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Abstract

We study a class of models, known as overlay optimization problems, with a "base"

subproblem and an "overlay" subproblem, linked by the requirement that the overlay

solution be contained in the base solution. In some telecommunication settings, a feasible

base solution is a spanning tree and the overlay solution is an embedded Steiner tree (or an

embedded path). For the general overlay optimization problem, we describe a heuristic

solution procedure that selects the better of two feasible solutions obtained by

independently solving the base and overlay subproblems, and establish worst-case

performance guarantees on both this heuristic and a LP relaxation of the model. These

guarantees depend upon worst-case bounds for the heuristics and LP relaxations of the

unlinked base and overlay problems. Under certain assumptions about the cost structure

and the optimality of the subproblem solutions, both the heuristic and the LP relaxation of

the combined overlay optimization model have performance guarantees of 4/3. We extend

this analysis to multiple overlays on the same base solution, producing the first known

worst-case bounds (approximately proportional to the square root of the number of

commodities) for the uncapacitated multicommodity network design problem. In a

companion paper, we develop heuristic performance guarantees for various new multi-tier.

survivable network design models that incorporate both multiple facility types or

technologies and differential node connectivity levels.



Introduction

This paper considers a general class of models, which we call overlay optimization

problems, that combines two sets of decisions: the choice of activity levels to provide a

basic level of service to all customers, and decisions regarding which of these activities to

enhance to meet more stringent service requirements for subsets of important customers.

The activity levels might represent facility installation and sizing decisions, with the basic

and enhanced activities representing two levels of technology that differ in speed, capacity.

or functionality. We treat the installation of higher grade facilities as "overlaying" or

upgrading the base facilities at extra cost. Overlay optimization has potential applications in

logistics and infrastructure planning including the design of telecommunications,

transportation, electric power, and pipeline networks. For instance, in transportation

planning, customers correspond to cities and towns. Basic service represents providing

access to every town via a paved road, but certain important cities must be interconnected

by, say, all-weather highways. Likewise, in telecommunications planning, the base

decisions model the installation of switching and transmission facilities that can

accommodate basic voice and data services (e.g., DS 1 services), while overlay variables

represent upgrading certain facilities to high capacity, broadband (e.g., fiber optic) system,,

between selected locations.

We analyze the worst-case performance of a generic heuristic strategy for solving

overlay optimization problems, and also characterize the gap between the optimal value and

the linear programming relaxation value, assuming that the original model can be

formulated as a (mixed) integer program. By extending these results to the multi-overlay

case, we develop the first known worst-case bounds for heuristics and linear programming

relaxations for the uncapacitated, fixed-charge network design problem.

1. Problem definition and overview

The overlay optimization problems that we address in this paper have the following

general form. Let x = (xl, x2, ..., xm) denote the vector of m base activity levels. For

each base activity xj, we consider K overlay variables yk for k = 1, 2, ... , K and let yk =

{ y, y2, ... , y k ). The base and overlay variables xj and y have nonnegative per unit

costs of aj and , respectively. We refer to aj as the base cost, and bk as the

incremental or overlay cost for activity k. Using this notation, the overlay

optimization problem is:
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Problem [P]
K

Z = min ax+ bky (I.1

subject to

yk E yk for k = 1, 2, ... , K. (1.2)

yk < x, for k= 1, 2,..., Kand (1 .

x X. (1.4

In this model, X and yk for k = 1, 2, ..., K represent problem-specific constraints (e.g..

network configuration requirements) on the base and overlay decisions. We assume that X
yk. Typically, X and yk are discrete sets in R m. The linking constraints (1.3) link

each of the K overlay solutions to the base solution; when xj and y are binary variables.

these inequalities resemble the familiar forcing constraints of the uncapacitated plant

location model.

The overlay optimization model [P] generalizes the hierarchical network design problem

(Current, Revelle, and Cohon [1986]), the multi-weighted Steiner tree problem (also called

the two-level network design problem; see Duin and Volgenant [1991] and Balakrishnan.

Magnanti, and Mirchandani [1992]), and the uncapacitated network design problem

(Magnanti and Wong [1984]). All these problems are known to be NP-hard even for

certain special cost structures that we consider. For one of the special cases, the two-level

network design problem, Balakrishnan et al. [1992] analyzed the worst-case performance

of a heuristic strategy based upon solving a Steiner tree subproblem and a minimum

spanning tree subproblem, and constructed examples to show that the performance bound

is tight. This paper generalizes and extends these previous results.

Section 2 considers the "single overlay" version of formulation [P], i.e., overlay

optimization problems with K = 1. For this class of problems, we analyze a composite

heuristic solution procedure that chooses the best solution obtained by two embedded

heuristics. We develop worst-case performance guarantees on the cost of this composite

heuristic solution and on the value of a linear programming relaxation of the overlay

problem using bounds on heuristic methods and linear programming formulations of its

two subproblems-a base subproblem and an overlay subproblem-obtained by ignoring

the linking constraints. We consider two alternative cost structures: the proportional cost.

case in which the ratio of overlay to base costs is the same for all activities, and the

unrelated costs case that permits this ratio to vary by activity. Our results imply, for
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instance, that problems with proportional costs have worst-case bounds of 4/3 rds for both

the composite heuristic and the LP relaxation when we solve the base and overlay

subproblems optimally and their LP relaxations are exact (i.e., have optimal integer
solutions). Researchers have not previously studied how and why linear programming
gaps arise for the general overlay optimization problem or its special cases. For two-level

network design problems with triangular costs, we provide an example showing that our
worst-case bound on the LP relaxation value is tight. For the hierarchical network design
special case, the LP gap for our example is only about half the worst-case bound; we

conjecture that our linear programming bound for this problem is not tight.

Section 3 analyzes the worst-case performance of the composite heuristic strategy for a

multicommodity, uncapacitated network design problem. We can view this problem as an

"multi-overlay" optimization problem in which we first select a basic design (incurring

fixed edge costs) and then superimpose multiple paths, one connecting each origin-

destination pair, the overlay cost for each path is the routing cost for satisfying the demand

between its origin and destination. We present two alternative overlay interpretations-a

simultaneous overlay of all origin-to-destination paths, and a recursive framework that
sequentially overlays one path at a time. These two interpretations motivate two slightly

different heuristic strategies. Our analysis considers two different modeling assumptions

one requiring the network design to be connected and another permitting arbitrary
(nonconnected) designs. We also consider several different cost assumptions. For each

model, we develop performance bounds on the composite heuristic. For one model, we

provide a worst-case bound on its LP relaxation. The heuristic and linear programming

bounds grow at a rate of approximately the square root of the number of commodities; we

also show that the heuristic worst-case performance ratios are tight for several models.

In a companion paper (Balakrishnan, Magnanti, and Mirchandani [1994]), we study a

new class of multi-tier survivable network design problems incorporating both multiple

facility types and differential node connectivities (i.e., requiring multiple edge-disjoint

paths between select nodes), with potential applications to telecommunications. The

general worst-case analysis presented in this paper applies to these telecommunications

models as well. However, by exploiting the application's special problem structure, we

obtain improved performance guarantees for certain versions of the survivable network
design model (those with two-tiers, and requiring two-connectivity for certain critical
nodes).
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To conclude this section, we might note that the work reported in this paper is related to

previous work in polyhedral combinatorics. Whenever the sets X and yk are discrete. and

so can be represented as integer polyhedra, we can view our analysis as examining a

problem concerning the coupling, through the linking constraints (1.3), of integer

polyhedra. Therefore, this analysis is a special case of a more general situation: when we

couple integer polyhedra in some general way, what can we say about the polyhedra that

arise? Disjunctive programming (Balas [1979]) provides a general approach and set of

tools for addressing these types of problems. More specifically, we might ask "when will

the intersection of two integral polyhedra be an integral polyhedra?" Matroid intersection

(Edmonds [1979]) provides the most noted such example. Two other examples are the

intersection of forest and cover polyhedra (Gamble and Pulleyblank [ 1989]) and the

intersection of tree and matching polyhedra (Hall and Magnanti [1992]). As another

example, Barany, Edmonds, and Wolsey [1986] and Aghezzaf, Magnanti, and Wolsey

[1992] have shown that the packing of certain polyhedra (to model rooted trees) produces

an integer polyhedra. As we show in this paper, by combining integer polyhedra via

forcing constraints as in the problem [P], we do not always create an integer polyhedron.

How well does this coupled polyhedron approximate the convex hull of integer solutions to

the overlay optimization problem? We are able to provide a partial answer to this question

by bounding the degree of suboptimality of (i) the objective value of optimal LP solutions

over the non-integral coupled polyhedron, and (ii) the objective value determined by

heuristic solution procedures that solve problems over the constituent polyhedra.

2. Performance Analysis of the Overlay Optimization
Problem

This section first describes a composite heuristic strategy for overlay optimization, and

develops heuristic upper bounds and LP relaxation lower bounds on the optimal value of

problem [P]. The upper-to-lower bound ratio characterizes both the worst-case

performance of the composite heuristic as well as the maximum relative gap between the LP

value and the optimal value of the problem. Our analysis relies on an important feasible

completion assumption that we describe in Section 2.1.

To simplify the discussions, we consider the single-overlay problem with K = 1:

Section 3 extends these results to the multi-overlay case in the context of the

uncapacitated network design problem. For the single-overlay case, we omit the

superscript k for the overlay variables and cost parameters. Let cj = aj + bj denote the

-4-
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total cost of activity j for all j = 1, 2, ..., m. For a given nonnegative cost vector g =

{g 1, g2, , g.m , we define the following two subproblems:

Base subproblem [BP(g)]: ZB(g) = min {gx: x X, and

Overlay subproblem [OP(g)l: Z(g) = min (gy: y Y}.

Observe that, if we ignore the linking constraints (1.3), the overlay optimization problem
[P] decomposes into two subproblems: BP(a) and OP(b).

To illustrate the solution method and understand the implications of our worst-case

results, we will apply them to two special cases-hierarchical network design and two-

level network design. The hierarchical network design (HND) problem (introduced

by Current et al. [1986]) is defined over an undirected n-node graph G with two nodes

designated as primary nodes. We can install either a primary or secondary facility on
each edge j, incurring a primary cost cj or a smaller secondary cost aj (cj > aj > 0). The

HND problem seeks a cost minimizing spanning tree that connects the two primary nodes

via a primary path, i.e., a path containing only primary facilities. The HND problem's

base subproblem is a minimum spanning tree (MST) problem, and its overlay subproblen
requires finding the shortest path connecting the two primary nodes. The two-level

network design (TLND) problem generalizes the HND problem by designating more

than two nodes as primary nodes, i.e., we seek a minimum cost connected subgraph that

interconnects all primary nodes via primary paths. The base subproblem is again the MST

problem, but the TLND model's overlay subproblem is a Steiner tree problem with all the

primary nodes as terminals.

2.1 Composite heuristic for overlay optimization
To approximately solve the overlay optimization problem, we consider a composite

heuristic method that selects the better of two solutions generated by a Base Upgrading

heuristic and an Overlay Completion heuristic. We next describe these two embedded

heuristics.

Since the overlay optimization model assumes that X c Y, we can generate feasible

solutions to [P] by finding feasible solutions x e X to the base subproblem, and setting

y = x. When the solution x solves (approximately or optimally) the base subproblem
BP(c), using total costs cj, we refer to this method as the Base Upgrading (BU)

heuristic. For the HND problem, the BU heuristic finds an MST of graph G using
primary costs cj, and installs primary facilities on all edges of this tree. In our subsequent
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analysis, we ignore the possibility of further reducing the cost of the BU heuristic solution

by locally downgrading some primary facilities into secondary facilities whenever possible

(for the HND problem, Balakrishnan et al. [1992] have shown that local improvement does

not reduce the heuristic's worst-case performance ratio).

A complementary heuristic first generates a feasible solution y to the overlay

subproblem, and then "completes" this overlay solution by solving the following

completion subproblem CP(a,9):

ZB(a,y) = min ax: x 2> , x X).

We refer to the particular implementation that generates y by solving the overlay
subproblem OP(c), using total costs cj, as the Overlay Completion (OC) heuristic.

Since x > 9, the optimal value ZB(a,y) of the completion problem must be greater than or

equal to a9. We refer to the difference 6(9) = ZB(a,y) - a9 as the optimal completion

cost. For the HND problem, the solution to the overlay subproblem is the shortest path

(using primary costs cj) connecting the two primary nodes; to optimally complete this

solution, we select every edge in this path, and sequentially add other edges in the order of

increasing secondary costs to form a spanning tree. Note that the optimal completion cost

for the HND problem must be less than or equal to the MST cost ZB(a) since any overlay

solution has at least one optimal completion that installs secondary facilities only on MST

edges. Similarly, for the TLND problem, the cost of completing any overlay subproblem
solution (i.e., any Steiner tree) does not exceed ZB(a). Our subsequent analysis applies to

problem classes that satisfy the following general feasible completion property:

An overlay optimization problem is said to satisfy the feasible completion

property if, for any feasible problem instance and a given overlay solution y, the

completion subproblem CP(a,9) is feasible and has an optimal completion cost of no

more than X ZB(a) for some known finite constant X.

We refer to the parameter A as the completion cost multiplier; X is 1 for the HND and

TLND problems. Although our worst-case results extend to any finite value of X., the

remainder of this section assumes that . = 1 for expositional convenience.

2.2 Upper and lower bounds on the optimal and LP values
2.2.1 Heuristic bounds

Let ZCOm p denote the cost of the composite heuristic solution. In general, the base

and overlay subproblems might be difficult to solve to optimality (for example, the overlay

subproblem for the TLND model is a Steiner tree problem). So, suppose we solve the base
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and overlay subproblems using methods with known worst-case performance guarantees

of PB and po, respectively. That is, the heuristics generate solutions costing no more than

PB and po times the optimal costs of the base and overlay problems. Let p = PO/PB.

Then,

ZComp < min (PBZB(C), POZO(C) + PBZB(a)),

= PB min ZB(C), P ZO(c) + ZB(a)}. (2.1
Implicitly, we assume here that a heuristic method with worst-case performance ratio PB

can also heuristically complete any overlay solution within a factor of PB times the

completion cost upper bound ZB(a). This assumption holds for all the problems we

analyze. Notice that if we solve the base and overlay subproblems optimally, we obtain the

following upper bound on the optimal objective value Z* of the original overlay

optimization model:

Z* < min {ZB(c), Z(c) + ZB(a)}. (2.2)

We use the following two relaxations of problem [P] to generate a lower bound on Z

(i) the Base Relaxation obtained by ignoring the base constraints (1.4): Since the base

costs are nonnegative, x = y in an optimal solution to this relaxation, and so this
relaxation reduces to problem OP(c), giving the lower bound ZO(c); and,

(ii) the Linking Relaxation obtained by eliminating the linking constraints (1.3): The

formulation [P] then decomposes into two subproblems--the overlay subproblem
OP(b) and the base subproblem BP(a--giving the lower bound Zo(b) + ZB(a).

Combining these bounds, we obtain

Z* > max (Zo(c), Z(b)+ZB(a)}. (2.3

2.2.2 Linear programming bounds
Suppose we can represent problem [P] as an integer (or mixed integer) program, i.e.,

we can express the implicit constraints x e X and y E Y by a set of linear inequalities, and

require the vectors x and y to be integer-valued (our results also apply to overlay

optimization problems containing continuous variables). Then, we can generate a lower

bound on Z* by solving formulation [P]'s linear programming relaxation, which we denote

as [LP]. What is the relationship between the optimal objective value ZLP of [LPI and

Z*, or between ZLP and ZCOmP? To answer these questions, we first develop lower

bounds on ZLP.
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Let ZP (g) and ZLOP(g) denote the optimal values of the LP relaxations of subproblems

BP(g) and OP(g). Eliminating the linking constraints y < x from [LP], gives the lower

bound

zLP 2 ZLOP(b)+ ZB(a).
Also, if we remove the constraints x E X from [LP], setting x = y is always optimal in the

resulting problem (since b > 0), and so we obtain the alternate lower bound:

ZLP ZOLP(c).

Therefore,

ZLP > maxLP LPZLP 2 maxZLO (c),ZO (b)+ Z (a)}. (2.4

Suppose we can bound the LP relaxation gaps for the base and overlay subproblems.
i.e., for any cost vector g, ZB(g) < 0B ZLP'(g) and Zo(g) < 00 ZLP(g) for some constants
0 B and 00 that are both greater than or equal to 1; let 0 = 00/0 B. Then, substituting for

the LP values in (2.4) we obtain

zLP > ( 1) max (Zo(c), Zo(b) + O ZB(a)). (2.5)

For the HND problem, 0B = 00 = 0 = 1 since the subproblems BP(g) and OP(g) are MST

and shortest path problems, with known LP characterizations of their underlying polyhedra

(see, for example, Nemhauser and Wolsey [1988] or Ahuja, Magnanti, and Orlin [19931).

2.2.3 Worst-case performance ratios
The inequalities (2.1) and (2.3) provide the following upper bound on the ratio of the

heuristic cost ZComp to the optimal value Z* of the overlay optimization problem [P]:

zComp min_ (ZB(c), pZO(c)+ZB(a)) (2.6
z* - PB max ZO(c), ZO(b)+ZB(a)} (2.6a

Similarly, from inequalities (2.2) and (2.5), we have

Z* < min {ZB(c), ZO(c)+ZB(a)} (2.6b

Z~LP - °max Z(c), ZO(b)+0ZB(a))

To determine the worst-case values of these ratios, we consider two cases: (i) problems for

which total and base costs are proportional, i.e., the ratio of total to base costs has a

constant value for all activities, and (ii) the general case with unrelated total to base costs.
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2.3 Overlay optimization problems with proportional costs
Suppose all activities j have the same ratio of total to base costs, and let r = cj/aj 1

be this constant ratio. Then, ZO(c) = r ZO(a), Z0 (b) = (r-1)ZO(a), and ZB(C) = rZB(a).

Define ZO(a)/ZB(a) = s; since X c Y, s < 1. Dividing the numerator and denominator

in the right-hand side of inequality (2.6a) by ZB(a) (which we assume to be positive, since

otherwise the BU solution is optimal), we obtain

zComp min r, prs+l) (
Z PB max {rs, (r-1)s+l 3

2.3.1 Worst-case performance of the composite heuristic
Let prop be the worst-case performance ratio of the composite heuristic for the overlay

optimization problem with proportional costs. Note that rs < (r-l)s + 1 ) since s < 1,

and so the inequality (2.7) implies that

min r, prs+l (2.8
9prop < PB { (r- )s+ (2.8

For small values of s, the OC heuristic solution has a smaller upper bound (= prs+ 1) than

the BU heuristic solution, and vice versa. Since the value of s depends on the problem

instance, we develop data-independent bounds by maximizing the right-hand side of (2.8)

with respect to s and r. For this purpose, we consider two cases:

Case 1: pr > (r-1)
As s increases, the upper-to-lower bound ratios for the BU and OC heuristics decrease

and increase, respectively. Since the composite heuristic selects the better of the two upper

bounds, its worst-case ratio is maximum when s* = (r-l)/pr. Substituting this value of s

in (2.8), gives
po r2
Pp r2 (2.9)

)Prop - ({r2 + (p-2)r + 1 )(2.9

If p > 2, the function on the right-hand side of (2.9) is concave, since by dividing the
numerator and denominator by por2, we can express it as the inverse of a positive convex

function. If p < 2, then this function is pseudo-convex (see, for instance, Lasdon [1970] )

We distinguish two subcases:

Case a. p > 2: the derivative of the right-hand side of inequality (2.9) with respect to r is
positive; since the right-hand side approaches po as r approaches + oo,

(OPM p 5 Po=PBP (2.1())
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Case lb. p < 2: the derivative of the right-hand side is positive when r < 2/(2-p) and is

negative r > 2/(2-p), and so the right-hand side achieves its maximum value when r* =
2/(2-p), i.e.,

(prop < (2.11PB 4-p

Case 2: pr < (r-l)

In this case (which applies only if p < 1), since the upper-to-lower bound ratios for

both the BU and OC heuristics decrease with s, the composite heuristic's performance ratio

is maximum when s* = 0. Therefore,

Opp -< PB- (2.12)

Note that this bound is less than the bound in (2.11). So, inequalities (2.10) and (2.11)

provide valid upper bounds on pop for all values of r, establishing the following theorem

Theorem 1:
For overlay optimization problems with completion cost multiplier X = 1 and
proportional costs, the performance ratio prop of the composite heuristic is bounded

from above as follows :

OP p < PB 4 if p < 2,

PB P if p > 2.

For the HND problem, PO = PB = P = 1. So, Theorem 1 implies that the cost of the

composite heuristic solution for proportional cost problems is at most 4/3 rds the optimal

cost. For the TLND problem with proportional costs, a modified MST heuristic solves the
overlay (Steiner network) subproblem with a worst-case ratio PO = 2 (Goemans and

Bertsimas [1993]). Since PB = 1, Theorem 1 implies that the worst-case ratio of the

composite heuristic does not exceed 2. Balakrishnan et al. [1992] have previously
described worst-case examples for the HND and TLND problems showing that these
bounds are tight. By using a more sophisticated heuristic for the overlay subproblem, e
can improve the worst-case bound. For example, Berman and Ramaiyer's [1992] heuristic
solves the Steiner network problem with a worst-case ratio PO = 16/9, and so embedding

this method in the composite procedure reduces the proportional cost TLND problem's
worst-case bound to 1.8.

-10-
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2.3.2 LP characterization ratio
We refer to the worst-case ratio of Z* and ZLP as the LP characterization ratio.

Let vprop represent this ratio for overlay optimization problems with proportional costs.
Substituting ZO(a)/ZB(a) = s, Zo(b) = (r-l) ZO(a), and so on in (2.6b), we obtain

min r, rs+l 
vprp -<m (r)s+ 213

To determine data-independent worst-case bounds on vprop, we again consider two case.:

Case : r > (r-l)

The right-hand side of (2.13) is maximum when s* = (r-1)/r. Therefore,

r2
Vprop •00 2 (2.14)

prap P (r-1)2+0r

Case la: 0 > 2. The right-hand side of (2.14) is a concave, increasing function of r,
approaching 00 as r - oo. Therefore,

prop 00 = B 0. (2. 15 
Case lb: 0 < 2. In this case, r* = 2/(2-8) maximizes the right-hand side of (2.14),

giving the worst-case bound

4
Vprop < 0B 4 (2.16)4-

Case 2: r < (r-l)
In this case (which applies only when 0 < 1), s* = 0 maximizes the right-hand side of

(2.13), and so

vprop < 0B (2.17)
Because this bound is smaller than the bound in (2.16), inequalities (2.15) and (2.16)
provide valid bounds for all values of r, establishing the following theorem:

Theorem 2:
For overlay optimization problems with completion cost multiplier = 1 and
proportional costs, the LP characterization ratio pop is bounded from above as

follows:
4

Vp p < 4 if 0 < 2,

< B 0 if0 > 2.
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As special cases, these results provide what we believe are the first known bounds of 2

and 4/3 on the LP relaxations of the TLND and HND problems. Next, we describe TL ND

and HND examples for which the LP relaxations have nonzero gaps.

2.3.3 TLND and HND linear programming examples
Let us first consider the TLND problem. Since the base subproblem is the MST

problem, OB = 1. Since the LP characterization ratio for the cutset formulation of the

Steiner network problem is 2 (Goemans and Bertsimas [ 1993]), 00 = 2. Therefore,

Theorem 2 implies that vprop < 2 for the TLND problem with proportional costs.

Figure l(a) shows a worst-case example to prove that this bound of 2 is tight. Each of

the q nodes on the rim of the circle is a primary node, and the node in the center is a

secondary node. Every edge of the network has unit secondary cost. Figure 1 (b) shows

the LP solution to this problem; the cost of this solution is (rq/2 + q/2). The optimal

solution, shown in Figure 1(c), costs r(q-1) + 1. Thus,

Z* r(q-l) + 1 2 - 2/q + 2/rq

zLP r q/2 + q/2 1 + 1/r

which approaches 2 as r and q approach infinity.

For the HND problem, since 0 B = 00 = 1, Theorem 2 proves that the optimal HND

cost is at most 4/3 rds the optimal LP value when the primary and secondary costs are

proportional. We have not been able to construct an HND example that achieves this

bound of 4/3. Figure 2(a) shows an example for which the optimal value is 8/7 ths of the

LP relaxation value. This example has cost ratio r = 2; the values shown on the edges of

the network in Figure 2(a) correspond to secondary costs. The primary nodes 1 and 2 can

communicate via three paths: two 2-edge paths respectively containing nodes 3 and 4, and a

q-edge path (q is a sufficiently large integer) that has a total (secondary) length of 3 units.

Figures 2(b) shows the optimal LP solution; this solution has an objective function value of

7. We can interpret this LP solution as the convex combination of the two primary paths I -

3-2 and 1-4-2, and two (secondary) spanning trees-the tree T1 containing edges (1,3),

(1,4), and the q-edge path, and the tree T 2 containing edges (2,3), (2,4), and the q-edge

path. The optimal HND solution, shown in Figure 2(c), has a cost of (8-3/q). Therefore.

Z*/Z LP -- 8/7 as q -+ oo. We can marginally increase this optimal-to-LP ratio by changing

the cost ratio r to (1+ 1/2), and setting the total length of the q-edge path connecting node,

1 and 2 to (2+X2). The ratio of the optimal value to the LP relaxation value then increases

to Z*/ZLP = (5+2xF2}/(4+2'2} > 8/7.

- 12 -
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Several observations about this example lead us to conjecture that the LP bound of 4/3
is not tight for the HND problem. First, while the OC heuristic finds the optimal solution
for this example, the actual cost of this solution is strictly less than the upper bound of
(rZo(a)+ZB(a)) that our analysis assumes; furthermore, the BU heuristic solution is not

optimal. We can also show that if, in the optimal HND solution, the primary path visits all
the nodes in the graph, then the LP value must equal the optimal value. In particular, if the
BU heuristic finds the optimal solution, then the LP gap must be zero. On the other hand,

to prove the tightness of the bound (2.16), we wish to construct an example for which both
the OC and BU heuristics produce the optimal solution (since the BU and OC upper
bounds are equal when s* = (r-1)/r), the value of this solution equals our heuristic upper
bound, and the optimal LP value equals the lower bound of (r-1)Zo(a) + ZB(a).

Simultaneously satisfying all these conditions appears to be difficult for the HND problem

2.4 Overlay optimization problems with unrelated costs
2.4.1 Bounds on heuristic and LP performance

For arbitrary cost structures, we can readily compute a posteriori bounds on the worst-
case ratio ounre of the composite heuristic and the LP characterization ratio vunrel. For

instance, inequality (2.6a) implies that

ZB(c)1um, < PB Z(C) · (2.IX,

For the HND problem, this bound implies that the ratio of the heuristic to optimal costs

does not exceed the ratio of the MST cost to the shortest 1-to-2 path length (both using total

costs as edge lengths). Since inequality (2.18) uses only the upper bound on the BU
heuristic solution, it applies even when the overlay optimization model does not satisfy the

feasible completion property.

To obtain an a priori bound, we consider just the OC heuristic. Inequality (2.6a)

implies that

PZO(c)+PBZB(a)
unrel - max (ZO(c), Zo(b)+ZB(a))

If ZB(a) = 0, this inequality implies that unrel < po. Otherwise, we have:

<nrel PoZoc) + PBZB(a)
ZO(c) ZO(b)+ZB(a)

< PO+PB if ZB(a) > 0. (2.19t 
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Similarly, since

Z* ZO(c)+ZB(a)
zLP < 0 max {ZO(c), ZO(b)+OZB(a)}

Vunrel < 00 1 + } ifZB(a) > 0. (2.19bt

These observations imply the following worst-case bounds for the unrelated costs case:

Theorem 3:
For overlay optimization problems with completion cost multiplier X = 1 and unrelated

costs, the worst-case performance coune of the OC heuristic and the LP characterization

ratio vunrel are bounded from above as follows:

Ounrel < PO+ PB if ZB(a) > 0, and

< PO if ZB(a) = 0; (2.20)

Vunrel < OB+ 0 if ZB(a) > 0, and

< 00 if ZB(a) = 0. (2.21)

These results indicate that both the heuristic and LP worst-case ratios deteriorate when we

permit arbitrary (activity-dependent) total costs relative to base costs.

2.4.2 HND worst-case example
For the HND problem, Theorem 3 implies that installing primary facilities on the

shortest 1-to-2 path, and completing the spanning tree with secondary facilities produces a

solution that costs at most twice the optimal cost; furthermore, the optimal integer value is

at most twice the LP lower bound. Balakrishnan et al. [1992] provide HND and TLND

examples with unrelated costs to show that the worst-case bound (2.20) for the OC

heuristic is tight. Let us now examine the LP gap.

Figure 3 shows a HND example for which the gap between the LP and optimal values

is higher than the gap of 8/7 for the proportional costs case. This example has the same

network topology as our previous HND example (Figure 2(a)), but differs in its cost

structure. Each of the edges connecting the primary nodes 1 and 2 to the intermediate
nodes 3 and 4 have unit primary and secondary costs; the q-edge path from node 1 to node

2 has a total primary cost of 1, and a total secondary cost of 0. The optimal LP and integer

solutions have the same x and y values shown in Figures 2(b) and 2(c). Since the LP value
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is 2 and the optimal value is 3, for this example z*/ZLP = 3/2. As before, we have not

been able to develop an example to prove that the bound of 2 on the LP characterization

ratio is tight.

The next section studies heuristic and linear programming worst-case performance for

several versions of the uncapacitated, fixed-charge network design problem. This

discussion generalizes the performance analysis methodology of Section 2 to a multi-

overlay problem.

3. The Uncapacitated Network Design Problem

Given an undirected network G = (N,E), and a set of K single-origin-destination

commodities indexed from k = 1 to K, the uncapacitated network design (UND) problem

consists of selecting a subset of edges in E, and routing each commodity k from its origin

O(k) to its destination D(k) along the chosen edges at minimum total cost. The cost

function has two components: a nonnegative fixed cost aj for each edge j, and a per unit

nonnegative routing cost b to transport commodity k on edge j. The model does not

incorporate flow capacity constraints, i.e., we can send unlimited flow on edge j if we

install this edge. Therefore, we normalize the demand for each commodity to one unit.

The UND model has applications in transportation, telecommunications, and production

planning (e.g., Magnanti and Wong [1984]).

In general, if the pattern of required origin-to-destination flows is sparse and we do not

impose any further restrictions on the topology of the network, the optimal design might

contain more than one connected component. However, certain applications might

explicitly require a connected design, i.e., although the volume of traffic between certain

node pairs might be sporadic or relatively small, the designer might nevertheless wish to

ensure that these nodes can communicate. Accordingly, we consider two variants of the

UND model: a connected version in which we impose an explicit full spanning

constraint (as constraint (1.4) in formulation [P]) requiring the design to be a connected

subgraph spanning all the nodes, and an unrestricted version that permits multiple

components. Since the worst-case analysis for the connected UND model is easier to

explain, we first develop the results for this model (in Sections 3.1 to 3.4); we then discu,

the ramifications (in Section 3.5) of removing the full spanning constraint. For each of

these two models, we consider three different cost structures-uniform proportional cost,.

commodity-dependent proportional costs, and unrelated costs. To analyze the heuristic
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worst-case performance for these 6 problem variants, in Section 3.1 we propose two
alternative implementations of the composite heuristic strategy for UND problems.

3.1 Overlay interpretations of the Connected UND model
We first present two alternative multi-overlay interpretations of the connected UND

problem-a simultaneous overlay formulation and a recursive overlay formulation. These

two interpretations give rise to two different implementations of the composite heuristic.
For one cost structure (uniform proportional costs), the simultaneous composite heuristic ,
easier to analyze and provides tighter worst-case bounds than the recursive method
(however, see our comments at the end of Section 3.3); this analysis is a natural extension
of the developments in Section 2. The recursive composite heuristic has the advantage of
permitting us to derive worst-case bounds for problems with commodity-dependent costs.

3.1.1 Simultaneous overlay formulation
In the simultaneous overlay formulation, the base subproblem selects the edges of a

connected network, and we "simultaneously" overlay K origin-to-destination paths
corresponding to each of the K commodities on the base design. In this interpretation, the
base variable xj of formulation [P] is 1 if we include edge j in the design, and 0 otherwise.
the fixed cost aj for edge j is the associated base cost, and the set X is the set of all

connected subgraphs of G. The overlay decisions for each commodity k determine a route
from node O(k) to node D(k), i.e., y is 1 if we route commodity k on edge j, and is 0

otherwise. yk is the set of all paths connecting node O(k) to D(k) in G, and the routing
costs bj serve as the overlay costs. The linking constraint (1.3) ensures that we route a

commodity k on edge j only if we include this edge in the design. If we ignore this
constraint, the simultaneous overlay formulation decomposes into:
(i) a base subproblem which is a minimum spanning tree (MST) problem using the

fixed edge costs, and
(ii) K overlay subproblems, one corresponding to each commodity; for k = 1, 2, ..., K.

the kd' overlay subproblem is a shortest path problem from node O(k) to node D(k)
using commodity k's routing costs.

3.1.2 Recursive overlay formulation
Instead of simultaneously overlaying the flow paths for all K commodities, we can also

view the K-commodity UND problem as the overlay of a single commodity, say
commodity K, on a base solution that already routes the first (K-1) commodities. For L =
1, 2, ..., K, we refer to the UND subproblem containing only the first L commodities k =
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1, 2, ... , L as the L-commodity UND problem. Thus, the base solution for the

original K-commodity UND model is just a (K-i)-commodity UND solution, which in

turn is an overlay of commodity (K-1) on a (K-2)-commodity UND solution, and so on.

We call this interpretation of the UND problem as the recursive overlay model. Observe

that this formulation extends our original definition of the overlay optimization problem: e

now permit the base subproblem to contain variables that are unrelated to the overlay

variables. For instance, at the Lth stage, the (L-1)-commodity base subproblem contains
both the design variables x and the routing variables yk for the first (L-1) commodities k =

1, 2, ..., L-1; however, the overlay variables ylj" for commodity L are directly linked (via

constraints (1.3)) only to the design variables xj.

The connected UND problem satisfies the feasible completion property (see Section
2.1) with completion cost multiplier X = 1, since appending any feasible base solution to

the overlay solution, in either the simultaneous or recursive overlay formulation, produces

a feasible UND solution.

3.1.3 Simultaneous and recursive versions of composite heuristic
The composite heuristic operates differently for the two formulations. Let us first

describe the composite heuristic corresponding to the simultaneous overlay framework:; e

will refer to this method as the simultaneous composite heuristic. To construct the

(simultaneous) BU solution, the heuristic first selects an MST, and routes each commodity

k on the unique O(k)-to-D(k) path on this tree, for k = 1, 2,..., K. The (simultaneous) OC

solution first routes each commodity k on its shortest O(k)-to-D(k) path (using the total
costs aj + bk). If the union of these paths has more than one component or does not span

all the nodes, then we add MST edges in increasing fixed cost sequence to create a

connected, spanning network. The simultaneous composite solution is the better of the B L

and OC solutions.

In contrast, the composite heuristic operates as follows in the recursive overlay

framework; we will refer to this method as the recursive composite heuristic. At each

stage L = 1, 2, ..., K, the algorithm selects the better of the (recursive) BU and OC

solutions to the L-commodity UND problem as the L-commodity composite solution; the

BU and OC heuristics at stage (L+1) build upon this composite heuristic solution. The

following description summarizes the recursive composite procedure.
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Recursive composite heuristic for Connected UND problems:
Initialization:

The O-commodity composite design is the MST using the fixed costs aj.

Iterative step:

For L = 1, 2, ..., K,

Step : Find the L-commodity recursive BU solution:
* Set the L-commodity BU design equal to the (L-1)-commodity comosite design

* For commodities k = 1,2,...,L-1, use the same routes as the (L-1)-commoditv

comnosite solution.
* Route commodity L on the shortest O(L)-to-D(L) path in the L-commodity BL

design, using the routing costs b.

Step 2: Find the L-commodity recursive OC solution:
* Route commodity L on its shortest O(L)-to-D(L) path in G using total costs (aj+b) .

* For commodities k = 1, 2, ..., L-1, use the same routes as the (L-l)-commoditv

comoosite solution
* Set the OC design equal to the union of all the edges in the L commodities' routes.

Step 2a: Satisfy the full spanning constraint
* Add to the OC design all other edges of the MST not already in the design.

Step 3: Find the L-commodity recursive composite solution:
* Select the better (lower total cost) of the L-commodity BU and OC solutions.

next L;

Note that in Step 2a we add all the MST edges even though some of these edges might

create cycles in the existing design. Although this strategy is "suboptimal" (i.e., we can

improve the cost by dropping redundant edges), it facilitates our subsequent worst-case

analysis of the recursive heuristic. Moreover, the recursive heuristic's worst-case

performance is the same whether or not we drop redundant edges, i.e., we later show an

example for which the recursive method has the same heuristic-to-optimal ratio, equal to

our worst-case bound, even if we drop redundant edges.

To summarize, the recursive composite method builds upon the composite solution to

the (L-l)-commodity problem to construct the BU and OC solutions for the L-commodity

problem, for L = 1, 2, ....K. We can also interpret the simultaneous composite heuristic s

a K-stage procedure that successively adds commodities. Unlike the recursive method,

however, the simultaneous method uses only the (L-1)-commodity BU (or OC) solution to

build the BU (respectively, OC) solution to the L-commodity problem. That is, it retains
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the same heuristic (BU or OC) solution when adding each path, whereas the recursive

strategy has the flexibility to alter this choice from step to step.

To help in navigating through the various worst-case results we will be considering. A e

briefly overview the remainder of this paper. Sections 3.2 to 3.4 deal with heuristic

performance analysis for the connected UND problem. As before, we separately analyze

the proportional costs case and the unrelated costs case. We further partition the

proportional costs case into two subcases-uniform proportional costs or

commodity-dependent proportional costs-corresponding to problems in which the

ratio of fixed-to-routing costs is the same for all commodities and edges or varies by

commodity but is the same for all the edges for a given commodity. Section 3.2 presents

heuristic and LP worst-case results for problems with uniform proportional costs; the

performance of the simultaneous composite heuristic is easier to analyze for this class of

problems and directly extends the results of Section 2.3. In Section 3.3, we analyze the

recursive composite heuristic's performance for the commodity-dependent proportional

costs case. Section 3.4 develops worst-case results for the unrelated costs case. We

provide worst-case examples in each section to show that our bounds are tight. Section 3.5
extends the results for all three cost structures-uniform proportional costs, commodity-

dependent proportional costs, and unrelated costs-to the unrestricted UND model.

We note parenthetically that, for the proportional costs network design model (with or

without the full spanning constraint), we can assume without loss of generality that the

fixed and routing costs are triangular. This property rests upon the fact that, for the

proportional costs model, the shortest path between any pair of nodes is the same using

either fixed or routing costs. If the original costs do not satisfy the triangle inequality, we

can solve the problem over an equivalent complete graph G' in which the fixed and routing

costs of each edge (ij) are the shortest path distances from node i to node j in G. To

establish the validity of this claim, note that every feasible solution to the original problem
is also feasible for the new graph G' and has the same or lower total cost since our network

transformation does not increase any edge cost. Therefore, the optimal value of the new

UND problem must be less than or equal to the optimal value of the original problem.

Now consider an optimal solution to the new problem. If all the edges in this solution have

the same costs as the original problem, then the solution is feasible and has the same total

cost for the original problem. Otherwise, suppose the solution routes one or more

commodities on an edge (ij) that has a higher cost in the original graph G (or does not

belong to G). Then, we construct an equivalent "original" solution by deleting every such
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edge {i,j) from the design, and instead rerouting all the commodities on the shortest path

from node i to node j in G. Since this modification does not increase the total cost. the

resulting solution must be optimal for the original problem.

3.2 Connected UND problems with uniform proportional costs: The
simultaneous overlay bound

Let r denote the uniform proportionality constant, i.e., r = (aj+bk)/aj for all edges j and

for all commodities k = 1, 2, ... , K. Consider the simultaneous overlay formulation. and

its associated simultaneous composite heuristic. Let T(a) denote the cost of the MST usineg
edge costs aj; for connected UND problems, T(a) is the optimal value of the simultaneous

overlay formulation's base subproblem. Let Sto(a) denote the sum of the shortest origin-
k

to-destination path lengths for all K commodities using the fixed costs aj; since bj = (r-
l)aj, the sum of the optimal values of all K overlay subproblems in the multi-overlay

formulation is (r-1)Stot(a). Therefore, relaxing the linking constraints for the optimal K-

commodity UND provides a lower bound of {(r-1)StOt(a)+T(a)}.

The simultaneous OC heuristic routes each commodity on its shortest path, possibly

incurring the full cost (i.e., fixed + routing cost) on every edge of this path, and then

completes the design by including additional edges in order to satisfy the full spanning

constraint. Since these additional edges belong to the MST, the cost of the OC heuristic
solution cannot exceed rStOt(a)+T(a)}. The simultaneous BU heuristic first installs

edges of the MST, incurring a fixed cost of T(a), and then routes each commodity on this

tree. Since the length of any origin-to-destination path on the MST cannot exceed T(a). the

total routing cost for all K commodities cannot exceed K(r-l)T(a). Therefore, the cost ot

the BU heuristic solution is bounded from above by {K(r-1)T(a)+T(a)}. These
observations give the following upper bound on the worst-case ratio onijf when we apply

the simultaneous composite heuristic to the uniform, proportional costs connected UND

problem:
min {T(a)(K(r-1)+1), rStot(a)+T(a))

Ounif -( (r-l)Stt(a)+T(a) }

min (K(r-l)+l, rst,+l)

In the last expression, stot = Stot(a)/T(a) (we assume T(a) > 0). To obtain a worst-case

bound on unif, we maximize the right-hand side of (3.1) by setting stot = K(r-1)/r, and r

= (1 + 1/4). Substituting these values in (3.1) gives the following theorem:
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Theorem 4:
For the connected UND problem with uniform proportional costs, the simultaneous
composite heuristic has a worst-case performance bound of:

(unif _< 1 + K (3.2)Ounif 2 Nf+ l

Table 1 evaluates this worst-case bound for values of K ranging from 2 to 100.

Since both the overlay (shortest path) and the base (MST) subproblems have LP
characterization ratios of 1, using arguments similar to those in Section 2.3, we can show
that for connected UND problems with uniform proportional costs, the characterization
ratio vunif of the simultaneous overlay formulation's LP relaxation has the same upper

bound as (3.2), i.e.,

Vunif < 1 + K (

3.2.1 Worst-case example
Figure 4(a) shows a two-commodity connected UND example with uniform

proportional costs for which the simultaneous composite heuristic achieves the bound of
Theorem 4. The two commodities in this example flow from node 1 to nodes 2 and 3,

respectively. Both commodities have the same total to fixed cost ratio of r = 1 + 1/02.

Figure 4(a) shows the fixed cost for each edge; here, p = 1/(1+4-2). In the example, both

the horizontal multi-node path (having a total fixed cost of p units), and the vertical multi-

node path (with total fixed cost of (l-p)) have a sufficiently large number of equally spaced
intermediate nodes, so that each segment has a small positive fixed cost 6.

The OC heuristic solution shown in Figure 4(b) has a total cost of (2rp + 1) = T2 + 1.

The BU heuristic solution (Figure 4(c)) incurs a fixed cost of 1, and a total flow cost of

2(r-1) = 2; therefore, the total cost of the BU heuristic solution is 42+1. The optimal

solution (Figure 4(d)) has a fixed cost of 1, and flow cost of 2p(r-1) giving a total cost of

z= 2X22+1 Therefore, ZCompz* is {+ 2 , proving that the bound (3.2) is tight.
+1 '22+1

We can also construct worst-case examples containing an arbitrary number of

commodities, but the networks have a much more complex structure, and do not provide

any additional intuition.
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3.3 Connected UND problems with commodity-dependent
proportional costs: The recursive overlay bound

When the total to fixed cost ratio varies by commodity, the worst-case ratio for the
simultaneous heuristic depends on both the maximum and minimum cost ratios, rmax and

rmin, instead of the single proportionality constant r (rmax and rmi,, replace r in the

numerator and denominator, respectively, of inequality (3.1)). Therefore, for problems

with commodity-dependent proportional costs, developing data-independent worst-case
bounds for the simultaneous composite heuristic is difficult unless we make additional
assumptions regarding rmax and rmin. However, as we show next, the performance

analysis for the recursive composite heuristic does not require such assumptions.

For L = 1, 2,..., K, let PL be the worst-case performance of the recursive composite

heuristic for the L-commodity connected UND problem (containing the first L

commodities, k = 1, 2,..., L) with commodity-dependent proportinal costs. The 1-
commodity connected UND problem is the same as the HND problem, and so pi = 4/3.

Since the L-commodity UND problem's recursive formulation contains the (L-1)-
commodity problem as its base subproblem, we will first express PL in terms of PL-I-

Using this expression and starting with P1 = 4/3, we can recursively calculate numerical

values of pL for L = 2, 3,..., K.

For k = 1, 2, ..., K, let rk denote the total to fixed cost ratio for commodity k, i.e.. rk =

(aj+bk)/aj for all edges j. Let Sk(a) be the cost of the shortest origin-to-destination path for

commodity k using the fixed costs aj; the smallest possible routing cost for commodity k i,
therefore, (rk-l)Sk(a). Assume we have indexed the commodities in decreasing order of

their minimum routing cost (rk-l)Sk(a). ZL is the (unknown) optimal value of the L-

commodity UND problem.

Our analysis follows the same steps as before. We develop upper bounds for the

(recursive) OC and BU heuristic solutions and a lower bound on the optimal value by
relaxing the constraints that link the base and overlay problems. In the recursive setting.
we have the following results.

At stage L of our recursive composite heuristic procedure, we start with the composite
solution for the (L-1)-commodity base subproblem; the total cost (= fixed cost + routine
cost for the first (L-1) commodities) is no more than pL_1ZL_. The recursive OC
heuristic adds commodity L's origin-to-destination route (incurring the full cost aj+bLJ 
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on edges of this route) to the (L-1)-commodity recursive composite solution. Therefolre
the L-commodity OC heuristic solution costs no more than {rLSL(a) + PL-1ZL-I}

Relaxing the linking constraints of the L-commodity recursive problem formulation
gives a lower bound of {(rL-l)SL(a) + ZLl)}.

To express PL in terms of PL-1, we can use our single-overlay results from Section 2

Since the recursive BU heuristic upgrades the heuristic solution to the base problem. t
has an upper bound of rLPL_ZL. 1. Dividing the minimum of the OC and BU upper

bounds by the lower bound, we observe that this case corresponds to a special applicatiIon
of the results in Section 2 with PB = PL-1, PO = 1, and so p = /PL_1. Therefore,

Theorem 1 provides us with the basic bound:
2

PL < 4PL-1 (PL
4PL-1- 1

By analyzing the BU heuristic more carefully, we can develop a considerably stron ger

worst-case bound which we call the enhanced bound. Note that in obtaining the
inequality (3.4), we used a bound of rLpL IZL_ on value of the BU heuristic. This boulnd

assumes that, to route commodity L, we "upgrade" WI the activities in the base solution

including both the design arcs and the commodity routes for the first (L-l) commodities.

To improve this bound, we would like to better estimate the incremental cost of routing

commodity L on the (L-1) commodity base solution. We obtain this estimate by

computing an upper bound on the total fixed cost of the shortest O(L)-to-D(L) path in the

base design. Suppose we can show that the base design contains all the edges of the MST

of graph G. Then, since the MST contains an O(L)-to-D(L) path, the route for commodit\

L chosen by the BU heuristic must have fixed cost less than or equal to the MST cost T a) .
i.e., the overlay cost (= total routing cost for commodity L) incurred by the BU heuristic I,
at most (rL-1)T(a). Therefore, the recursive BU heuristic solution has an upper

bound of {p..iZ..i + (rL-l)T(a)}. We use induction to prove that the (L-1)-

commodity composite solution must contain all the MST edges. For L = 1, this property

holds since the MST solves the 0-commodity connected UND problem. Suppose the (L-

2)-commodity composite design contains all the MST edges. Then the (L-1)-commodit

BU design must also contain these edges since the BU heuristic builds upon the (L-2)-
commodity composite solution. Also, at each stage, the recursive OC heuristic includes all
the MST edges. Since the composite heuristic at stage (L-1) selects the better of the (L- I -

commodity BU and OC heuristic solutions, the (L-1)-commodity composite design must

contain all the MST edges, establishing the desired property.
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Let us now develop an upper bound for T(a) in terms of the shortest path length for
commodity L and the optimal value ZL. 1 of the base subproblem. Since ZL_ 1 represents

the optimal value of the (L-1)-commodity UND problem, it must be greater than or equal to
L-1

the lower bound { E (rk-1)Sk(a) + T(a)) obtained by ignoring the linking constraints in the
k=1

simultaneous overlay formulation of the (L-l)-commodity UND problem. Since we have
indexed the commodities k in decreasing order of their minimum routing costs (rk-)Sk( ).

replacing the first term in the lower bound with (rL-l)(L-l)SL(a) gives

T(a) < ZL-I - (rL-1)(L-1)SL(a).

Substituting for T(a) in the BU upper bound, we see that the cost of the recursive BU

heuristic solution at stage L must not exceed

{PL-1ZL-1 + (rL-1)[ZL1 - (rL 1)(L-1 )SL(a)] }.

Normalizing all upper and lower bounds with respect to the optimal base value ZL-_.

dividing the minimum of the two heuristic upper bounds by the lower bound, and letting L

= SL(a)/ZL_, gives the worst-case performance bound

< min { PL-I+(rL-1 )[ 1 -rL- l )(L-1 )SL], rLSL+PL_ } 
PL - (rL-1)sL + 

To determine worst-case values of SL and rL, we consider two cases:

Case 1: rL > pL_(L-1), i.e., r L < PL-i/(PL--1).

In this case, the right-hand side of (3.6) achieves its maximum value when

* (rL3.6)
rL+(L-1)(rL-1)

For this value of sL, we maximize the right-hand side of (3.5) when

* -(PLl-1 ) + i (PL-I-1)2 + (PLl-1 ) + L
rL 1+ (3.7)

(PL-1- 1) + L

We can verify thatrL PLi/(PL_- 1). i.e., rL satisfies the condition for case 1.

Case 2: rL > pL_./(PL_jrl)

In this case, sL = 0 is the worst-case value of SL , giving a worst-case bound of

PL < PL-1 (3.8)
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The right-hand side of (3.5), using values of SL and rL from (3.6) and (3.7), is greater thin

PL-1. Therefore, we get the following result.

Theorem 5:
For the connected L-commodity UND problem with commodity-dependent
proportional costs, the recursive composite heuristic has a worst-case bound of:

PL rLsL + PL- for L = 1, 2, ..K, ( 
(rL-1)S L + 1

where sL and rL have the values specified in equations (3.6) and (3.7).

Starting with P1 = 4/3 (for the HND problem), Table 1 recursively applies the

enhanced recursive overlay bound (3.9) to compute PK for various values of K frorll

2 to 100. The new recursive bound vastly improves upon the basic bound (3.4), providin

worst-case ratios for the commodity-dependent proportional costs case that are very close

to but larger than the simultaneous overlay bound for UND problems with uniform

proportional costs.

Finally, we can specialize the recursive bound to the uniform proportional costs case h\
requiring that the rL values must be the same, say, r* for all L = 1, 2, ... , K when we

maximize the right-hand side of inequality (3.5). This maximization exercise, sketched in

Balakrishnan et al. [1993], is complicated, but produces a better recursive performance
K

bound of ( 1+ -)} , corresponding to the worst-case value of r* = { 1+ ), for
2~-K+1

connected UND problems with uniform proportional costs. Note that this bound is the

same as the simultaneous heuristic's worst-case performance ratio (see Section 3.2).

The recursive composite heuristic achieves its worst-case bound for the uniform

proportional costs example shown in Figure 4(a). In this figure, the (common) value of r

is 1 + 1/X2, and the parameter p is 1/(2+1). Figures 5(a) and 5(b) show the BU and OC(

solutions at the first stage (L = 1) of the recursive procedure; both these solutions have a

total cost of {2+1 )/F2. At the end of stage 1, the recursive composite heuristic choose,,

the BU solution (in the worst-case) as the 1-commodity composite solution. Figures 5(cX

and 5(d) show the BU and OC solutions at the second stage. The 2-commodity BU

solution, shown in Figure 5(c), costs rp + r = (X2+1); the 2-commodity OC solution,

shown in Figure 5(d), also costs (2rp + 1) = (2+1). The optimal solution (Figure 5(d))

costs Z* = (2X2+1 )/( 2+1 ). Therefore, ZComp/Z* is ( 1 + 2/(242+1)), proving that the
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recursive composite heuristic's specialized bound for problems with uniform proportional

costs is tight. This example also shows that the bound remains tight even if we drop

redundant edges at each stage of the recursive procedure (for this example, we might drop

the vertical edge incident to node 2 in Figure 5(b) and the vertical edge incident to node 3 ill

Figure 5(d)). As with the simultaneous overlay bound, we can also construct worst-case

examples for arbitrary number of commodities.

3.4 Connected UND problems with unrelated costs
As the final problem variant for the connected UND model, we consider problems ith

unrelated costs, i.e., the ratio of total to fixed costs varies both by edge and commodity.

We consider only the OC heuristic, and so our bound does not depend on whether we use

the simultaneous or recursive formulations (i.e., recursively applying the single-overlay

OC heuristic produces the same solution as the simultaneous OC heuristic).

If Sk(c k) denotes the shortest path length from origin O(k) to destination D(k) for

commodity k using the total cost c) as edge costs, T(a) is the cost of the MST using fixed

costs aj, and Z* is the optimal value of the K-commodity connected UND problem, then

Z* > Sk(ck) for all k = 1, 2, ... , K, and (3. 1()0a

Z* 2 T(a). (3. 1()h

Furthermore, the cost ZOC of the OC heuristic solution satisfies
K

ZOC < Sk(ck) + T(a) (3.11
k=l

because the OC heuristic routes each commodity on its shortest path (incurring the full cost

of this path, in the worst-case), and then adds MST edges to construct a connected design

Combining inequalities (3. 10a), (3. 10b), and (3. 11) we obtain,
zOC

Ounrel = Z < K + 1. (3.12

Theorem 6:
For connected K-commodity UND problems with unrelated costs,

Ounrel < K + 1.

3.4.1 Worst-case example
Figure 6 contains a two-commodity UND example with unrelated costs for which the

composite heuristic achieves the bound (3.12). This example is defined over the same
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network as our previous (proportional costs) example (Figure 4(a)); Figure 6 shows the

fixed cost and routing cost for each commodity on every edge. The OC and optimal

solutions have the same structure as Figures 4(b) and 4(d). If we use the costs shown in

Figure 6, the OC solution has a total cost of 3, while the optimal solution incurs a fixed

cost of 1, and no flow cost. Therefore, the ratio of heuristic to optimal value is 3 (= K+ 

Again, we can extend this example to arbitrary number of commodities.

3.5 Worst-case analysis for the Unrestricted UND model
In Sections 3.1 to 3.4, we considered one version of the uncapacitated network design

problem: one in which the design must be connected. We now examine worst-case results

for the unrestricted network design problem. Since this model does not explicitly require

the underlying design to span all the nodes, eliminating the connected UND model's full

spanning constraint but imposing just the integrality requirements for the x variables (i.e..
setting X = {x: xj = 0 or 1 for all edges j ) in the constraint (1.4)) gives a valid formulation

for the unrestricted UND problem. However, to obtain a tighter lower bound on the

optimal LP relaxation value for our worst-case analysis, we will strengthen the base

subproblem by adding certain valid design constraints to X.

Let S be the set of all transshipment nodes (i.e., nodes that do not serve as the origin or

destination for any commodity) in G; we refer to these nodes as Steiner nodes. We
partition the remaining nodes in N\S into M minimal node subsets Nm, for m = 1, 2 ....

M, each containing at least two nodes such that, for every commodity k, both its origin

node O(k) and destination node D(k) belong to the same subset. Therefore, every feasible

solution to the unrestricted UND problem must contain a component that spans all the
nodes of Nm for m = 1, 2, ..., M, in order to permit O(k)-to-D(k) communication for ever-

commodity k. If M = 1 then every feasible design must contain a Steiner tree with the
nodes of N1 as its terminals and some or all of the nodes in S serving as intermediate

Steiner points. If M = 1 and N o = ¢, we say that the demand pattern is spanning. For

instance, (n-l) comrmodities flowing from a single source to every other node of an n-node

network define a spanning demand pattern.

To strengthen the unrestricted UND problem's (simultaneous or recursive) formulation

we add, for all m = 1, 2, ..., M, a valid connectedness constraint specifying that

every node of Nm must belong to a single component in the chosen network design. With

these constraints, the unrestricted UND problem has the following Steiner Forest (SF)
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problem (also called the Generalized Steiner problem, Goemans and Williamson [ 19921) a

its base subproblem:

Steiner Forest problem: Find the minimum cost forest of G that interconnects
nodes in Nm for all m = 1, 2, ..., M. We permit the path connecting a pair of nodes i.j

N to optionally contain nodes from S and/or from other subsets Nm, m m'.

The SF problem reduces to the well-known Steiner network problem when M = 1. If the

demand pattern is spanning then the SF problem becomes the MST problem.

Since the Steiner network problem is NP-hard, so is the SF problem. In fact, the

problem is NP-hard even when S is empty (and M > 1) since we can formulate any given
Steiner network problem SP as an SF problem with S = ¢. The equivalent SF problem has

all the nodes and edges of SP. In addition, for each Steiner node i of SP, the SF problem

contains an extra dummy node i', connected to node i by a zero cost edge. The dummy

node i' has the same incident edges with the same cost as the edges incident to node i, i.e..

for every edge (i,j) in the original problem SP, the SF network contains edge i',j with
the same cost. This equivalent SF problem has a node subset Ni = i,i' } for each Steiner

node i of SP, and an additional subset containing all the terminal nodes of SP. It is easy to

show that the optimal solution to SP corresponds to an equal cost optimal solution to the

SF problem and vice versa, proving that SF is NP-hard even when S = .

Goemans and Williamson [1992] describe a labeling method to heuristically solve a

general class of problems that includes the SF problem. The worst-case performance ratio

of this heuristic is at most 2.

In the following discussions, we consider unrestricted UND problems with three cost

structures-uniform proportional costs, commodity-dependent proportional costs, and

unrelated costs. For the uniform proportional costs case, we analyze the worst-case

performance of the simultaneous composite heuristic; for problems with commodity-

dependent proportional costs, we apply the recursive method.

3.5.1 Simultaneous bound for Unrestricted UND problems with

uniform proportional costs
The simultaneous composite heuristic for the unrestricted UND problem differs from Its

connected UND version in two ways: (i) since the base (SF) subproblem is

computationally intractable (except in special cases when it reduces to the MST problem).
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we must incorporate a heuristic procedure to solve it; and (ii) the OC heuristic does not

require an overlay completion phase since the overlay subproblem's solution (i.e., the

union of origin-to-destination paths for all commodities) itself produces a feasible design.

Let PSF represent the worst-case performance ratio for the SF solution method, and let

ZSF(a) denote the optimal value of the Steiner Forest problem using the fixed costs aj a.

edge costs. As before, S(a) denotes the sum of the shortest origin-to-destination path
lengths for all K commodities using aj as edge costs, and r is the total to fixed cost ratio.

Note that:

* the simultaneous BU heuristic selects the heuristic SF solution as the network

design, and routes each of the K commodities on this design; consequently, this solution
costs at most {pFZsF(a)+K(r-l))pFZsF(a)};

* the simultaneous OC heuristic solution routes every commodity on its shortest

origin-to-destination path, incurring the fixed and routing costs on each path. This

solution has an upper bound of rS(a); and,
* deleting the linking constraints (1.3) gives the lower bound of {(r-l)S(a)+ZsF(a).

If we normalize all of the upper and lower bounds with respect to ZsF(a) and let S =
S(a)/ZSF(a), the composite heuristic's worst-case performance ratio becomes:

min [K(r-)+ 1 ]PSF, rS) }(3

The right-hand side of (3.13) achieves its maximum value when

S* = PSF(K(r-l)+l} (3.14r

Substituting this value of S in (3.13), and differentiating with respect to r gives the

following worst-case value of r that maximizes the right-hand side of (3.13):

r* = PSF(K-1) 1+ 1 I. (3.15
(PSFK-l) PSFK

Hence, we have:

Theorem 7:
The simultaneous composite heuristic for the unrestricted UND problem with unifomi

proportional costs has a worst-case performance ratio of
r*S*

COunif < (r*-l)S*+l'

where S* and r* have the values specified in equations (3.14) and (3.15).
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If we solve the SF base subproblem optimally, then r* has the same value (1+ 1/ K) .t,

it did for the connected UND problem (see Section 3.2), but S* is JK. In this case, the

simultaneous composite heuristic has a worst-case ratio of

tounif - 2 ( lo)

which is lower than the method's performance ratio of 1 + K/(2JK+I)} for the connected

UND problem (see inequality (3.2)). This observation has the following interesting

implication. Recall that, when the demand pattern is spanning, the full spanning constrniln

is valid even for the unrestricted UND model, and so the connected UND model's

simultaneous overlay bound (3.2) applies. However, bound (3.16) is superior to (3.2)

because the bound (3.2) uses a higher value for the OC heuristic's upper bound that

includes an additional cost to complete the overlay solution, whereas this completion step ,

unnecessary for spanning demand patterns.

Table 2 shows values of the simultaneous heuristic's performance ratio for the
unrestricted UND problem with uniform proportional costs; we compute the bounds for
both PSF = 1 and PSF = 2 (e.g., if we solve the overlay subproblem using Goemans and

Williamson's heuristic) for selected values of K ranging from 2 to 100.

3.5.2 Recursive bound for Unrestricted UND problems with
commodity-dependent proportional costs

In the recursive formulation of the unrestricted UND problem, we assume that, for all

values of L from 0 to K, the L-commodity UND formulation contains the complete set ot

SF constraints corresponding to the original problem (i.e., although the first L commoditic"

might have less stringent connectedness requirements, we retain the original SF

constraints). With this assumption, the 1-commodity UND problem has the SF problem JI,

its base subproblem. We discuss only the "enhanced" version of the recursive bound (i.e .
the counterpart of the bound (3.9)) for the unrestricted UND problem. Let Sk(a) denote the

length of the shortest path from O(k) to D(k) using the fixed edge costs aj. As in Section

3.3, we assume we have indexed the commodities k in order of decreasing routing costs
(rk-l)Sk(a). Let ZL and PL denote the optimal value and heuristic worst-case ratio for the

L-commodity problem, and let HSF be the heuristic solution to the SF problem; its cost
does not exceed PsFZSF(a).
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At stage 1 of the recursive composite heuristic procedure, the BU heuristic routes

commodity 1 on HSF, while the OC heuristic adds the edges in HSF to commodity 1'
shortest origin-to-destination path. The better of these two solutions is the composite 1-
commodity solution. In subsequent stages L = 2, 3, ... , K,

(i) the BU heuristic routes commodity L on the shortest O(L)-to-D(L) path (using the
flow costs bj) in the (L-1)-commodity composite design. This design satisfies the SF

constraints, and, therefore, contains at least one O(L)-to-D(L) path;
(ii) the OC heuristic first selects the shortest O(L)-to-D(L) route in G (using the total

costs aj+bL), uses the same routes as the (L-1)-commodity composite solution for the

first (L-1) commodities, and adds all the edges of HSF to complete the OC design:

and,
(iii) we select the better of the BU and OC solutions as the L-commodity recursive

composite solution.
Observe that, while the simultaneous OC heuristic for the unrestricted UND problem does

not require an overlay completion step, the recursive OC heuristic must complete the

solution at each stage (in step (ii) above) by including all the edges of the heuristic SF

solution. This completion step is necessary in order to ensure that, in subsequent steps. the
BU heuristic can build upon the composite solution (the BU heuristic assumes that the L- I

commodity composite solution, which could be either the BU or OC solution from
previous steps, contains a route from O(L) to D(L)). Therefore, the recursive composite
heuristic has the same underlying structure for both the connected and unrestricted UND

problems except in the first stage (L = 0); the connected version starts with the MST at

stage L = 0, while the "unrestricted" recursive procedure starts with the heuristic SF
solution.

Since the composite (L-1)-commodity solution contains all the edges of HSF, the
routing cost for commodity L in the BU heuristic solution cannot exceed (rL-l)PsFZsF(a )

Therefore, the total cost of the L-commodity recursive BU heuristic solution is at most

{PL-lZL_+(rL-)PSFZsF(a)). Following the same arguments as in Section 3.3, 'Ae
find that the recursive OC heuristic solution has the upper bound {rLSL(a)+PL -

1ZL 1}) , and the optimal value of the L-commodity UND problem must be at least {(rL-

1)SL(a)+ZL--).

Let us now express the optimal SF value ZsF(a) in terms of ZL- 1. Relaxing the linkin,

constraints (1.3) in the simultaneous overlay formulation for the (L-1)-commodity UND
problem gives the lower bound:
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L-1
ZL-1 >2 (rk-1)Sk(a) + ZSF(a). (3.17

Since we have indexed the commodities in decreasing order of their minimum routing
costs, (rk-l)Sk(a) > (rL-1)SL(a) for all k = 1, 2, ..., L-1. Therefore, from (3.17) we

obtain

ZSF(a) < {ZL - (rL-1)(L-1)SL(a)}. ( 1I
Replacing ZsF(a) with its upper bound (3.18) in the BU heuristic's upper bound, and

dividing the composite heuristic solution value (which is the minimum of the BU and OC

heuristic solution values) by the L-commodity UND lower bound gives the following
upper bound on the recursive composite heuristic's performance ratio PL for the L-

commodity UND problem:

min (PL-1+(rL-1)psF( l-(rL-l)(L-l)sLJ, rLsL+PL_1 (
-L < (rL-l)sL + 1

In this expression, sL = SL(a)/ZL_1.

If rL < pL_I(rL-), then sL = 0 maximizes the right-hand side of (3.19), and hence PL

< PLI.- Otherwise, if rL > PL_1(rL-), substituting the following worst-case values of SL

and rL in (3.19) gives a data-independent recursive upper bound for PL in terms of PL- 1

· PSF(rL-l)
SL 2 , and (3.20(

PSF(rL-1) (L-1) + rL

rL PSFL + 4 (PL-1-1)2 +(P L _1-1)+pSFL=L (3.21)
(PLI-1) + PSFL ,

Theorem 8:
For the unrestricted L-commodity UND problem with commodity-dependent

proportional costs, the recursive composite heuristic has a worst-case bound of

PL rLSL L .1 forL =1,2,..., K, (3.22
(r-1)sSL + 1

where s Land r have the values specified in equations (3.20) and (3.21).

Starting with P = PSF, we can compute a numerical value for the worst-case ratio PK

for the K-commodity unrestricted UND problem by recursively applying (3.22), and using
values of sL and rL from (3.20) and (3.21), for L = 1, ...., K. Table 2 reports the worst-

case ratios for selected values of K from 2 to 100, for both PSF = 1 and 2. For problems

with spanning demand patterns, the values corresponding to PSF = 1 apply. Note that the
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bounds in this case are the same as the recursive bounds for connected UND problems

shown in Table 1. This equivalence holds because, in the recursive framework, the OC

heuristic for unrestricted UND problems does not differ from its connected counterpart.

i.e., both versions apply the overlay completion step. Finally, the recursive bound for

unrestricted UND problems with commodity-dependent costs is slightly larger than the

simultaneous bound for the uniform proportional costs case; we previously observed the

same phenomenon for the connected UND model.

3.5.3 Unrestricted UND problems with unrelated costs
If Sk(ck) denotes the length of the shortest origin-to-destination path for commodity k

using the total costs cj as edge lengths, then the OC heuristic has an upper bound of

K

ZO C < Sk(ck),
k=l

while the optimal value Z* of the unrestricted UND problem must be at least

Z > Max (Sk(ck): k = 1, 2, ... K).

Therefore, we have:

Theorem 9:
For unrestricted UND problems with unrelated costs, the OC heuristic's worst-case

performance ratio is at most:

tunrel < K. (3.23

Note that, for UND problems with spanning demand, this "unrestricted" OC heuristic

provides a better bound than the tight bound of (K+ 1) that we developed for the connected

UND problem.

In this section, we have shown how the principles underlying our heuristic and LP

performance analysis of Section 2 apply to multi-overlay optimization problems. We

proposed and analyzed two alternative overlay interpretations-a simultaneous multi-overl I

formulation, and a recursive single-overlay representation-of the uncapacitated network

design problem. Using composite heuristics based upon these two formulations, we

developed heuristic worst-case performance guarantees for connected as well as

unrestricted UND problems with uniform proportional costs, commodity-dependent

proportional costs, and unrelated costs.
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4. Concluding Remarks

Overlay optimization is a broad problem class, encompassing a variety of models that

apply to problem contexts such as facility location and telecommunications planning. Our

analysis in this paper began by developing bounds on a composite heuristic and an LP

relaxation for the "single-overlay" optimization model. The bounds on the composite

heuristic depend upon how accurately we can solve both the base and overlay

subproblems. If we can solve them both optimally, then the composite heuristic is

guaranteed to find a solution whose objective value is within 33% of the value of the

optimal solution. As we lose accuracy in solving the base and overlay subproblems, the

performance bound for the composite heuristic becomes worse. Similarly, if the linear

programming relaxations of the base and overlay problems are exact (the LPs generate

integer solutions), then the objective value of the linear programming relaxation of the

overall overlay optimization problem (with the linking constraints) is within 33% of the

optimal value of the problem, and as the linear programming relaxations of these

subproblems becomes less accurate, then the bounds on the accuracy of the overall linear

programming relaxation become worse.

We next explored multi-overlay extensions of the basic single-overlay model to

characterize the worst-case performance for various versions of the multi-commodity,

uncapacitated network design problem. In this discussion, we considered three different

cost structures (proportional, uniformly proportional, and general) and two different

solution strategies: simultaneous and recursive. Our results provide performance

guarantees on these heuristics and, in one case, on a linear programming relaxation of the

problem; the performance bounds on either the recursive or simultaneous composite

heuristics depend upon the number of commodities in the network design problem (they

grow as the square root of the number of commodities). We provided worst-case example,,

to prove that these bounds are tight.

Our general heuristic and linear programming worst-case results in Section 2 can apply

directly to various types of overlay optimization problems such as the HND and TLND

problems, and for these two problem classes the heuristic bounds are tight. We can use the

general results to analyze other network configuration problems as well. For instance,

consider a "forest-on-tree" problem, which generalizes the TLND problem in the

following way. The solution to the TLND problem must connect every primary node to

every other primary node via a primary path. Instead, suppose we are given Q (> 1)
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disjoint subsets of primary nodes. Every pair of nodes within each subset must

communicate via a primary path, but we require only secondary paths (but also permit

primary paths) connecting primary nodes belonging to different subsets. Each secondLr!
node must connect to some primary node via a primary or secondary path. For this

problem, the overlay subproblem is the Steiner Forest problem described in Section 3. .

and the base problem is a minimum spanning tree problem. The forest-on-tree problem
satisfies the feasible completion property with X = 1. Therefore, the results of Theoremn I

and 2 apply. If we use Goemans and Williamson's heuristic to solve the overlay (Steiner

Forest) subproblem, then the composite heuristic procedure generates a solution that is at

most twice as expensive as the optimal cost. The TLND problem is a special case of the

forest-on-tree problem, and we know that for this problem the bound of 2 for the

composite heuristic (but using a minimum spanning heuristic to solve the overlay

subproblem) is tight. We conjecture that the forest-on-tree problem's worst-case bound i,

also tight even though we use a different heuristic for the overlay subproblem.

Even if the results of Section 2 do not apply directly or produce loose bounds, the

general approach and principles underlying our performance analysis might itself prove t,

be worthwhile in studying other specific instances of the overlay optimization model. A,

we have seen in our discussion of the uncapacitated network design problems, if we

examine problems with special structure or those that extend the overlay optimization mo(x c 

(for example, by adding additional variables to the base or overlay subproblems), the

specifics of our analysis might be different, even though the overall approach is much the
same.

In a companion paper, we address a new class of multi-tier, multi-connected

(survivable) network design problems that arise in telecommunications planning. We appl

the overlay optimization principles of this paper to different versions of two-tier, two-

connected problems, exploiting their special structure to improve upon the generic worst-

case bounds developed in Section 2. For instance, one problem variant that we study has .

worst-case bound of only 1.25, lower than the 4/3 rds bound that we derived in this paper

for general overlay optimization problems (assuming we solve both the overlay and base

subproblems optimally).

Several questions, both theoretical and applied, arise as a result of this work. First.

since the overlay optimization problem's heuristic and LP worst-case bounds depend uponr

the bounds for the corresponding base and overlay subproblems, strengthening the
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underlying subproblem formulations and developing better heuristics for these

subproblems can improve the performance for the overlay optimization model. Second, for

our analysis, we obtained lower bounds by ignoring the linking constraints (1.3). We can

view this lower bound as the optimal value of the Lagrangian relaxation when we dualize

the linking constraints using zero Lagrangian multipliers. Can we improve the worst-case

performance ratios by considering certain special non-zero multiplier values that provide

better, but analytically tractable, bounds?

A third and very alluring research direction to pursue is the extension of our approach

to a more general decomposition framework. In this paper, we have considered only a
"simple" class of forcing constraints yj < xj for all j and for all k. To generalize this

approach, we might consider a wider class of "complicating" constraints whose removal

from the formulation decomposes the problem into a base subproblem, and one or more

overlay problems. For instance, can we extend the analysis to problems with, say,

"exclusivity" constraints of the form

Y jl+yj _ xj,

or more general "bundle" constraints and variable upper bounds? (In the network design

context, the "exclusivity" constraint prevents commodities kl and k2 from both flowing on

the same edge j.) We note that the lower bound remains valid even for overlay models with

these more general linking constraints since we obtain this bound by ignoring the linking

constraints. However, our upper bounds depend on the structure of the linkage. In

particular, for problems that have the simple forcing constraints (1.3) and satisfy the

condition X c yk, the BU heuristic is valid, i.e., it produces a feasible solution to the

overlay optimization problem by constructing a feasible base solution, and setting y = xj to

satisfy the linking constraints (1.3) and the overlay constraints (1.2). This property might

not hold for more general linking constraints unless we make appropriate feasibility

assumptions.
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q primary nodes
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x = y = 0.5 on all rim arcs
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Figure l(a): TLND example Figure l(b): LP solution
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(primary facilities)
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(secondary

facility)

Figure l(c): Optimal solution

Figure 1: LP worst-case example for TLND problem with proportional costs
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