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ABSTRACT

Freight flow management in rail systems involves multicommodity flows
on a network complicated by node activities (queueing and classification of
cars at marshalling yards). Routing in these systems should account for
technology requirements of motive power and traction as well as resource
allocation (cars to blocks, blocks to trains). In this paper, we propose
a hierarchical taxonomy of modelling issues and describe a class of models
dealing with car routing and train makeup from the viewpoint of network
flows and combinatorial optimization. We compare our model with two pre-
vious rail network models and discuss possibilities for algorithmic
development.



1. INTRODUCTION

Railroads in the United States have been facing fierce competition

in the area of freight transportation since 1940. This is reflected in

the steadily falling market share of railroads in intercity freight trans-

port. Over the period 1940-1970, total intercity freight ton miles have

tripled while rail tone miles have barely doubled. The market shares of

trucks and oil pipelines have increased by 10% at the expense of the rail

market share. Finally gross revenues of railroads have been declining

steadily over the past two decades [18].

The impact of this competition is felt in major reorganizations of

railroads andin a renewed stimulus for implementing more rationalized

planning systems, especially in view of the recent capabilities of

computerization in rail systems.

On the other hand, a number of studies have pointed to poor utiliza-

tion of available resources in railroads: Total origin-destination trip

times are unduly large due to various delays incurred at intermediate

points. Moreover, the variance in such trip times is also quite'large,

resulting in unreliability of the delivery process and poor customer

service. A typical railcar moves only 2 hours per day on a train,

spending the remaining time at yards. Only 16.5 hours are required

to move 500 miles at 30 mph while, on the average, a car spends more

than 20 hours to move through a yard and typically visits 5-10 yards

before reaching its ultimate destination [18]. These and similar statistics

indicate low car utilization and poor service to the customer. The



complicated interaction between rail policies affecting these issues show

the need for a global planning process for the rationalization of rail

operations. A methodical improvement of such operations may have a far

greater impact than purely technological advances in rail engineering. As

an example Thomet [15] estimates that doubling the speed in mail-haul move-

ments reduces the travel-time by only 15%. A methodology for analyzing

current policies in rail freight management and their coordination could

not be more timely. In this context analytical models for rail systems

hold much promise in planning the acquisition of facilities and resources

as well as evaluating the effect of changes in the parameters of the system

(such as traffic demand patterns, rates of yard activities and so forth).

Previously various subsystems of rail systems have been modelled in

some detail(see[4]). The simulation approach dominates the existing litera-

ture in this area. However, to provide meaningful insights for planning

purposes, a typical simulation model has to be run on a variety of different

parameters, the number of which may be quite large. Such an approach may

easily become expensive in terms of computation costs while it still requires

the specification of a set of performance measures to compare the different

outcomes. Optimization-based models avoid such shortcomings by formalizing

the performance criterion thus taking full account of the tradeoffs involved

in parameter changes.

Optimization models have been successfully used in transportation

studies and in particular cases, such as traffic equilibrium problems

(see [8]), their utility and efficacy is well established. While unable
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to capture the full details of specific operations, such models can serve

as a valuable aid to decision-making if used at an aggregate level. More-

over the possibility of interacting between an aggregate optimization model

and a more detailed simulation model has been advocated by a number of

researchers [1], [10].

Rail networks share the basic network structure of other transportation

systems on the main-haul links, but are additionally complicated by the

activities taking place in intermediate marshalling or classification yards

(which correspond to the nodes of the network). As noted previously, the

delays at such yards form the substantial portion of the total travel

time of a typical freight car from its origin to its destination. As a result,

any network model of railroads should faithfully reflect the activities at

the nodes. Moreover the two sets of line and yard activities are inter-

dependent and interact fully. The basic task of a comprehensive rail network

model is to link these two and account for their interactions.

In this report we shall describe a mathematical programming approach

to this problem and relate it to previous modelling efforts in this direction.

In describing a formal model, we shall have the opportunity to point out

different issues of concern to the rail community and explore to what extent

they can be faithfully reflected in the model without precluding the algorithmic

tractability of solving the resulting optimization problem.

The plan of this report will be as follows: In Section 2 we describe

a number of issues in rail operating policies as well as major decision-

making problems that they pose. We suggest a hierarchical view of the deci-

sions involved. Section 3 provides the terminology of network flows and the

-



formulation of a general network model for train routing and makeup. In

Section 4, we discuss various forms of the general model and discuss its

capabilities as well as the issues it captures. Section 5 contains a brief

review of the two existing optimization models, a comparison of these efforts

with the proposal made here, and a discussion of potential advantages of our

model.

2. ISSUES IN RAIL PLANNING AND THE HIERARCHICAL APPROACH

In this section we give a broad description of rail systems to establish

the context of our modelling approach and to set the terminology for our

discussion of planning issues.

Broadly speaking we may view rail operating policies as a sequence

of decisions striving to meet demands by a suitable allocation of resources

and facilities available to the railroad (which we may view as the supplier

of services). On the demand side, we assume that data is available in the

form of the traffic volume to be moved between a given origin-destination

pair. We shall only deal with average (deterministic) estimates of such

volumes. In practice, the demand requirements may be more complicated. The

shipper might specify a maximum allowable delivery time or specific con-

straints on routing. On the supply side, the specified set of resources

available to the railroad determines the feasible train routes, allowable

train itineraries, crew and motive power availabilities, and yard facilities.

The operating policies determine an assignment of the resources to each class

of traffic (determined by its origin and destination as well as possibly

traffic type). Operating policies may be roughly divided into line and yard

policies. The former determines the routing of each traffic class on the
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physical rail network as well as a sequence of trains to which the traffic

is assigned. Yard policies specify the operations performed on different

classes of traffic in the yards they visit:

At each yard the incoming traffic undergoes a sequence of operations

ultimately leading to a regrouping of this traffic for outbound trains. The

grouping policy at each yard specifies how the incoming traffic is re-

classified into a number of groups in each of which the outbound cars share

a destination further downstream along their routes. The blocking of cars

into such destination-oriented blocks is also called the blocking policy.

Incoming trains are inspected and then decoupled to reclassify their cars

into appropriate outbound groups. Such blocks of traffic are then placed

on classification or departure tracks awaiting an outbound train. The deci-

sions involved in the process described above may be collectively called the

Classification policy of the yard.

Each outbound train has a "take-list" specifying the blocks of traffic

it may pick up at a given yard. The decision as to which blocks of traffic

should be placed on a given train is called the Make-up policy. Obviously,

the Make-up policy interacts highly with both Classification and Routing

policies. It may thus be viewed as an important linking factor between yard

and. line decisions. In this report we shall concentrate on routing and

makeup policies and their interaction with the classification work performed

at a given yard. We shall not discuss other yard policies relating to the

receiving and dispatching activities.

The decisions of interest in rail management vary substantially in

scope, time horizon, investment requirements, and the level of managerial

decision-making. Obviously the location of a major new classification yard

-
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will involve top level management whereas timetabling and a number of yard

policies may not extend beyond local operators at a given yard or a zone

of several yards. This observation suggests it may be useful to adopt a

hierarchical view of rail planning. We shall follow the framework proposed

by Anthony [2] identifying three levels of decisions facing management,

namely strategic, tactical, and operational. We shall stress that we regard

the following categorization as a tentative aid to our modelling effort

allowing us to identify a suitable level of aggregation in our model.

I. Strategic Decisions

These involve resource acquisition decisions of long time horizons

typically requiring major capital investments. Due to the pervasive and

long-lasting impact of strategic decisions on the future of the system,

top evel management is usually directly involved with their resolution.

Prime examples of such decisions in the context of rail systems include:

a - Network Design and Improvement. Track Abandonment.

b - Location of yards and major classification facilities within large
yards.

c - Highly Aggregate Routing Decisions. Long term planning of train
services.

The network improvement model of LeBlanc [11] is one example of a

strategic problem studied in the rail literature. The problem of choosing

a set of feasible routings over a long planning horizon may fall into the

category of strategic decisions if highly aggregate measures of traffic

demand are used. The railroad may also want to estimate the costs and

impact of providing regular service on a given set of routes and use such

aggregate routing models as aids to decision-making. These models may also
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serve as inputs into larger models dealing with trip distribution and modal

split considerations.

II. Tactical Decisions

These decisions have medium term planning horizons and focus on rational

and effective allocation of existing resources rather than major acquisitions.

The intermediate level of aggregation and medium term horizon of a tactical

planning model allow it to take account of broad changes in system parameters

and data (such as seasonalities in the traffic volumes and imbalances result-

ing from lack of uniformity in the geographical pattern of shipments) without

having to incorporate day-to-day changes in the data-base. Some examples of

tactical decisions in rail systems follow:

a) Train Selection and Traffic Routing: What trains should run and
what should the required frequency of each train be to accomodate
traffic demand?

b) Train Makeup: What groups (or blocks) of traffic should a train be
allowed to carry (its take-list) at a given yard of its itinerary?

c) Yard Classification Policy: Into what groups or blocks should the
incoming traffic to the yard be consolidated?

d) Allocation of Classification Work among yards: What is the total amount
of classification work performed in the system? How should this work-
load be distributed among the various yards to account for the
fact that they might have different technological capabilities?

e) Train lengths: What train lengths should we consider economically
attractive? Is it better to have shorter more frequent trains?

These issues have been at the heart of rail operations for some time. The

decisions mentioned above influence one another to a large extent and no

one model can hope to fully capture all such interactions. We wish,

however, to address some of these questions with the model proposed in this

report.



Note that the specification of Makeup and Classification policies is

expected to be responsive only to major, stable changes in traffic patterns.

Changing these policies on a daily basis in response to daily fluctuations

is not advisable in view of the confusion it may cause for yard and

management personnel. This suggests that a model for setting yard policies

will probably be solved on a monthly or quarterly basis.

III. Operational Decisions

Such decisions deal with day-to-day operational and scheduling activities

at a high degree of detail and in a fairly dynamic environment. Correspondingly

only low levels of management (such as yardmasters) are directly concerened

with operational decisions. Some examples are:

a) Train Timetables: Determining arrival/departure times of each train
at any intermediate station of its itinerary.

b) Track Scheduling and Priority Policy: Assigning trains to tracks if
track capacity is limited. Planning for meets and overtakes according
to a priority scheme,

c) Engine Scheduling: Planning for daily distribution of motive power
units over a specified set of train schedules.

d) Empty Car Distribution: Distributing empty cars over the rail network
to meet demand and rectify imbalances due to uneven freight movement.

e) Yard Receiving and Dispatching Policies: Determining a priority scheme
for processing the queue of trains incoming to a classification yard.
Setting rules for departure times of outbound trains.

f) Line-haul and yard Maintenance Operations: Scheduling maintenance
and inspection for cars, engines, tracks and yard facilities.

The element of timing is crucial to most of the decisions in this list.

The aim of computerized information systems for railroads is to record the

position of cars in real-time or on an hourly basis. Thus models for empty-car



and engine distribution may well be re-solved on a daily basis. We wish

to point our that the distinction between tactical and operational issues

might be blurred at times. Thus while daily empty car distribution is

classified as operational, these might be a more aggregate tactical model

guiding the distribution on a zonal basis. Similarly the empty car problem

viewed in the context of setting optimal stock levels of empty cars at

yards may assume tactical dimensions.

The main advantage of a hierarchical approach is to avoid the pitfall

of dealing with all the decisions outlined above simultaneously through a

monolithic model. Even if computer and algorithmic capabilities permitted

the solution of a large scale detailed rail model (which is presently not

the case), this approach would still be inappropriate since it would not be

responsive to managerial needs at each level of the organization. Thus

we do not try to integrate service and route selection problems for trains

with delay timetabling and empty car distribution problems into the same

model, since the two classes of problems relate to different levels of

the managerial heirarchy.

3. A GENERAL RAIL NETWORK MODEL

In this section we shall formulate a rail network model with a general

objective function that may be suitably specialized to capture various costs

associated with the rail operations of routing, makeup, and classification.

Our main concern lies in (i)-modelling the interaction of routing decisions

with yard activities and (ii)-capturing the economies associated with

consolidating blocks of traffic into a single train. Since most of the delays



in freight delivery occur at yards, an effective policy for reducing congestion

and delays (and their variability) associated with the yards is to schedule

by-pass trains that deliver blocks of traffic directly between origin and

destination yards with no intermediate re-classification. The savings

resulting from such a procedure, however, have to warrant the additional

costs of allocating a direct (unit) train to the traffic class in question.

Our model is constructed to address this issue and to provide a means of

striking a rational balance between customer service and rail operating costs.

We start by reviewing the terminology of network flows and the notation

our formulation will require.

3.1 Rail Network Structure

We shall deal with a network of nodes N corresponding to yard and links

A referring to physical track sections on which main-haul rail freight

may travel. We thus have a directed graph Gp = (N, A ) which we shall

assume to be acyclic.

The traffic requirements from one yard to another are taken as input

data. Consider a pair of nodes p and q between which a nonzero flow of traffic

is specified. Such a pair is called an origin-destination (or simply OD) pair.

Given the OD pair (p,q) a required flow of rP q units must travel from node p

to node q on the physical network G . The requirements rP q may be measured
P

in number of cars, or possibly in some form of equivalent tonnage.

The physical network G is then endowed with a route structure which

specifies the set of feasible routes on which trains could be scheduled. Each

route has a unique origin i and destination j, i and j being yards in the

rail network, as well as a physical path (i.e. a series of links in A ) from

i to j which is completely specified. In the rail literature such a route

is occasionally referred to as a train. It corresponds to the itinerary



of a unique train from i to j. A number of trains (in the sense of a string

of cars provided with locomotives) may be run on each train route. Thus we

distinguish between a train route (which specifies the itinerary through the

physical network) and train frequency (which specifies the number of actual

trains dispatched along that route). It is useful to think of train routes

as a bus number (line) which has a specified itinerary. Obviously busses

with the same number may be run on a given itinerary with any desired fre-

quency, however all of these share the same routing and stop-schedule.

A train service from i to j, denoted [i,j], maintains its identity

throughout its itinerary. It is therefore made up at yard i and broken

up for reclassification at its destination j. No intermediate yards perform

any classification activities on the train. In this model, we shall ignore

the option of stopping at an intermediate yard to set off or pick up. We

make this simplifying assumption mainly in order to simplify our

exposition. A further refinement of our model may incorporate such stops

explicitly with no substantial modifications. In our model, then, all

intermediate yards between i and j are "bypassed" by the [i,j] train service.

As a result, traffic groups which make connections travel on more than one

train route. The train routes, or non-stop legs of traffic movement, may

be represented as a network by adding "route arcs" between nodes i and j as

illustrated in the following example.

Example 1: Consider the very simple line betwork of Figure 1 which is com-

posed of four stations. Only one way traffic (eastbound) is considered

accounting for the directed links as shown.

(see next page)



We may augment this network G by all direct arcs from one node to

another further downstream. Thus we may, for example, add the direct arc (1,4)

which corresponds to a train going from 1 to 4 with no intermediate processing.

In this case we get 6 arcs in the enlarged network G as shown in Figure 2.

Note that traffic from one node to another may use a sequence of trains,

that is, it might make connections. Thus 1 to 4 traffic may be placed on

the train [1,3] and then transferred to train [3,4]. Figure 2 exhibits

all possible train routes between the four stations. Obviously the network

Gno longer represents links but, rather train services between yards.

Figure 2 The Network of Train Routes - G

Figure 1 The Physical Network G
P

I I



In general a direct arc [i,j] on the route network G constructed above

represents a feasible train service with a specified itinerary on the physical

links joining yards i and j. For the special case of a line network of n

consecutive stations on a line, G will have n(n-1)/2 arcs. In practice,

of course, other management considerations, such as inspection requirements

and constraints on non-stop travel time, may rule out some of these routes.

3.2 Network Flows We now consider a given network G = (N,A) of possible

routes (represented by the arcs A of G). For a given origin-destination

pair (p,q) we define the following decision variables:

pqij = number of cars travelling from p to q on the service [i,j].

Yij = number of engines (units of motive power) provided on the
service [i,j].

Both of these variables are measured as average values over a given period

(say a day or a week). In what follows we may also envisage xpq to mean the

tons of freight going from p to q on [i,j]. On the enlarged route network

G,we may view the variables xpi as arc flows since the arc (i,j) of G

corresponds to the train [i,j]. Then for each OD pair (p,q) we have

network flows x which are subject to flow balance constraints. As the
ij

flows of traffic between different OD pairs should be distinguished from

one another (not mixed), we are dealing with a multicommodity flow on the

network G (see[3]).

Let us also specify for an arc (i,j) of G an allowable car/locomotive

ratio aij Thus if ij = 50 a single motive power unit can haul a maximum



of 50 cars over the route of the train [i,j]. We must impose conditions on

the flows xip to ensure that this restriction is not violated. Thus we will

have two sets of constraints corresponding to flow conservation and motive

power constraints. We shall illustrate these by an example before passing

on to the general formulation.

Example 2: Let us consider the network G of Figure 2 and write out the

corresponding constraints. Note that our OD pairs are (1,2), (1,3), (1,4),

(2,3), (2,4), and (3,4) in this case.

a) Flow balance equations: (for each OD pair as noted on the left).

(1,2) { x12 = r

13 13 13
23- x13 = -r

14 14 14 14
(1,4) + 13 + x14 = r

14 14 14

x12 - 23 24

14 + 14 14 =

x14 23 34

14 14 14 14
X14 -x24 34 = -r

23 23
(2,3) { x23 r=2 r



(3,4) { x34

24
+ 24

2 4
3 4

24
x2 4

24
= r

= 0

34
= r

b) Motive Power Restrictions for each train (arc).

14
x12

14
+ X13

14
x
14

- 12 Y12

< al3 ' Y13

< a14 ' Y14

13 14
X2 3 + 2 3

14
x34

all pq
ij

23 + 24
23 23

14 24
X24 + X24

24 34
34 + x34

> 0 ; Yij

24 ' Y24

< 034 ' 34

> O and integral.

For the general formulation, we may use the following notation.

Let I and 0i be the set of incoming and outgoing trains(respectively)

at yard i, that is:

Ii

0i

= {kI (k,i)£A}

= {k I (i,k)CA}

(2,4)
24
x23

24
x23

24
X2 3

12
x1 2

13
+ x12

13
x13

L 23 ' Y23



Moreover for a train [i,j], let T.. be its take-list, i.e. the set

of all OD pairs whose traffic could be put on that train. In network

terminology this lists all the commodities which may flow on the arc

(i,j) of G. This set may be specified easily from the network configuration.

Indeed let us call a node j accessibZe to node i if there is a path in G

going from i to j.

Then

Tij = {(p,q) I i is accessible to p and q is accessible to j}.

For the simple case of a line network of n consecutive yards where N l,...,n}

and A = {(i,j) 1 < i < j < n } we have

I = k 1< k< i = {k i <k< n}

and
T.. = (p,q) I 1 <p < i <j <q <n }.
13

The flow balance and motive power constraints are:

r pq if i=p

xi j - Z x . r p q (1)
]lo ij CI ={if i-q

otherwise

for all nodes i used OD pairs (p,q)

xij Pq <
(pq)eTij xij< - i j y (2)

all x > 0 y.. > 0 and integral (3)
ij - j

for all (i,j)EA.

In (2) xij denotes the total flow of traffic assigned to train service

[i,j].
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Note that for fixed values of yij the constraint set is that of a

capacitated multicommodity flow problem. Our approach is to maintain this

feasible set (which is shared with many other transportation models involving

flow of goods and carriers) and incorporate complications into the objective

function. The objective function will contain two types of costs: (i) main-

haul or over-the-road costs and (ii) yard costs.

3.3 Model Formulation For a given train service [i,j], let X.. be a

vector with components xpq for all (p,q) in the take list T listed, say,
ij 1j

according to lexicographic ordering of pq. This vector will fully describe

the makeup (or composition) of the train [i,j], i.e. how many cars of each

traffic class (p,q) is placed on the train. At a given yard j we also form

a supervector X containing the vectors Xij for all trains [i,j] incoming

to yard j (i.e. for all iIj). This vector contains the composition of

all traffic brough into yard j. As an example for a yard j of the line

network,

X = (Xlj, X2j, . j-l)J

and

In 2j 2n ij inX = (x ,xx . ,X,. .. X
i Xij1' ' 'i 'xij'1ij xij

We consider two types of costs: Train costs relating to running a train

[i,j] over its route with a specified load assumed to be expressible as a

cost function ij(Xij,Y ij). Yard costs at a typical yard j with an incoming

traffic X given by the functional form 4j(X.). Then a formal model may
-.1 J -j



be set up as follows:

(P): Min Z = . (X ijij) + 
(i,j)EA jEN

subject to equations (1), (2), and (3).

(4)

At this point we should pause to list some of the costs which we would

expect the above cost functions to incorporate. In rail cost accounting

a number of different cost factors such as maintenance and constraint crew

costs may be attached as unit costs to a number of aggregate measures

including: total gross-ton-miles, locomotive miles, train miles, over-the-

road engine and car hours. In an optimization model, it is preferable to

identify major components of the cost individually to bring out impact of

alternative policies on the costs more clearly.

I. Trains costs will include:

i) Crew Costs - A crew should be engaged over the entire length of the train

route.

ii) Fuel Costs - These will depend on the train weight (total tonnage) and

length (number of cars) as well as on the train's speed and the geo-

grahical terrain of its route. It is reasonable to take fuel costs

as being proportional to train weight over a given link.

iii) Costs of Motive Power - We attach costs to providing and running an

engine over each link.

iv) Over-the-Road Delay Costs - The delay incurred on the main-haul legs,

due to travel-time, congestion, meets and passes and so forth, may be

attached a dollar value to reflect the value of capital tied up in

the system pipelines and, more importantly, the shipper's devaluation

rate.



II. Yard Costs will include:

i) Inspection and Classification Costs - These are attached to the operations

involved in inspecting and breaking up incoming trains for reclassifi-

cation into outbound groups. They may reflect the use of yard equip-

ment (yard-engine-hours) or labor resources (inspection crews).

ii) Yard Delay Costs - We may associate time (devaluation) costs to the

total delay suffered by cars in the yard due to the queueing effects

and waiting times of various yard operations: receiving, classification,

outbound inspection and assembly, accumulation and connection delays.

Naturally in a yard with fixed resources (crew and equipment) the main compo-

nent of yard costs is formed by delays incurred by different classes of traffic

at that yard.

Let us try to suggest functional forms for the cost functions 4ij and

.j that would account for the components listed above. Starting with train

costs ij' let

e c
~ij(Xij'Yij) ci Yij + ci j Xij (5)

where

e
cii = cost of providing a unit of motive power for

train [i,j]

cCi = hauling cost per car on the route of [i,j]
ij

and xij, we recall, is the total load on train [i,j] as defined in equation

(2). Thus we have variable costs corresponding to the number of cars on the

train (and track parameters for the train route) as well as engine costs which

exhibit a discrete character peculiar to rail systems. Later, we shall point
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out why we believe modelling this discreteness in the cost function is impor-

tant. For the moment, note that for fixed values of xPi (and hence x..), given
1j 13

that the cost function is strictly increasing in ij, the values of the Yij

variables may be deduced from equation (2) to be

ij ij[a . x ij

where [ .]+ denotes rounding up to the nearest integer. Consequently the graph

of ij as a function of xij exhibits a stepwise nature as shown in Figure 3.

e
The magnitude of the jumps is c and slope of the linear sections equals

cc

ij'

We shall now turn to the yard cost function j. To choose the simplest

expression for these costs, we might let 4j depend on the total throughput

of yard j, that is

j(X i) = f. ( Z x i..)
iEI. 

I

(6)

pij 

a,. 2a..
iJ 13

Figure 3: The Train Cost Function

k

I 



To allow for congestion effects, we may take fj to be a convex increasing function.

Moreover the network structure of the problem will be preserved if the node for

yard j is split into two nodes joined by a 'throughput arc' with flow

j xi and arc cost fj(iIj xi ). For a tactical model, however, we

consider this expression to be too crude. It does not distinguish the

delaying effects of one class of traffic on others.

Following Thomet [15,16] we introduce a delay function at a given yard j

of the form

W. + v.. x..
J J lj

where W is the fixed delay for processing a train coming into the yard and

vj is the variable delay (in units of time per car). Such a delay is incurred

for any train [i,j] which is classified and processed at yard j. To account

for the effect of train composition in the processing costs, we should note

that trains composed purely of cars for yard j need not be classified at that

yard.

Such cars need not be placed on the outbound traffic groups to continue

their journey, but will rather be delivered to local industrial sidings

from the destination yard and thus exit the main rail network. As an example,

in Figure 2 the trains [1,4], [2,4], and [3,4] all have cars destined for

yard 4 and have no cars with a different destination. Consequently, these

trains will not be classified at yard 4, but will just be transferred to

local demand points serviced by yard 4. The train [1,3] however may have

cars destined for yard 3 and 4. If any cars with destination 4 are placed

on that train they must be classified at yard 3. We also note that the

total number of cars destined for a yard (to stay) is a constant determined



by traffic requirements and so should not affect the optimization. This can

be seen formally from the equation

Z j = r constant (8)

where the last summation is over all origins p that have traffic destined

for yard j (i.e. all p to which node j is accessible). Let us define a

variable eij corresponding to the classification status of train [i,j]

as follows:

X if train [i,j] should be classified at yard j

eij 0 otherwise

Moreover let < be a partial ordering on the set of nodes N of our network

where i < j means is accessible to i, that is to say there is a directed

path from i to j in G. (For the single track network this coincides with

the usual ordering on integers). Then we see

e~j = S((,,,)~T~~ xp q)
(9)eij 6 ((p,q)T.. ij (

13

j< q

where 6(x) is the delta function,

that equals 0 for x = 0 and 1 for x > 1, commonly used in fixed charge problems.

Equation (9) simply says that the train [i,j] should be classified at yard j

whenever it includes any traffic travelling beyond yard j. Then the delay

at yard j for processing trains [i,j] is

d
Tij = (Wj+vj i (10)

We could translate this delay term to money costs by attaching a time cost



dij to each unit of time delay. This should reflect in dollar terms the

undesirability of delaying cars at yard j. The yard cost function may

then be written as:

. (X) iI dij eij(Wj + vj (11)
J -J i-I 1J J 1J

We wish, however, to point out a complication in transferring delay

times into cost terms: The devaluation costs dij should logically depend

on the train composition. As in inventory holding costs, dij usually reflects

the total dollar value of freight which undergoes delay. If the average

devaluation rate of traffic corresponding to OD pair (p,q) is c q dollars/car/

day, then the train devaluation rate would be

d =c X 
ij (p,q)cT.. d iJ (12)

Even if all the rates cpq are equal (say to cd), dij still depends on
d d

the train volume xij, leading to a quadratic cost function for each train.

Consequently measuring delay more realistically in terms of car-days, rather

than just days, leads to a more complicated objective function.

We have now presented some possible cost functions for the general model(4).

In later sections we shall pursue further simplifications in the cost function

with a view twoards algorithmic issues.

4. CAPABILITIES AND LIMITATIONS OF THE NETWORK MODEL

In this section we shall relate the general model presented above to the

tactical issues listed in Section 2. Rail systems are distinguished from

many other transportation modes by their inherent ability to move a large

3



number of shipments as a single unit. We feel an adequate model of rail freight

transportation should take explicit account of such economies associated with

train length and the corresponding blocking policy of consolidating diverse

classes of traffic into large groups in which members share some leg of

their itinerary. The train length economies operate in two directions: On

the one hand they set lower limits on the total traffic assigned to a given

train so that it would be profitable to run. On the other, they allow us

some flexibility of "stretching" the train capacity by assigning additional

engines so that the train could accomodate more traffic. This latter feature

is absent from the competing trucking mode, for example.

On the negative side of the economies suggested by large shipments may

well be negated by the necessary intermediate sorting and grouping operations

on the cars which tend to increase operating costs delays while lowering

customer service and equipment utilization. Our model should address both

the economies and diseconomies mentioned above.

When economies of scale are present, it is imperative that a model

aiming to incorporate them be on the same hierarchical level as where such

economies are realized. This consideration will serve as a guide for choosing

a suitable level of aggregation and planning horizon for the model. To clarify

this issue consider a strategic model for route selection on a rail network.

Suppose we measure our flow variables xpi in units of cars/year and correspon-

dingly think of our requirements rP q as average annual requirements. Moreover,

let us choose aggregate cost functions pij(xij) for the routes [i,j] and

~j(uj) for the yards j where u is the total throughput of yard j as described

in (6). Then the model in (4) will attempt to find an optimal routing of

traffic while accounting for link and yard congestion. (We assume the functions



~ij and j to be increasing and convex). With this choice of variables,

Yij will have a large value (say for a train per day over the route [i,j],

Yij will be about 360 trains/year). Thus we may relax integrality on Yij

with no substantial loss of optimality using the relation

cont -1
Yij a ij Xij

the constraints (2) may be dropped from the model and the program (P)

becomes a convex network minimization problem. While such a model is of

interest for aggregate routing purposes and for facilities location (for

example the location or expansion of classification yards), it abstracts

away from the blocking problem of assigning blocks of traffic to trains.

We shall give an example of economies that such a model will be too

aggregate to reflect.

Example Consider three nodes (yards) i,j,and k of a rail network with

requirements as shown in Figure 4:

20 cars from i to j

100 cars from i to k

100 cars from k to j

Suppose moreover that we have a car/engine ratio of 40 for trains travelling

over the routes [i,j], [i,k], and [k,j]. Sending cars directly from each

origin to destination requires a total of 7 engines: one over the route (i,j)

and 3 over each of the routes (i,k) and (k,j). However, diverting the

traffic from i to j through yard k changes the loads on links (i,k) and (k,j)

from 100 to 120. Then one engine is saved over the route (i,j) and, moreover,

20

Figure 4

i



the other engines will be fully utilized (to capacity). There is of course

a corresponding processing and classification cost that cars of (i,j) will

incur at yard k, but the balance may well be in favor of traffic diversion.

The above example shows that the integrality issue in the provision of

motive power units is a key factor in two questions that have long plagued

rail operations: that of train length (short versus long trains) and of high

equipment utilization. Maintaining the discreteness is our cost function

allows for a more rational evaluation of the economies of shipping in train-

loads. We see the economies are realized on the level of loading (and

blocking) decisions for cars.

We now list some of the issues that a successful solution of the routing/

makeup model of Section 3 will clarify.

a) Service Selection and Frequency - The variables yij determine the

choice of trains to provide service. If yij = 0 no trains will be

sent along the route [i,j]. For yij = 1 only one train will be run.

For larger values of ij longer (or more frequent) trains will travel

on the service [i,j].

b) Train Makeup - The optimal values of the flow variables xpq will
ij

specify the optimal train composition on a given route [i,j]. In our

model these variables will also provide guidelines for the blocking

policy.

c) Yard Grouping Policy - At each yard the incoming traffic may be

reclassified according to outbound destinations. The number of

groups formed at the yard can be derived from the total number of

outbound services operative at optimality. We may think of each

classification track as containing all the traffic belonging to the

takelist of a given outbound train.



d) Yard Workload - The total workload of each classification yard may be

d
obtained from the total yard delay as expressed by the terms T..

in equation (10). The yard parameters W and v. should be calibrated
J J

for each yard and will differ from one yard to another according to

yard type (flat or hump yard) and the technological profile of the

yard. The model strives for an efficient allocation of classification

work among yards. For example, classification activity may be diverted

from a small flat yard to a large automatic hump yard where it may be

performed much more quickly.

e) Train Length - The train length variable xij will be influenced by the

e
discrete marginal costs cij attached to yij... The discreteness of

these variables will specify a number of "regimes" of possible train

lengths with different costs to the railroad.

We thus see that the routing/makeup model, if solved, will address a number

of the tactical issues raised in Section 2 and consequently has the potential

of being a valuable planning tool.

We shall close this section with some technical observations concerning our

model for routing and makeup: As it stands, the model involves continuous

flow variables Pj , integer variables ij., and rather complicated cost terms

in the objective function as specified by equation (11). Let us start by

noting how this formulation may be transformed to a network flow model

with arc costs involving set-ups. In the process we shall also eliminate

the 01 variables eij which specify the classification status of the train[i,j].

Consider a given yard j. A train [i,j] will be classified at j if it carries



freight destined for yards beyond yard j i.e. for some nodes k >j). On

the other hand, a train composed entirely of traffic due for yard j will not

require reclassification at that yard. This situation can be partially

captured by splitting the node for yard j into two nodes j'and j" as shown

in Figure 5.

The node j' acts as a sink for all traffic staying at yard j (all

traffic classes with final destination j) while node j" acts as a source

of outbound traffic from yard j. We may decompose the traffic volume of a

given train [i,j] as follows

ij = pq xEiPj pq

Xij =pi Xj = ij jq xij
j<q P<i

The first summation (call it uj) is the traffic staying at yard j that will

exit the network directly through the sink at j'. The second term (call it uj+ )

passes over the connecting intra-yard arc (j',j"). It is then possible to

attach the classification and processing costs of yard j to this arc (j',j")

by specifying an arc cost function of the form

J() 0 for u=O
j (u W. + v..u for u>O.

J J



Then pure trains, in the sense of trains with uj+ = 0, will incur no

processing delays at yard j. If many different trains [i,j] flow into yard j

it is possible to extend this approach by splitting node j into many nodes

(equal to the maximum number of trains flowing into the yard) all of which

are connected to a sink j' and an outbound node j". This will naturally

increase the size of the network considerably if many trains are considered.

An alternative to capturing the cost functions of equations (10)-(12)

exactly is to seek simpler cost functions. One such choice is

cj(y) = Wj ( Yi

which captures some measure of both train length and frequency for all

trains incoming to yard j. Forms of different cost functions should be

considered in more detail in further research. It is important to note,

however, that ideally, processing times for different trains coming into a

yard should be calculated separately. In particular the fixed cost W.

refers to a single train from a given origin i thus the correct delay term

due to fixed setup times at a yard j is

[Elj 6(Yij)]Wj 

Finally we wish to note that our general model can be considerably enriched

by the addition of rather simple constraints. Maximum train lengths (or

frequencies according to the interpretation of yij's) could be enforced

by adding the constraints

Yij < Yij



for a given upper bound yij on a route [i,j]. Such constraints could arise,

for example, from capacity restrictions on the makeup end of yard i due to

limitations of departure tracks or crew availability.

We may also take the allocation of motive power into account more

explicitly by specifying engine availabilities at each yard at the beginning

of the planning horizon and imposing flow constraints on the variables yij.

In this way in addition to the flow of traffic classes (commodities), we

would also have engine flows. Alternatively we may let the model decide

the required number of engines at each yard by supplying the costs of providing

an engine at yard i. Naturally the modelling of engine flows should reflect

the railroad's primary concerns: If the fleetsize is limited and likely to

act as a bottleneck factor explicit constraints on the total number of engines

used may be added. At any rate, we feel that the engine allocation problem

should be approached from an aggregate point of view at this level. Thus

we do not wish to incorporate detailed scheduling on spacetime network.

The work of Florian et. al. [9], however, has addressed the detailed engine

scheduling problem algorithmically with highly encouraging results.



5. THE COMBINATORIAL-SEARCH MODEL OF THOMET: REVIEW AND COMPARISON

In this section we will review two major attempts in providing an opti-

mization model of rail systems and compare them with our model.

5.1 The Combinatorial-Search model of Thomet

The work of Thomet [15,16] has stimulated our formulation and deserves

some elaboration. He has developed a heuristic method for optimizing a model

which accounts for both routing and classification costs with cost functions

essentially as given in equations (5) and (11). We will only give a simplified

summary of his work to elucidate the nature of his solution technique.

The basic component of Thomet's algorithm is a cancellation procedure.

For a given pair of nodes (i,j) consider a direct train travelling from i to j

and an alternative sequence of direct trains travelling over the same physical

route from i to j, but with stops at intermediate yards. A typical case is

shown in Figure 5. The dotted line represents the direct train and [k,1] is

a typical intermediate train on the route from i to j.

' _ k~ ° -_

Figure 6 : Direct and Connecng Trains from i to j.

suppose train [i,j] is cancelled and all traffic previously assigned to it

is shifted onto a sequence of intermediate trains such as [k,l]. We wish to

evaluate the impact of this traffic diversion on total costs. The benefits



resulting from the cancellation include a reduction in train-miles (to use one

aggregate measure of variable routing costs) and a possible decrease in motive

power requirements and other costs of running a train from i to j. The costs

involve possible addition of motive power over the routes of some intermediate

trains [k,l] and, more importantly, classification and processing costs at

intermediate yards. An intermediate train [k,l] has to be regrouped at

yard 1 and all traffic going beyond yard 1 (say to j) should be classified.

Such shifting of cars from [i,j] onto [k,l] may thus change the classification

status 0kl of the train [k,l] and incur delay costs as in (11). By adding

these costs and benefits we may find a quantity

Yk = net costs of diverting traffic from train [i,j] to train [k,l].
kl

We may ask what is the best sequence of intermediate trains onto which the

traffic of train [i,j] may be shifted. We will show by means of small example

that this best sequence (best in the sense of providing the maximum savings

in the cancellation of [i,j] may be found by solving a shortest path problem.

Note that the total cost of diverting traffic from [i,j] is the sum of kl ,s

for all trains [k,l] which now carry the traffic of train [i,j].

Figure 7 : Cancellation Costs for Train [1,4]
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Example Let us consider the train route graph of Figure 2. Suppose a direct

train is scheduled between yards 1 and 4 that bypasses yard 2 and 3. Consider

cancelling this train, that is, [i,j] = [1,4] in this case. The intermediate

trains between yards 1 and 4 are [1,2] , [2,3] , [3,4] , [1,3], and [2,4].

Thus one shifting pattern is [1,3] , [3,4], that is we divert the load of

train [1,4] onto train [1,3] and classify this latter train's cars at yard 3

to transfer the added cars to train [3,4]. Thus essentially the cars of

[i,j] make a "connection" at yard 3. This shifting scheme involves two

intermediate trains. A sequence which uses 3 trains is [1,2] , [2,3] ,

[3,4]. What is the best sequence to use?

14
Suppose we have calculated the costs Ykl of diverting from [i,j] onto

[k,l] for all intermediate trains [k,l] (1 < k <1 < 4). Let us attach this

value as a cost to the arc (k,l) on the graph. Figure 7 shows these arc

costs with the superscript 1,4 omitted. To arc (1,4) we attach the

cost 14 which is simply the cost of running the direct train [1,4].

Suppose now we find the shortest path from 1 to 4 with respect to these

costs. The links on the shortest route will specify an optimal "decomposition"

of the train [1,4] into intermediate trains. Suppose, for example, that the

shortest route is (1,2) , (2,4). Then train [1,4] will be cancelled and its

traffic will be placed on trains [1,2] and [2,4] consecutively. If we let

-14 14 14
the length of this shortest path be Y = Y12 + Y24 ' then the savings

realized by cancelling train [1,4] is 614 = Note if the shortest

route were given by the link (1,4) then we would save nothing by cancelling

[1,4].

In general, for a train [i,j] we consider its physical route through

the network G given by the sequence of yards i=i, i2 i3 ...,i = j.



Usually this route is the shortest distance route from i to j on G . We

assume this route goes through at least one intermediate yard so that

cancellation is possible (m > 3). Then we

(i) construct another network G(i,j) on the node set {il...,i m} with

arcs of the form (k,l) = (i ,is) for 1 < r < s < m,

(ii) compute the costs yk1 for all such arcs, and
kl

(iii) find -ij _ the length of the shortest route from i to j on G(i,j).

If ij is the cost of running [i,j] directly the savings due to

cancellation are defined as

ij = ij _ ij

Thomet's algorithm may now be described as follows: Initiate the algorithm

by assigning direct trains to all OD pairs with nonzero requirements (all(p,q)

with rp q > 0). This is called the Minimum Transit Time Policy (MTT) and

involves no classification work (initially all 0 = 0). At a given iteration

of the cancellation step compute the savings s i of all trains [i,j] as

described above and cancel the train with maximum savings. Transfer the

traffic of this train to the intermediate trains and update train parameters

accordingly. To find the minimum cost policy this strategy is continued (one

cancellation at a time) until no positive savings can be found - that is,

until sj < 0 for all remaining trains [i,j].

If we view running trains between certain yard pairs as opening (or

locating) facilities, and OD demands as demand sites; Thomet's approach may

be likened to drop heuristics in facilities location problems [7]. One

starts with all trains and successively cancels trains, one at a time, which



yield a savings according to a myopic criterion of change in total costs.

We may immediately point out several limitations of Thomet's approach:

a) As Thomet himself realizes this sequential cancellation procedure does

not guarentee optimality upon its termination. Rather it provides a local

optimum in the sense that there will be no "one-move"(cancellation of

a single train) which could further reduce costs.

b) In the algorithm described above the physical routing of traffic is

never changed. All traffic follows the shortest route between its ori-

gin and destination on the physical graph G p. What changes is the

loading pattern of the traffic on the intermediate trains on the

shortest route itinerary. However as the small example of Figure 4

indicates, it may be advantageous to divert traffic away from its

shortest route. In practice rail freight is known to be routed

through such circuitous paths, occasionally on the basis of a

reduction in the railroad operating costs. Diversion of traffic from

the shortest route will become necessary if flow on certain routes is

limited by capacity constraints. This limitation of routing alternatives

to the shortest path may result in further suboptimality in Thomet's

model.

c) The diversion of traffic from one train to another is always performed

in bulk form, that is, the entire traffic load of a train is shifted.

One may easily envisage cases where nly partial diversion of traffic

if necessary. For example, consider the situation of Figure 4 with the

demand from i to j changed to 60 from 20. Then we may retain 40 cars

on the train [i,j] and only divert the additional 20 to the route going

through yard k. This possibility is allowed by our routing/makeup model



(P), but not by Thomet. We shall dwell on the point raised in (c) above

slightly further: At any given point of Thomet's algorithm the value of

a typical variable xiP is limited to two choices - 0 and rpq . Indeed we

may recast our planning model into Thomet's form by the following device.

Let ZP be a new variable defined as zp = xi/r . If we then substituteij ii LJ

the quantity r q Pq for xpq in equations (1) - (4) of (P) we realize that
ij ij

for each (p,q) the variables z obey flow conservation equations for a
1j

flow value of 1. Restricting the variables to be integral will now

mimic Thomet's procedure. Note that we will have

pq - 1 if all rPq cars of p,q) demand is

ij on train [i,j]

0 otherwise.

5.2 The Railcar Network Model

An important example of optimizing rail models is the work developed

at Queen's University at Kingston and the Canadian Institute of Ground

Transport [13]. This study has evolved over the past five years into a

comprehensive model of over-the-road and yard activities which has been

validated against real data. As a result, it has claims to being the most

comprehensive rail planning model based on optimization in the existing

literature.

The object to the model is to route freight on the rail network to meet

demand at minimal total delay (in car-hours). The approach is to derive

delay functions for component rail operations as a function of the flow of

freight handled by each operation. If all the delay functions are convex)

the routing problems may be viewed as a minimum cost network problem with



convex costs for which a number of algorithms are available (see Sections V

and VI of [3]). Algorithmically, the model is thus identical to the work

in traffic assignment [8] where the delay functions (also called service

functions in road traffic assignment literature) reflect over-the-road

congestion delays. The derivation of the delay functions, however, is

very different as it is based on average waiting times derived from queueing

theory.

The Railcar Network model minimizes an expression for total delay

comprised of the following components:

(i) Inbound Inspection time (WI): The inspection work is performed on

incoming trains in the receiving end of the yard.

(ii) Classification time (W ): This involves the queueing delay before

the yard's sorting facilities.

(iii) Train Assembly Time (WA): The waiting time of cars to be assembled

into a train for departure (sometimes called accumulation delay).

(iv) Outbound Inspection Time (WD): This inspection is carried out before

the departure of an outbound train.

(v) Over-The-Road Time (Wo): This reflects the required time for traversing

a physical a physical link with congestion effects of meets and passes

incorporated.

We note that factors 1-4 refer to yard activities and only 5 represents

the main-haul delay. Inspection times WI and WD are taken to be constant (per

train) while W is derived from an analytical expression incorporating train

interference effects of limited track capacity. Finally queueing delays Wc
C



and WA are derived from usual waiting time formulas in queueing theory for a

variety of arrival/service characteristics.

To cast the results into the form of a network minimization problem, we

may assign total delay functions to two types of arcs in the network as shown

schematically in Figure 8. Yard i is represented by two nodes corresponding

to yard entry and exit from the sorting facilities. The arc joining these

two nodes that carry the total flow through yard i (Xi = hI. Xhi)
1

is assigned the delay function WI + Wc(Xi) (as a function of the flow X.

on the arc). Similarly the flow xij of cars from yard i to yard j is assigned

the delay WA(xij) + WD + W (xij xji). The resulting nonlinear network

minimization algorithm (assumed to have convex arc costs) is solved by a

primal-dual algorithm based on linearizing the above cost functions success-

ively. Other node splitting techniques are used to represent bypass trains

and yards where some traffic is set off or picked up, but no classification has

taken place.

Figure 8 : Network Representation of Delays
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As mentioned before, we regard the Railcar model as a major contribution.

The close contact of its developers with Canadian railroads and their efforts

in the way of model validation make this model a valuable planning tool. We

wish, however to bring out some basic differences between their work and

our approach in this report:

Our model makes a basic distinction between the flow of cars and the flow

of trains on a given service [i,j]. The effect of running a train is deter-

mined by integer variables Yij, in contradistinction to the continuous flow

variables xij for the cars. The Railcar model, instead, derives train

flows from car flows by using an average train length of cars/train.

Thus a flow of xij cars over a route automatically results in xij / trains.

Moreover the number of trains affects only the delay time, no attention is

paid to the cost of scheduling an additional train. In Section 4, we

discussed how these costs may directly influence routing and makeup decisions,

possibly resulting in train cancellations if such costs are high. Moreover,

the variables ij shed some light on the issue of optimal train lengths which

the Railcar model takes to be given. Our model attempts to capture some of

the economies of the routing process more directly to allow us to decide, for

example, whether or not a certain train should run or a particular traffic

class should be incorporated into a train's makeup. The same distinction

arises with respect to classification costs. A component of our classification

costs refers to the train - via the fixed charge term Wi.. in equation (10) -
J iJ

and not to the traffic throughput. In fact, this term attempts a first

approximation to the effect of train composition on yard costs. Naturally

knowing the detailed composition of any train incoming to a yard should



enable us to estimate the extent of the classification work it requires. In

a deterministic routing model, this composition is completely specified and

so, ideally, we should not have to use average waiting time formulas. On

the other hand, handling detailed data on train composition would complicate

the model beyond all hope. While the Railcar model chooses a purely

stochastic approach to evaluating waiting times, we have have opted for

using a delay term for which the effect of train cancellation or composition

is more apparent. Finally we regard some of the delay terms in the Railcar

model as being highly dynamic in nature and thus not particularly suitable

for static waiting time analysis. In particular, the assembly delay term

WD will depend on the yard dispatching policy. Such policies, which belong

to the operational level, should be studied separately incorporating the

time element into direct account.

To conclude this section we wish to situate the models described above

in the hierarchical framework of Section 2.

We believe the Railcar model to relate to decision-making on the

strategic level. This model can specify the flow of traffic on the network.

At this level, one must use highly aggregate measures of yard and

over-the-road delays to allow for their impact on the traffic flow configuration

without going into much detail. Our model, however, belongs to the tactical

level: We deal with issues of traffic routing and train scheduling more

directly. This reflects our desire to have firmer control on the question

of trains to run and their composition. Thomet's model shows the same

concern. Indeed one may be well-advised to use the Railcar model and our

model sequentially. The former will provide an aggregate picture of traffic

flows and supply a 'base-level' of yard and line activities. Thereupon



we may pass onto the routing/makeup model to evaluate certain more detailed

decisions (for example, the use of direct versus local trains, and long

versus short trains).



VI. SPECIALIZATIONS OF THE GENERAL MODEL AND CONCLUSIONS

In this section we shall explore some specializations of our general

model and describe possible scenarios where such specialized versions may

be of interest. Our main guide in specialization is to obtain problems

which are algorithmically tractable. Thus this section may also be

viewed as a preliminary discussion of the algorithmic issues involved

in solving the routing/makeup model.

Let us recall the basic cost components of the general model. We

considered over-the-road costs in terms of dicrete variables yij which

specify how many trains should run on a given route or service [i,j]. We

also had yard costs which may involve fixed charge terms s well as a

convex function of traffic throughput of the yard. Note also that once

the Yij variables are set, the set of available trains is known and the

problem reduces to an assignment of traffic classes (commodities) to

the trains. In general this will be a capacitated multicommodity flow

problem. The state of the art for solving such problems is reviewed in [3].

Let us now consider some specializations of this model in increasing order of

complexity.

a) A Traffic Assignment Problem

Suppose we are given a set of operative services (trains) and that we

regard each train route as having unlimited capacity. This assumption of un-

limited capacity is justified in a scenario where a sufficient number of

trains operate on a given service with a fixed frequency so that we may

assign as much traffic as we wish to that route. Mathematically this

corresponds to a large value of ij in equation (2) so that the constraint



would no longer be binding. In this case only traffic routing and yard costs

will matter. Suppose we use convex cost functions to describe these costs

in terms of link flow and node throughput. The result will be a traffic

assignment problem with convex congestion costs: we have to route the traffic

over the available routes on the network (operative services) in such a

way as to minimize total costs. Note that while the solution technique

will be similar to algorithms for the traffic equilibrium problem, our

network is in terms of feasible routes and not physical arcs.

Let us now take the simplest possible cost functions i.e. functions

linear in chain flow and node throughput (i.e. vj=O in (7)). Then in

terms of yard delay, for example, each traffic class passing through a node j

will suffer a constant delay Wj. The resulting problem may be solved by

a shortest path method which will specify the optimal sequence of train

connections for each traffic class much in the way described in Section 5.

While this observation is a simple one, it is still of importance in modelling.

Indeed the model proposed by Truskolaski [ 17] seems to have features very

similar to this simplified case, however he does not appear to use the shortest

path method.

b) A Combined Service Scheduling and Traffic Assignment Problem

Let us now maintain the assumption of unlimited capacity but attach

costs to providing regular service on a given route [i,j]. Once again this

corresponds to running trains sufficiently frequently on a given route.

In this case, we may restrict variables yij to be 0,1. Thus let

1 if service [i,j] is operative

Yij 0 otherwise.

and let aij be a large number in equation (2). The result, will of course

be an uncapacitated network design problem. Once a choice of the yij variables



is made - that is a particular route configuration is set - the problem reduces

to that of part (a) with traffic equilibrium or shortest route subproblems.

The objective function involves the sum of routing costs and the costs of

scheduling operating services. Alternatively we may only retain the

routing costs in the objective function and incorporate constraints

restricting our choice of services. One such constraint, frequently

called a budget constraint reads

(i,J)A di Yij < D

where dii equals the cost of providing service on route [i,j] and D is

the total available budget. A simpler constraint simply limits the total

number of services we may choose to operate and may be written as

(i,j)EA Yij P

This problem is similar to the p-median problem. This last constraint

will be important when the total number of services is limited due to

crew or motive power limitation. For recent algorithmic work on the network

design problem, we refer the reader to the papers [9] and [12].

c The Routing/Makeup Model

This model is already discussed in Section 3 and 4. Rather than

considering the general model again, let us focus on the case where each

traffic class undergoes a constant delay W if it visits yard j -

that is to say if it is loaded on a train with destination j. In that

case we obtain a simple version of the routing problem where we are interested

in minimizing yard delay for traffic while taking account of the additional
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costs of sending traffic direct ( in order to bypass intermediate yard stops).

Even this simplified version will not be easy to solve. For a given

assignment of ij, variables, we obtain capacitated multicommodity flow

subproblems. We propose this last model for more careful algorithmic considera-

tion. This model can deal with a variety of "loading problems" in transporta-

tion studies which also aim to determine optimal itineraries (stop-schedules)

for the carriers. As a result, an efficient algorithm for this problem will

be a valuable contribution. Richardson [14] has used Benders Decomposition

on an airport routing problem which shares some features with our model.

His work may serve as a useful point of departure.

Since problems of this type will be of a large scale in any realistic

study ( a small railroad might involve 20-40 yards and save 200-300 possible

train routes) it is also important to evaluate the efficiency of heuristic

solution techniques. In our review of Thomet's work, we have already

seen one class of heuristics for this problem. Naturally other heuristic

strategies may be proposed and should be duly assessed. The theoretical

evaluation of heuristics may profitably pursue the approach of [5].

We wish to conclude this report with a few words in the way of re-

capitulation and some indications for future research:

We approached planning for rail system by providing a hierarchical view

of the decision-making process. We then concentrated on a mathematical

programming model on the tactical level which we couched in a fairly general

form. We described how this model can address a number of issues in train

routing and makeup. Subsequently we gave specifications of the general

model which may be profitably studied from the algorithmic point of view.
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In particular, we derived a network flow problem with integer variables

reflecting trainload economies. Solving this model for a large-scale system

may pose serious computational difficulties. We feel that further work

should concentrate on algorithmic studies of the model on two levels:

First, we may look at various decomposition techniques which would render

the solution of the general routing/makeup model more tractable. Here,

solution techniques based on Benders Decomposition and Lagrangian Relaxation

come to mind. Second, we may pursue certain simplified forms of the general

problem and attempt to find efficient algorithms for such subproblems. For

example, the routing/makeup model may be studied on a line network with

simplifying assumptions on yard delays and routing costs. The qualitative

insights provided by these simpler problems may serve as basis for developing

efficient heuristics for the general problem. Progress along either one of

tese dimensions will substantially increase the promise of optimization-

based models in aiding the planning process for rail systems.
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