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Abstract

This paper examines the time lag between the peak in the arrival rate and the peaks in the

mean and variance for the number of customers in an M(t)/M(t)/1l system. We establish a

necessary condition for the time at which the peak in the mean is achieved. In cases in which

system utilization exceeds one during some period, we show that the peak in the mean occurs

after the end of this period.

Keywords: Queues, Nonstationary: Timing of the Peak Mean and Variance;

Queues, Markovian: Effects of Nonstationarity on Mean and Variance.

Motivation

The validity of most analytical results in Queueing Theory is contingent on a series of strict as-

sumptions, one of which is that arrival and service rates do not vary with time. Most real-world
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queueing systems, however, lack this critical characteristic. Airports, air terminals, manufacturing

processes, roads and highways, automated teller machines and telecommunication networks are

examples of systems for which the conditions underlying classical, analytical results from Queueing

Theory are not tenable because the demand for service and the available capacity vary strongly

with time. Hence it is often difficult to compute performance measures pertaining to these systems.

When managers design or analyze facilities with strongly time-varying demand and capacity,

they commonly focus on the performance of the facility during peak utilization: that period during

which the facility is busiest. For example, airport authorities strive to have their facilities designed

so that aircraft and passenger delays in the peak periods are within tolerable limits. Therefore it

is important to develop an understanding of when the peak in congestion (= expected number of

customers) will occur in relation to the arrival peak. The difference between the time at which the

arrival rate is highest and the time at which a system performance measure (for example number

in system) reaches its highest value is called the time lag. The time lag can be matter of minutes or

hours, depending on the type of queueing system, the average utilization rate, and how much the

utilization peak rises over the average utilization level. In addition, insight into the relationship

between the time-dependent mean, m(t), and variance, v(t), for the number of customers in the

system will allow more effective management of congestion at facilities where demand and capacity

vary strongly with time.

Researchers have already begun addressing this time lag issue in nonstationary queueing sys-

tems. In the case of oversaturated queues, Newell [8] conjectured that the peak mean number of

customers in the system should occur at about the end of the period of oversaturation, without

making assumptions about the particular form of the arrival process or service-time distribution.

Using the diffusion approximation to nonstationary queues, he observed that the maximum variance

for the number of customers in the system occurs later than the maximum mean number in sys-

tem, based on numerical calculations. Green and Kolesar [4] and Green, Kolesar and Svoronos [5]

addressed the behavior of several performance measures of M(t)/M(t)/s queueing systems. They

noted that not only did the arrival rate peak not coincide with peaks in other measures such as

expected queue length and probability of delay, but the measures also behave differently from one
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another. They also noted that as the event frequency (the number of arrivals or service comple-

tions per cycle) increases, the lag between the peak in the arrival rate and the number in queue

decreases. Eick, Massey and Whitt [2, 3] examined M(t)/G/oo queueing systems. Using the exact

result for m(t) derived by Palm [10] and Khintchine [6], they found exact expressions for m(t), the

extreme values of m(t), and for the time lag between the peak in the arrival rate and the number

of customers in the system, in the case of a sinusoidal arrival rate function. This result can also

be used for approximating finite-server systems where the customer time in queue is small relative

to the length of the service time. However, in many real-world systems with arrival and service

rates which vary strongly as a function of time, the queueing time is not insignificant relative to

the service time. Therefore, because there is no queueing in an M(t)/G/oo system (customers'

system times are independent of one another), the time lag approximation with infinite-servers will

underestimate the actual time lag in a finite-server system. Eick, Massey and Whitt also prove that

the mean number of customers in an M(t)/G/oo system with a sinusoidal arrival rate is symmetric

about its extremes, i.e., if an extreme occurs at time tm, then m(t - t) = m(tm + t) for all t. In

contrast, Malone and Odoni, and Green, Kolesar and Svoronos have empirical results showing that

none of their system performance measures for finite server systems (1 - 12 servers) are symmetric

about their extremes.

The purpose of this paper is to provide theoretical insight and computational results for the

time lag between the peak in the arrival rate and the peaks in the mean and variance of the number

in the system for M(t)/M(t)/1l and other single-server nonstationary queueing systems. We have

found little in the literature regarding the behavior of the variance and standard deviation for the

number of customers in nonstationary queueing systems.

The paper has three sections. Section 1 presents conditions for the extremes (local maxima

and minima) of m(t) to be achieved in an M(t)/M(t)/1l system. The relationship between m(t)

and v(t), and the timing of the peak, m*, of m(t) are explored. Section 2 sets forth a hypothesis

regarding the relationship between m* and v*, the peak of v(t), along with supporting numerical

results for the M(t)/M(t)/l queueing system under a variety of conditions. Section 3 summarizes

the results.
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1 Extremal Conditions for the Mean and Variance of the Num-

ber of Customers in the System

A time lag between the peak in the arrival rate and the peak in system congestion has been

observed for M(t)/M(t)/s, M(t)/Ek (t)/1, M(t)/D(t)/1, and other types of nonstationary queueing

systems. Figure 1 shows an example of this lag for an M(t)/M/1 queueing system where (t) =

75 + 50 sin(27r/24) and (t) = 100. Figure 2 shows the variance for the number of customers in the

system for an M(t)/M/1 queueing system with the same parameters as in figure 1. The peak in the

arrival rate occurs at t = 102, the peak in the mean at about t = 106, and the peak in the variance

at about t = 109. Our computational results indicate that the variance (and, of course, standard

deviation) for the number in the system peaks later than the mean number in system does for all

the nonstationary single-server queueing systems we have examined. In this section, we focus on

the M(t)/M(t)/1 system and establish conditions for the peak in the mean and variance for the

number of customers in the system, as well as the relationship between the two.

Notation: Let A(t) be the arrival rate of customers to the queueing system at time t, let /i(t)

be the service rate at time t, and let p(t) be the instantaneous system utilization. The probability

that there are i customers in the system at time t will be denoted Pi(t). The mean, variance, and

second moment of the number of customers in the system will be denoted m(t), v(t), and m 2 (t),

respectively. Primes will be used to denote derivatives, e.g., m2(t) = dm 2(t)/dt. Peak values (local

maxima) will be denoted with asterisks; for example m* will denote a peak value of m(t). The time

at which m* is achieved will be denoted t.

After proving the following preliminary lemma, we will derive conditions for when the expected

number of customers in system peaks.

Lemma 1 In an M(t)/M(t)/1 queueing system, if Po(0) > 0 and P(t) > 0 for t > O, then

Po(t) > 0 for all t > 0
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Proof: The familiar Chapman-Kolmogorov forward equation for state 0 in an M(t)/M(t)/1 sys-

tem is

PO (t) = -A(t)Po(t) + 1 (t)P (t).

Let Po(O) = Po(O), where P(t) satisfies

PO(t) = -(t)Po(t). (1)

The quantity Po(t) will no greater than Po(t) for all t > 0, as we now show. Since /(t)PI(t) > 0 it

follows that PO(t) > P(t) for all t > 0. Integrating on both sides of PO(t) > PO(t) we obtain

Po(t) > Po(t) for all t > 0. (2)

The solution to equation (1) is (see, e.g., Luenberger [7]):

-rt
Po (t) = exp[- j A ()dr] Po(O).

Since Po(0) > 0 and exp [- f=o A(r)dr] > 0 for all t > 0, we have that Po(t) > 0 for all t > 0.

Finally, inequality (2) implies that Po(t) > 0 Vt > 0. ·

Theorem 1 In an M(t)/M(t)/1 Queueing System, a necessary condition for the times at which

the expected number of customers in the system m(t) takes on its extreme values is:

x(t)
A(t)= 1 - Po(t) (3)

Proof: By differentiating both sides of m(t) = Eio iPi(t), which defines the expected value m(t),

we obtain
oo

m' (t) = iP' (t). (4)
i=O
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The Chapman-Kolmogorov forward equations for an M(t)/M(t)/1 system are:

P6(t) = -A(t)Po(t) +Ap(t)Pi(t)

Pi'(t) = A(t)Pi(t) - ((t) + (t))Pi(t) + ,/(t)Pi+ (t) for i = 1, 2,...

Substituting in equation (4) we obtain

00

m'(t) = E i Pi'(t)
i=O

00 00 00 00

= A(t) ZiPi(t) - X(t) iPi(t) - Z(t) iPi(t) + pl(t) Z iPi+l(t)
i=l i=O i=l i=O
00 00 00oo 00

= A(t) (i + 1)Pi(t) - A(t) ZiPi(t) - IL(t) ZiPi(t) + b1(t) Z(i - 1)Pi(t)
i=O i=O i=1 i=1

= x(t - (t) [1 - P(t)]

This was shown by Clarke [1] in 1956 and used by Rothkopf and Oren [11] in the derivation of their

closure approximation for the nonstationary M/M/s queue.

To find when m(t) achieves its extreme values, we simply set m'(t) = 0 and find the following

condition:

m'(t) = 0 A(t) -(t)[1 - Po(t)] = 0,

: A(t) =/(t)[1 - Po(t)],
A(t)
=(t) = 1 - Po(t) (if P(t) > 0) (5)

Equation (5) must hold for m(t) to achieve its local maximum, m*, or local minimum, m*. C

Theorem 1 has the following important corollary.

Corollary 1 Suppose that Po(0) > 0 and p(t) > 1 for t E (tl,t 2) for an M(t)/M(t)/1 system.

Then the first congestion peak m* after tl will occur after t 2, i.e., t > t 2.
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Proof: From the relation m'(t) = X(t) - (t)[1 - Po(t)] we see that m'(t) > 0 (i.e., m(t) will

increase) whenever

p(t) = > [1 - Po(t)]

Since Po(t) is a probability, it is bounded above by 1 and below by 0. Therefore, 1 1- Po(t) > 0.

When p(t) > 1,

p(t) > 1 > [1 - Po(t)] = m'(t) > 0 (6)

Therefore, m(t) does not peak while p(t) > 1. The peak value m* must then occur at or after the

end of the period for which p(t) > 1, i.e., t > t2. By Lemma 1, we know that Po(t) > 0 for all

t > 0 for systems in which Po(0) > 0. Thus, Po(t2) > 0, which implies

1 - Po(t2 ) < 1 = p(t2 ).

Therefore, the condition of equation (5) is not met, so m* does not occur at t2. We conclude that

tm > t2. ·

Figures 3A-C illustrate Corollary 1. They correspond to an M(t)/M/1 system with A(t) =

90+30 sin(27r/24) and p(t) = 100. Figures 3A, 3B, and 3C depict p(t), m'(t), and m(t), respectively,

over one period of A(t). The times t and t 2 mark the beginning and the end of the period during

which p(t) > 1, t3 is the time t at which m(t) peaks, and t4 is the time at which the minimum

value m, of m(t) is achieved. Note that t 3 - t2 is very small in this particular case, but positive

nevertheless.

The expression for m'(t) derived in the proof of theorem 1 provides insight into the transient

behavior of m(t) for a stationary M/M/1 system. Consider a system that starts out empty and

has utilization less than one. Then Po(0) = 1, so A//1 > 1 - Po(0) = 0, implying that m'(0) > 0,

i.e., the expected number in the system starts to grow. As m(t) grows, Po(t) must decrease,

causing m'(t) = A - ,u(1 - Po(t)) to decrease. Eventually Po(t) reaches its limiting value Po when

A//p = 1 - Po, or Po = 1 - A, which is the familiar steady-state probability of an empty system.

This scenario and others with different initial conditions are depicted in Odoni and Roth [9].
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In our work with nonstationary queueing systems, we have also observed that the behavior of

the variance and standard deviation (a(t)) for the number of customers in the system can be quite

different from that of m(t). One of the most salient differences is that v(t) and v(t) peak later

- sometimes much later - than m(t). This behavior was not expected. Theorem 2 establishes a

condition under which the variance peak v* occurs later than the peak in the mean m*. Let t be

the time at which v* is achieved.

Theorem 2 In an M(t)/M(t)/1l system, t > t iff

1 > Po(tM). (7)
m*+ -

We remark that in all our numerical computations to date, t > tm.

Proof: The proof consists of showing that v'(tm) > 0 if condition (7) holds. First, we derive

an expression for v'(t) (previously derived by Clarke [1] and Rothkopf and Oren [11]) using the

Chapman-Kolmogorov forward equations:

(t) = i 2 P' (t)
i=O

= A(t) Z i 2Pi-1 (t) - A(t) Z i 2Pi(t) - t(t) i 2Pi(t) + l(t) i 2Pi+l (t)
i i= i= i= i=O

= X(t) Z(i 2 + 2i + 1)Pi(t) - A(t) i 2Pi(t) - p(t) i 2Pi(t) + jI(t) Z(i 2 - 2i + 1)Pi(t)
i=O i= i i=

= (t) + u(t) [1 - Po(t)] + 2(A(t) - (t)) i i Pi(t)
i=l

m(t)

= A(t) + (t)[1 - Po(t)] + 2m(t)(A(t) - [(t))

By differentiating the relation v(t) = m 2 (t) - (m(t))2, we obtain

v'(t) = m 2 (t)'- 2m(t)m'(t)

= A(t) + /(t)[1 - Po(t)] + 2m(t)(A(t) - [l(t)) - 2m(t)(A(t) -p (t)[1 - Po(t)])
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= /i(t t) + 1- P(t)[ + 2m ( t)1] (8)

At the time t, when m(t) achieves its peak m*, the relation = 1- Po(t*) will hold, by

Theorem 1. Substituting this relation into equation (8), we get:

v'(t*) = 2 (t ) (1 - P0(t)[m* + 1]). (9)

Assuming that pi(t*) > 0, the right-hand-side of equation (9) will nonnegative iff

1 - Po(t*)[m* + 1] > 0, that is, if m*>l Ž Po(t) ·

We note that

1
m* > 0- 1> >-->0

- m*+l -

i.e., m*1+i is never greater than one so condition (7) is not trivially true. We also note that for

stationary M/M/1 systems, m* = p/(l - p). Therefore, in this case, m*+l = 1 - p = Po, i.e., the

relationship (7) is an equality.

We have provided results for the M(t)/M(t)/1l queueing system. In the course of investigating

M(t)/M/1, M(t)/Ek/1, and M(t)/D/1 queueing systems, and three approximation methods for

M(t)/Ek/1l systems, we obtained results consistent with the Theorems 1 and 2. Therefore, we

conjecture that the results hold for a more general class of nonstationary systems, including the

ones we investigated.

2 Computational Results for M(t)/M/1 Systems

In this section we present some of the computational results for M(t)/M/1 queueing systems which

led us to investigate the time lags for the mean and variance for the number of customers in the

system and to derive the results of Section 1. We also make two conjectures which we have not

yet been able to prove but for which we have consistent results in all cases we have tried. We first

outline our approach to nonstationary queueing systems by defining our parameters and the 19 cases

examined. We then provide computational results for these cases. All programs were run on a SUN
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SPARCstation 10. We used the Visual Numerics C/Math/Library ordinary differential equation

(ODE) solver to solve the Chapman-Kolmogorov forward equations for the M(t)/M/1 system. This

subroutine solves the ODE's using the Runge-Kutta-Verner fifth-order and sixth-order method.

2.1 Parameter Definitions and Cases Examined

We used a sinusoidal Poisson arrival process with parameter (cf. Green, Kolesar and Svoronos [5])

A(t)= + A sin ( 24 )

The sinusoidal arrival process has a period of 24 hours. The long-run average arrival rate, A, is

also the average arrival rate over the 24 hour period: X = 2 f1t240 A(t)dt. The amplitude of the sine

wave is A; it is restricted to lie between zero and A to ensure that A(t) > 0. Note that A(t) is a

smooth differentiable function with one peak over each period.

The amount by which the peak instantaneous arrival rate A(t) exceeds A has an effect on

the performance measures of the M(t)/M/1 system. Therefore, we define the parameter Relative

Amplitude (RA) [5] of the arrival process to be

A
RA ==.

A

Note that 0 < RA < 1.

We kept the service rate parameter (t) = p constant in the 19 cases examined. In the future,

we intend to allow p(t) to vary with time, as well.

Define the average utilization over the period to be p = ft24 p(t)dt = a. The maximum

utilization over the period will be denoted by Px = max = ma<t<24 {p(t)} [5].

The 19 cases examined are combinations of the following:

*· / = 10, 100, corresponding to low- and high-frequency event systems.

· p = 0.5, 0.7, 0.75, 0.9, ranging from moderate to high average utilization. In 15 of the 19 cases,

Pmax > 1.
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* RA = , 13,, ranging from moderate to maximum nonstationarity.

Note that selecting /p, p, and RA for a system automatically determines A and A. In each of the

19 cases, we recorded the peak in the mean and standard deviation for the number of customers in

the system, and the times at which they occurred.

The system started out empty, that is, the probability of 0 customers in the system was 1.0,

and was allowed to run until

m(h) - m(h - 24) <0.02 (10)
m(h)

and

or(h) - a(h - 24) <0.02 (11)
a(h)

for h = 24i, 24i + 1, 24i + 2,..., 24i + 23, for some i {1, 2,... }, i.e., until two consecutive daily

profiles of m(t) and a(t) are no more than 2% apart. Note that this implies that once we find i

satisfying inequalities (10) and (11), these inequalities also hold for all j > i,j integer, i.e., the

system is essentially at equilibrium.

2.2 Results

In Table 1, we provide data which confirm Theorems 1 and 2 and Corollary 1. Note that because

the ODE solver takes discrete time steps, m'(tm) is not exactly equal to 0, but is very close. In

Table 1, column 7, we show how small the difference t - t 2 is for the cases in which Pmax > 1. For

the cases in which Pmax < 1, we left the entry in column 7 blank. Note that in the cases in which

/ = 100 and Pmax > 1, which correspond to heavily-stressed systems, there was no discernible

difference (to two decimal places) between t and t 2. Although Po(tm) is positive, it is extremely

small in these cases, as can be seen in column 9 of Table 1. Based on the condition in equation (5)

and Corollary 1, we expect t - t2 to be very small in these cases.

In Table 1, we also provide support for the following hypothesis we have not yet proven: In

nonstationary single-server systems under equilibrium conditions, v(t) peaks after m(t). The ev-

idence supporting this is the value of v'(t * ), listed in the sixth column of Table 1. In all of the

19 M(t)/M/1 cases examined, v'(t*) > 0, indicating that v(t) is still increasing at the moment
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| p RA t I m'(t.) v'(tn) t t2 m*+1 Po(tm)

100 0.5 , 30.2 0.0038 0.03 N/A 0.33352 0.33346
30.5 -0.0006 0.11 N/A 0.1695 0.1694

1 103.5 0.0196 43.21 N/A 0.0494 0.0388
0.75 l 104.0 -0.0022 42.49 N/A 0.0429 0.0338

3 106.0 0.0014 199.61 0.00 0.0068 0.0000
1 154.7 0.0355 200.04 0.00 0.0031 0.0000

0.9 l 154.7 0.0196 198.50 0.00 0.0071 0.0001
155.4 0.0061 200.01 0.00 0.0028 0.0000

1 227.6 -0.0068 199.99 0.00 0.0171 0.0000
10 0.5 ~ 55.1 -0.0032 0.14 N/A 0.3424 0.3399

103.7 -0.0008 1.09 N/A 0.2105 0.1991
1 152.4 0.0013 4.15 N/A 0.1207 0.0956

0.7 1 346.3 0.0050 17.59 0.02 0.0340 0.0041
0.75 l 153.2 0.0006 4.17 N/A 0.1046 0.0828

226.1 0.0008 13.66 0.13 0.0472 0.0150
1 274.7 -0.0023 19.06 0.01 0.0269 0.0013

0.9 ± 226.9 0.0014 12.72 0.21 0.0431 0.0157
a 347.4 -0.0073 19.33 0.01 0.0231 0.0008
1 347.6 0.0111 20.00 0.00 0.0154 0.0000

Table 1: Numerical results: derivatives of m(t) and v(t) at the
N/A = Not Applicable for those cases in which Pmax 1.

time t* when m(t) peaks. Note:

that m(t) peaks. Figure 4 shows a plot of 1 The shaded area corresponds to m*+1 > Po(tm).

Intuitively, as m* gets larger, we expect Po(tm) to get smaller and fall into the shaded region, thus

guaranteeing that v'(t* ) > 0 (see Theorem 2). This did occur in the 19 cases we examined.

Table 2 lists the time lag between the peak in the arrival rate and the mean in column 4, and

between the peak in the arrival rate and standard deviation in column 5. In all 19 cases, o-(t)

peaked later than m(t). This is also true for all the other nonstationary single-server systems we

mentioned at the end of Section 1, leading us to believe that this behavior may be typical of general

nonstationary queueing systems.

Figures 5A-C are graphical representations of Table 2 for the 19 cases examined. Figures 5A

and B plot Pmax vs. the time lag between the peak in the arrival rate and the times at which m* and

a* occur, respectively, where a* is the peak in the standard deviation for the number in the system.

In Figure 5C, td is the time at which r* occurs. Figure 5C plots Pmax vs. tsd -tm and shows that

tsd always exceeds t m and increases significantly faster than t m for cases in which Pmax > 1. This8d M rn~acc! orn;rnl~ c~tn ~~I$
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[u p RA lag inm* lag ina*
100 0.5 1 0.15 0.22

0.49 0.72
1 1.51 2.21

0.75 l 2.01 2.94
4.00 6.88

1 4.70 9.10
0.9 4.70 8.12

5.36 10.89
1 5.57 12.12

10 0.5 _ 1.10 1.50
1.70 2.50

1 2.40 3.40
0.7 1 4.33 6.80
0.75 l 3.20 4.70

4.13 6.00
1 4.71 7.70

0.9 l 4.91 7.69
5.37 9.10

1 5.60 10.20

Table 2: Time lags in hours between the peak
deviation of number of customers in system.

in arrival rate and peaks in the mean and standard

observation again suggests that m(t) behaves differently from v(t) and a(t), in significant ways.

3 Summary

This paper begins to explore the time lag between the peak in the arrival rate and the times at

which the peaks m*, v* and a* for the mean, variance, and standard deviation of the number of

customers in the system occur. Our overall conjecture is that for nonstationary queueing systems

in equilibrium, with smooth, periodic arrival and service rates, the mean peak m* will occur later

than the arrival rate peak and the variance peak v* will occur later than the mean peak, under

fairly general conditions.

We demonstrated analytically that if Pmax > 1 and Po(0) > 0, then the mean peak m* will

occur later than the arrival rate peak; in fact it will occur strictly later than the time t2 at which

p(t) passes one on its way down. Computational results for M(t)/M(t)/l and other nonstationary

single-server queueing systems confirm our analytical results and support our overall conjecture.
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Expected Number of Customers in an M(t)/M/1 System.
Lambda(t)=75+50sin(2*PI/24). Mu=100.
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Figure 1

Variance of the Number of Customers in an M(t)/M/1 System.
Lambda(t)=75+50sin(2*PI24). Mu=100
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Figure 2
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Figure 3: p(t), m'(t), m(t) for
X(t)=90+30sin(2Zit/24), g=100
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Time Lag Between Peak of Mean
Number in an M(t)/M(t)/1 System and

Peak in Arrival Rate
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Figure 5A
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Time Lag Between Peak of Standard
Deviation for the Number in an

M(t)/M(t)/1 System and Peak in Arrival
Rate
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Figure 5B

Difference Between Standard Deviation
and Mean Time Lags for Corresponding

M(t)/M(t)/1 Systems
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Figure 5C

Figure 5: Time Lags Between Peaks in Mean and Standard Deviation
for the Number in an M(t)/M(t)/1 System

and the Peak in the Arrival Rate
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