fd(dk) + p(dk)(d _ d.)
- j 3 3 3 3 3

(a)

(b)

for k=l,...,K; j=l,...,n

S> sk s kvi - F(sk) + (s )(s i
k
i) (c)

for k=l,...,K; i=l,...,m (RDMP)

n
, x..

j=1 1J

m
z x..
i=1 lj

- . = 0
1

- d. = 0
3

i=l,...,m (d)

j=l,...,n (e)

s. > O, x.. > O, d. > - 1j - 3 -

- S

(f)



12

K+i K+l
Let s. for i = 1,...,m and d for j = 1,...,n, denote the optimal

K+l
supply and demand quantities produced by the (RDMP), and let x.. for

13

i = 1,...,m, and j = ,...,n, denote the optimal transportation flows. The

method proceeds by testing the approximations inherent in the constraints (b)

and (c); let vj K and v ' K denote the optimal approximating values on these

constraints. Specifically, we solve the Resource Directive Supply Subproblems:

Compute K+l

s,K = sK+ si s
1 i ) = Pi(i)dpi

and the Resource Directive Demand Subproblems: Compute

K+1

6d,K = Fd(dK+l
) = p()d

The following theorem, which is stated without proof, summarizes the informa-

tion we have in hand after having solved the Resource Directive Master Problems

and the Subproblems.

Theorem 1:

K -Kz < v* < z

where

-K n m m n K+l
z = 6 - - Z c..x..

j=l 1 i= 1 i=l j= 1 i

In words, the theorem states that, at each iteration K, the optimal objective

function value in the spatial equilibrium problem (1) is bounded below by the

Master Problem objective function value, and bounded above using quantities

K -K
from the Subproblems. The resource directive method has converged if z = z
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K -K d,K d K+1
On the other hand, if z < z then there must be some v K > F(d K+ ) or

V.,K > F(s i 1), and at least one new constraint can be added to (RDMP) which
i i i

cuts off the optimal solution and improves the approximation. Of course, as

a practical matter, the resource directive method can be terminated whenever

-K K
the error minimum z- - z is sufficiently small.

L=1,. . . ,K

Theorem 2: The resource directive decomposition method will converge to an

optimal solution to the spatial equilibrium problem (1) if the supply and

K K
demand quantities s and d produced by (RDMP) for all K lie in a bounded set.

Price Directive Decomposition

The price directive decomposition method uses the same quantities as the

resource directive method, but in a different way. The Master Problem

is the linear programming problem

n K d k m K k m n
w = max E F (d)Xk - Z F (s.). - c. .x..ij (a)

j=l k=l j i=l k=l i=1 j=l' 1

n K
s.t. Z x.. - Z s k =0 (b)

j=l i k1 i ik

m K
k

ij x d j Xk = 0 (c)
i=l k=1 j jk

(PDMP)

K

ik = 1 (d)
k=l

K
X =1 (e)

k=l jk

xij> O, ik O' Xjk > 0 (f)
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K K K K
Let Xjk Wik' xij denote an optimal solution to this problem, and let Hi and

j. denote optimal linear programming shadow prices on the supply and demand

balance equations. Let OK and YK denote the optimal shadow prices on the
1 j

convexity constraints.

The price directive method proceeds by solving the Price Directive Supply

K+i
Subproblems: Find s optimal in

1

Bs,K = min { Pi (Ki)d.i i- s
s.>O 1
1-

and the Price Directive Demand Subproblems: Find d optimal in

d,K d d K
d. K = max p ( j - K.d j

d.>O 

For the Supply Subproblems, we have two cases

(a) If Pi(O) > i, then s. = O.

(b) If p(O) < Hi, then sl is implicitly defined by
i 1

s K+l K
Pi(Si ) = H.1

Similarly, for the Demand Subproblems, we have the two cases

d K K+l
(a) If p(0) < K, then dK+ = 0.

d K K+l
(b) If p (0) > , then d is implicitly defined by

d K+l K
pj (dj ) = .II I~
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Theorem 3:

K -K
w < Z < 

where

K d,K sK K
w = Z - Z sK - Z c...

j=l ] i=1 i i=l j= 13

As in the resource directive method, this theorem states that, at each iteration

K of the price directive method, the optimal objective function value in the

spatial equilibrium problem (1) is bounded on both sides. The price directive

K -K -K Kmethod has converged if w = w . Otherwise, when w - w > 0, then there must

s,K K d,K K
be some Xi' < or > y. implying the approximation inherent in the Master

K+iProblem can be improved by adding to it a new column corresponding to s or

K+l

Theorem 4: The price directive decomposition method will converge to an optimal

solution to the spatial equilibrium problem (1) if the supply and demand shadow

prices e. and v. produced by (PDMP) for all K lie in a bounded set.
I i

5. DECOMPOSITION IN PRACTICE

We believe mathematical programming decomposition methods provide a natural

and appropriate methodology capable of overcoming the practical difficulties

encountered in optimizing large scale models, and in generating these models by

the integration of diverse and incompatible submodels. Using a decomposition

method, separate submodels can be treated largely as "black boxes" that are

linked by price and quantity information which is systematically analyzed. We



16

have seen how the methods are mechanizations of theprice and quantity tatonnement

process whereby coal supply and demand markets achieve a competitive equilibrium.

Thus, the methods formalize intuitive procedures for updating prices and quan-

tities, thereby providing a rigorous basis for computing equilibria (see [14]

for a discussion of this point and additional references).

For our purposes, the distinction between the decomposition of large scale

models and the integration of diverse submodels can be viewed as artificial.

Any decomposition method naturally integrates the submodels that exist or are

created for the purposes of greater efficiency and flexibility. For this reason,

we can discuss coal market models exclusively from the integration point of

view.

Decomposition methods have been extensively studied by academic researchers

over the past twenty years, but rarely used in practice. Recently, the situa-

tion has been changing because of the flexibility of today's commercial linear

programming codes, and the increasing occurrence of large scale planning models.

The belief that decomposition methods provide viable model generation and optimi-

zation approaches is supported by the success of recent coal model integration

efforts using them (Shapiro and White [15], Wagner [18]). More generally, the

methods have been receiving growing attention as an effective means for inte-

grating energy models (Ho and Loute [4], Ho et al [51, Hogan and Weyant [6],

Modiano and Shapiro [10], Shapiro [13]).

Decomposition methods offer several practical advantages over direct

optimization approaches:

Advantages

(1) Permit integration of large and/or incompatible mathematical programming

problems by the use of price and quantity information from the problems.
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Facilitate integration of statistical coal supply models with linear

programming transportation and utility models;

(2) Achieve greater overall computational efficiency than brute force

optimization for many large problems. In part, this is because a

decomposition algorithm can be terminated prior to optimality with a

good feasible solution and a bound on how far the objective function

value of this solution is from optimality.

(3) Permit meaningful initializations of an integrated model for a speci-

fic policy study based on judgment about likely or representative coal

supply and demand prices and quantities. Re-start of the optimization

based on previous runs can also be done effectively.

(4) Allow the individual models in the integration to be separately con-

structed, validated and extended.

(5) Facilitate the calculation of indirect price information; e.g.,

supplier rents due to coal depletion effects.

Disadvantages

(1) Requires more computation time to compute optimal solutions to

reasonably sized linear programming problems.

(2) Requires greater sophistication by the user both in understanding

the approach and running the computer program.

Figure 1 illustrates a successful decomposition implementation develpped by

Shapiro and White [15]. Coal supply models for 6 supply regions, two types of

coal, and a 10-year planning horizon were drawn from the statistical coal models

developed by Zimmerman [19]. Each of 9 regional utilities was represented as

a linear programming model describing how coal competes with other fuels to
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meet exogenous electricity demands over the 10-year planning horizon. The

variables in these models reflected investment decisions in generating capa-

city as well as plant operating decisions. Exogenous demands for metallur-

gical coal were also included in the model. The supply regions were linked

to the demand regions in each year by a transportation model. The objective

of the integrated model was to maximize the net benefits over the 10-year

period of the coal supply to the utilities. It can be shown that maximizing

this objective is equivalent to computing a competitive equilibrium between

the utilities and the suppliers who produce and deliver the coal.

The boxes enclosed by dotted lines in Figure 1 represent a Master Problem

that communicates with the supply and utility models. As the result of computer

experimentation, Shapiro and White [15] found that the most effective decompo-

sition scheme was resource directive on the supply side and price directive

on the demand side. Thus, total and marginal price information from the supply

models at various levels of supply was used to generate linear supports (to the

nonlinear supply functions) used in the Master Problem to approximate supply

costs. These supply costs include depletion effects which are intertemporal.

By contrast, the utility models responded to price information from the Master

to generate derived coal demand vectors. Six iterations between the Master

Problem and the supply and utility models sufficed to produce a 10-year coal

supply, transport and utility demand solution that was, to all intents and pur-

poses, optimal. The reader is referred to Shapiro and White [15] for more

details about ICAM and its use in studying coal policy questions.
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Conclusions

We have reported on the similarities among a wide variety of models which

forecast coal prices and quantities on the assumption that the underlying mar-

kets are competitive. In addition, we have discussed how mathematical pro-

granmming decomposition theory is appropriate for the calculation of equilibria

characterizing these competitive markets. We can see several useful model

extensions that would add realism to the models. The integration of any or all

of these extensions would be greatly facilitated by the decomposition methods.

All of the models cited lack explicit modeling of investments in coal

mining and transportation capacity expansion that must accompany expanded coal

use. Decision variables relating to these investments could be added to

the models without disturbing their underlying decomposable structures. This

would probably have the effect of smoothing out supply patterns, particularly

if there were fixed costs and returns to scale associated with the investments.

Of course, non-convex cost elements would require mixed integer programming

modeling and optimization techniques. Some more thought and experimentation

would be required to model fixed costs and returns to scale in generating

plant investments; that is, non-convexities within the utility models.

Decomposition methods have also been proposed and implemented for utility

capacity expansion models such as these subproblems. The question remains,

however, about the effect of the subproblem non-convexities on the integrated

coal supply and demand model.

Coal contracts between utilities and coal suppliers are another feature

of U.S. coal markets that has been largely ignored by the coal market models.

Decisions about multi-period contracts appear to be very similar to decisions

about investments in generating capacity. Indeed, the two types of decisions

are linked. Modeling and optimizing coal contracts is an important area of

future research.



21

A third type of model extension would be the integration of linear pro-

gramming process models of industries other than electric utilities whose use

of coal might be increasingly significant. This would permit the models to

evaluate the competition between industries for coal supply as well as the

competition between coal and other fuels within an industry, and regional

competitions due to differential freight rates.

Finally, the modeling and analysis reported on in this paper would be

greatly enhanced by a modeling language for automatic generation and modifica-

tion of the coal market models. The idea of the language would be to permit

families of coal supply and demand models to be described in natural terms

that are then translated into integrated optimization models. Decomposable

structures would be automatically identified and exploited. This approach

has worked extremely well in the development and use of large scale logistics

planning problems whose underlying mathematical structure is similar to that

of ICAM (Brown, Northup and Shapiro [1]).
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