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ABSTRACT

This paper reports computational results with two algorithms for

the linear multicommodity flow problem--a price-directive algorithm based

on Dantzig-Wolfe decomposition for block-angular systems and a resource-

directive algorithm based on subgradient optimization. We found the per-

formance of the price-directive algorithm markedly superior. We then use

the code to solve a multi-fleet air routing problem. The results show

this to be a very efficient approach to routing problems.
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I. Introduction

This paper describes the implementation of two solution techniques

for linear multicommodity (henceforth abbreviated m.c.) flow problems and

reports computational experience with the two algorithms. This general

class of problems arise when distinct commodities are shipped from their

sources to the respective destination along the arcs of an underlying

capacitated network. The commodities compete for arc capacity and the

objective is to minimize total routing costs subject to the capacity

constraints as well as the individual flow balances for each commodity.

We aim to be very brief in our description of m.c. flow problems and

solution techniques since a comprehensive survey of the literature has

already been compiled in [3]. Price and resource directive decomposition

are described in Sections II.1, II.3, and IV.2 of [3]. In this paper

we devote Ch. II to the details of the decomposition algorithms des-

cribing Dantzig-Wolfe decomposition and a subgradient resource-directive

algorithm. We also demonstrate the relation between Benders' Decomposition

and the latter approach. Chapters III and IV address implementation

issues and computational results on a variety of test problems. In

Chapter V we describe a multifleet routing problem and modify the Dantzig-

Wolfe decomposition algorithm suitably to solve it.

In order to make this report self-contained we shall now give the

mathematical formulation for m.c. flow problems and provide the necessary

notation as developed in [3].

Consider a directed grapii G=(N,A) with n nodes and m arcs on which

=l,...,k, are specified as origin-k
K pairs of vertices (s ,t ), k=l,...,k, are specified as origin-
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destination pairs associated with K commodities indexed by k. The arcs

of G will be denoted by (i,j) for nodes i and j along which the arc is

directed; alternatively arcs will be enumerated as a-l,...,m by the

index a.

For each k let fki flow of commodity k on arc (i,j)

- value of flow to be sent from

a to tk

K
f f total flow on arc (i,J).

tJ k-l ij

For each node i£N let

A(i) - {jeN (i,J)A)} and B(i) = {JCN (,i)A} 

A multi-commodity flow (henceforth abbreviated as m.c. flow) is a set of

flows {fkj (i,j)eA, k=l,...,K} satisfying the following conservation

equations and non-negativity constraints for all k:

Fk if i - Sk

7. k fk - if i tk (1.1)

jA(i). jEB(i) otherwise

f > 0 for all (ij). (1.2)
ij -

Choosing an enumeration of the nodes and arcs of GC, one may define

the vector f = (f ,...,f ) with fk being the flow of commodity k on
1 m a

arc a (ail,...,m). Correspondingly the node-arc incidence matrix of

kG ic set up and denoted by E. Let g be a column vector with entries

-2-



kk
of and -1 in places corresponding to s t respectively and zeroes

elsewhere. Let bk D Fkgk. With this notation equations (1.1) and

(1.2) can be written as:

Efk- Fk.gk bk (2.1)

fkt >. (2.2)

Let denote the .easible region defined by (2.1) and (2.2) i.e.

ok , {fk Efk bk, fk > 0 } . (2.3)

We call an optimization problem a m.c. flow problem if it involves the

constraints fk c for all k possibly in conjunction with other

complicating constraints. In the linear m.c. flow problem the objec-

tive function as well as the complicating constraints are linear.

The simplest constraint of this nature imposes a capacity limitation

on the total flow on each arc, i.e. requires

K

f =kl ij < d.i (i,j)EA (3)
k=l 13 -

where dij is the capacity of arc (i,j). The objective function Z has

the form

K kk kk 
Z = c f Z c f (4)

k=l (i,j)EA ' ij k=l

k kwhere cij = cost per unit flow of commodity k on arc (i,j) and c is

k k
the corresponding cost vector with the component ca cij on arc

a = (i,j). With the above notation the linear capacitated m.c. problem

can be written as

-3-



n z ck * f (5.1)
k-1

ft. k c (5.2)

K k
E f < d. (5.3)

k-1

The complicating constraints (5.3) may be easily generalized to

deal with general resource constraints or conversion of flow units into

capacity units by introducing matrices D where D = amount of resource
ra

r per unit flow of commodity k on arc a. Thus a generalized resource-

constraint m.c. flow problem can be defined as

K k k (6.1)
min z m · f (6.1)

k-i

fk k (6.2)

K k
Z Df < d (6.3)
k-1

Obviously for D = I Vk, we recover the original formulation (5.1-3).

This problem has a block angular structure which the detached coeffi-

cient form below makes conspicuous:

E

E

_

f 2

0K

fK

b 

b 2

(7)

bK

a J
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This structure makes the problem suitable for the application of both

price-directive and resource-directive methods. The basic idea is to

do away with the complicating constraints (5.3) or (6.3) so as to

decompose the m.c. problem into K single-commodity subproblems where the

network structure allows efficient solution techniques. In the following

two chapters we give the details of the algorithms involved.

-5-



11. DETAILS OF DECOMPOSITION ALGORITHMS FOR THE MULTICOMMODITY FLOW

PROBLEM.

In this chapter we describe two algorithms for the multicommodity

flow problem - price directive and resource-directive decomposition -

which we implemented to obtain computational results.

1. Dantig-Wolfe Decomposition

We have described the price-directive or Dantzig-Wolfe decomposi-

tion in the survey paper [3]. Here we review the

use of Dantzig-Wolfe decomposition for the multicommodity flow problem

before discussion our implementation of the algorithm.

Recall that the linear multicommodity flow problem can be formu-

lated as

Kn k c fk (1.1)

k=l

subject to fk k (1.2)

K

Df Z D fk < d (1.3)
k-l

where 9k - {fk Efk bk gkFk fk > O} (2)

with Fk being the required flow value for commodity k from its origin

Sk to destination t . The matrix D in (1.3) transforms the flow vector

f to a vector DF giving the flows on capacitated arcs only. Thus if the

first m arcs are capacitated D will be the m X m matrix [I,O].

Letting Q k i=l, .,I} be the set of extreme points of 9k

on hand at the beginning of iteration t, we may express a tentative

-6-



solution to (1.1) - (1.3) as

-l , E i (3.1)

k kkZ An = 1 Ak > 0. (3.2)
i

Substituting for f in (1.1) - (1.3) and treating the Xi's as decision

variables, the tth "restricted master problem" is obtained:

K Ik k
Min K It (ckfk) Xk (4.1)

k-1 ii

subject to Z Z (Df ) < d (4.2)
k i

kC Aki I k (4.3)

Xk > 0 Vk,Vi (4.4)

In the above linear program we have restricted our choice of fk by

considering only a subset Qt of the extreme points of . This set,

however, can be enlarged if it is profitable to consider other extreme

points. Let it and ot be optimal dual variables associated with (4.2)
t t

and (4.3). The criterion for entering a new column associated with an

extreme point fk of 9k is that it have negative reduced cost, i.e.,

c . fk tDfk _ < 0. (5)

Thus to find the most favored column (in terms of reduced cost) for entry,

we solve the subproblem

-7-



wk - Minimum (c k-7tD)'f k (6.1)

subject to Efk bk (6.2)

fk > o (6.3)

for commodity k. The subproblem requires sending the required flow of

F units of commodity k from sk to tk in such a way as to minimize the

routing costs with respect to the arc osts given by (ck-t D ) . It may

be readily solved by sending all F units of flow along the single

minimum cost chain from sk to t . Thus for each commodity k, a shortest

chain problem is solved as the subproblem.

If all columns price out nonnegatively for all commodities, then

the optimal solution to the current restricted master is also optimal

for (1.1) - (1.3). Thus our optimality criterion is

Minimum (c - tD)'f k - k } > 0 (7.1)
~t~~ -k

or equivalently wk > ok Vk. (7.2)

If (7.1) is not satisfied then (5) holds for at least one k, meaning

that the set St = {k I w < ok} is nonempty. For each k in St, we
t t

k
augment the set of extreme points on hand - Q - by the extreme point

t
k k k

generated by solving (6.1) - (6.3), i.e. fk+l f , to form Qt+l
t

k
Obviously for k St no new extreme point is added to Qt and

k k
Q Qt+l t

To complete our description of the algorithm we should specify the

initialization procedure for the master problem. The form given for the

-6-



master problem in (4.1) - (4.4) does not ensure its feasibility. Since

a flow of XkFk units of commodity k is sent along the chain corresponding

to fi' it is easy to see how the capacity constraints in (4.2) would

limit this flow resulting in the Xk's to sum up to a value less than

one. This problem is most pronounced at the initial stages where It 's

are small so that the number of available chains is not sufficiently

large to allow us to distribute the flow so as to avoid the inter-

ference of capacity constraints. Thus it is necessary to add artificial

variables Xk in (4.3) to ensure feasibility. The restricted master will

then read:

K k k K k k
Min Z Z (cf) + Z c · (8.1)

k-l i k=l a a

i i 

kk k

+ = 1 (8.3)
i a

xi xk > 0

k
To initialize Qt for t = 1 we solve (6.1) - (6.3) for each commodity

with respect to the real arc costs c , i.e., with r - O in (6.1) to

k k k k
obtain f and we set {f I 1. This choice is motivated by the
obtain 1 1 

thought that these "real" shortest chains are, a priori, the most attrac-

tive candidates for carrying the flow. Consequently, they might carry

a good portion of the flow in the optimal solution, so we may do well by

entering them as soon as possible. (This conjecture was indeed borne

out by the computational results.)

The costs ca for the artificial columns are chosen to be large posi-
a



tive numbers so as to make these columns unattractive and drive the k'sa

out of the basis. To achieve this the costs c must be appreciably

larger than the average chain costs c .f (averaged over all possible

chains from sk to tk). On the other hand as the dual variables associated

with (8.1) - (8.4) will be of the same order of magnitude as the c k 's,
a

k
one should avoid using very large values of c . In practice we have

k kto be about 10-20 times the chain cost ckf k Essentially the
chosen ca to be about 10-20 times the chain cost c f1. Essentially the

procedure given above is the "Big-'M method for obtaining a feasible

solution. Tomlin [17] describes an alternative approach which involves a

"Phase I" procedure for this problem. Our choice may be defended by the

computational observation that for cases where capacity constraints (8.2)

are nonbinding, we may obtain the optimal solution from the first master

problem. Further remarks on this as well as other implementation issues

will be made in the subsequent two chapters.

2. Resource-Directive Decomposition

Resource-directive methods (or decomposition by right-hand-side

allocation) were discussed in sections II.3 and IV.2 of Part 1 [17]

Here we shall describe an algorithm based on the idea of subgradient

optimization as developed by Held,Wolfe, and Crowder 18]. We start

by showing how the minimum cost flow problem can be put into a form

amenable to subgradient optimization.

Consider again the problem:

-10-



K* k (9.1)

k- k

subject to fk c k (9.2)

K
K fk < d (9.3)

k-1

The complicating constraints in (9.3) may be avoided if one knew

how much of the scarce capacity resource each commodity requires in the

optimal solution. The problem (9.1) - (9.3) can then be decomposed into

K separate single commodity capacitated flow problems. This motivates

allocating capacities yl,...,y Kto the commodities and searching for an

k
optimal allocation of d into the vectors y for k=l,...,K. One may thus

reformulate (9.1) - (9.3) as the equivalent problem:

K k
v1 Min { E v(yk)} (10.1)

k-1

K
subject to y = d (10.2)

k-l

k
y > 0 Vk (10.3)

where

k (yk) Min ck k (11.1)

k k k
subject to Ef - g F 0 (11.2)

k < k (11.3)

fk > 0 (11.4)

-11-



The single-commodity subproblem (11.1) - (11.4) minimizes routing

costs given a capacity allocation y for commodity k. The "master

problem" (10.1) - (10.3) searches over all feasible partitions of the

capacity vector d into allocations yl,...**y , The constraint (10.2)

simply ensures that on any arc "a" the sum of capacities allocated to

different commodities equals the available capacity d . Obviously by

comparing (11.3) and (11.4) we wish to limit the capacity allocations to

nonnegative values as stated in (10.3).

Note that the constraints (11.2) and (11.4) merely restate (9.2)

for the required flow value Fk and that (11.3) describes a capacity
O

constraint on the flow of commodity k alone. The attractiveness of

resource-directive decomposition for (9.1) - (9.3) lies in the fact

that each subproblem (11.1) - (11.4) is a single commodity minimum cost

flow for any given y > 0. Such a problem may be solved by an efficient

Out-of-Kilter algorithm [1,2,6] or by any of the recent implementations

of simplex-based primal network flow codes [7,8,9]. (For a survey of

the recent advances in solving minimum cost network flows, see

Section III of [20]).

We now proceed to define a slightly modified but equivalent sub-

problem:

k kk
subject to Ef - g F = 0 (12.2)

fk < k (12.3)

Fk < Fk (12.4)
- O

fk Fk > 0 (12.5)f~~~~~~~~1 5)

-12-



Here Fk , the total flow of commodity k, is treated as a decision variable.

By attaching large costs ck to Fk, this variable is encouraged to assume
0

its upper bound Fk, which is the required flow value in (11.2), provided
O

the capacity constraints (12.3) do not preclude this. Thus if problem

(11.1) - (11.4) is feasible, meaning that there exists a feasible flow

with flow value Fk, then (11.1) - (11.4) and (12.1) - (12.5) have the
0

same optimal solution f. Moreover, in that case, at optimality we have

v(y) - ckk ck k , cYk k(yk (13)
O 00 

This manipulation shows that our two subproblem formulations are equiva-

lent. Intuitively, (12.1) - (12.5) may be though of as first striving

for maximum flow Fk < Fk through the network with arc capacities yk
0

- k
and then searching for the flow fk with optimal routing costs among all

flows with flow value F The advantage of (12.1) - (12.5) over (11.1)

- (11.4) is that the former always possesses a feasible solution. In

fact (f ,Fk) = (0,0) is always feasible in (12.1) - (12.5), whereas

infeasibility might easily occur in (11.1) - (11.4) for a "small"

capacity allocation yk yielding a maximum flow value smaller than Fk
O

We shall later describe why we wish to avoid subproblem infeasibility.

To continue the development of the subgradient algorithm, define

(y ,...,y )

K k k)
v(y) v (y (14)

k=l
K

and S = {y - (yl,. yK) d yk > O Vk} (15)
k-l

We may restate the master problem as:

-13-



v - Max v(y)

subject to y S

The dual to (12.1) - (12.5) is

Minimize

subject to

(k.yk + ykF)

kk k k
iTE < c

k k k
Tg· + > Co

ko k OYY > 0
Y'Y -

(17.3)

(17.4)

(If free)

where ' , y , and yo are dual variables associated with (12.2), (12.3),

and (12.4) respectively. By strong duality, at optimality we have:

k -k k k 
(yk) = Y + Yo 

K -k k -k 

v(y) Min { yy + F}
k-1 00

(18)

(19)

subject to the constraints (17.2)-(17.4) for all k.

For each k the above minimization will yield

feasible region defined by (17.2' - (17.4).

over the set of all extreme points of (17.2)

Yp - (Yp,..,Yp) , 
P p p

an extreme point of the dual

Thus in (19) we may minimize

- (17.4) for all k. Define

k
~=K k r

r k-l o o
(20)

-14-
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where for each k, (k,Yk ) corresponds to an extreme point solution ofp op

(17.2) - (17.4) and the index p enumerates the finite set of all possible

groupings of subproblem dual extreme points. Thus problem (19) may be

stated as the finite minimization problem

v(y) - Minimum {c + yp Ip-1..,n }. (21)

The master problem (16.1) - (16.2) with the characterization of v(y)

given in (21) is exactly of the form assumed by [18] for the subgradient

optimization algorithm. We thus arrive at the following algorithm:

Subgradient Algorithm for the Multicommodity Flow Problem

1 - Set i 1. Allocate initial arc capacities to individual commo-

dities, that is, define the vector

Yo " (Y, , .yK) S.

2 - Solve the single commodity minimum cost flow problems (12.1) -

k
(12.5) in cycle for k=l,...,K using yi as the right-hand-side

kk
in (12.3). Obtain dual variables y (yi) from the optimal

solution.

3 - Obtain the step size ti and form the intermediate vector

Yi ' Yi + tiYi(Yi)

4 - Project the intermediate vector on the convex set S to obtain

the next capacity allocation vector

yi+1 PS(I) (23)

-15-



5 - Stop if termination criterion is met. Otherwise let i i+l and

go to step 2.

3. Relationship to Benders' Decomposition

We now pause to relate the derivation of (21) from (16.1) - (16.2)

to Benders' algorithm as described in Sec. 7.3 of 19]. The algorithm

deals with problems of the form

Min c'x + f(y) (24.1)

subJect .to Ax + F(y) > b (24.2)

x > 0 (24.3)

y S (24.4)

where f and F are assumed to be continuous functions on the compact set

S. Note that y can be thought of as the complicating variable since for

given yS, (24.1) - (24.4) involves solving a linear program. This

suggests that we let the flows fl,...,fK play the role of x and let y

be the capacity allocation to cast (16.1) - (16.2) into the form given

above. To this end, define the vectors

x - (fl, ... ,f, F1,...,FK) (25.1)

K 1 Kc - (c l ,...,c , _,.. .,-co) (25.2)
0

b - (0,..,0 F, ... ,o ) (25.3)

b - (0, 0, b) (25.4)
0

and block matrices: -g

E ' -g (25.5)

-16-
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E
A -E

-I

I ;

(25.4)

and further specify the functions in (24.1) and (24.2) as

f(y) - F(y) ' By Vy

where, as before, y is the vector (y,...,yK).

With the above definitions we note that

c'x + f(y) = cx = Z ck f k - ckFk

k-l

and that (24.2) now expresses the constraints (12.2) - (12.4) for all k.

This establishes the relation between the general form in (241.1) -

(24.4) and the multicommodity flow problem of (16.1) - (16.2) with the

definitions (14) and (12.1). Since (24.1) minimizes the expression in

(26) which is the negative of v(y) for given y, the problems are

equivalent.

Continuing with the general description of Benders' algorithm,

define the cone

C - {u I uA<o, u> } (27.1)

and the polyhedron

P - {u I uA<C, u>O} (27.2)

where u is the dual variable associated with (24.2). Let u be the

generators of for i=l,...,n r and u be the extreme points of P

for p=l,...,n . The master problem for Benders' algorithm is then stated
P

-17-
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Minimize z

subject to z > f(y) + u (b-F(y))

uib-F(y)) < 0

yeS

p-i,,..,,n

..1. .. 'ur

We focus on the constraints (28.4) - (28.4). By using Farkas' Lemma,

we may show that these constraints specify exactly the set R of all y

leading to feasible subproblems. More precisely

R - {yES 13x > 0 such that Ax > b-F(y)}

- ({yS y satisfies (28.3)} (29.1)

The generators ui are not available a priori but are obtained from

unbounded duals of infeasible subproblems whenever a choice y R is

made.

In our case, however,

R - {yeS.1)-(2.)-(12.5) has a feasible solution k}

(29.2)

and since our subproblems were chosen to be feasible for any choice

y > 0, we have

R - S (29.3)

so that we can ignore the constraints in (28.3) and retain only (28.4).

Upon doing so, (28.1) - (28.4) may be written as

-18-
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K k k k pi
Min Max {- Z (py + .p) p-,...,

k-1 opo 

subject to y S (31)

which is equivalent to (16.1) - (16.2) once we take account of the minus

sign within the brackets in (31).

This derivation shows that our problem formulation for subgradient

optimization can te thought of as setting up the master problem for

Benders' decomposition which can then be solved by the algorithm outlined

in steps 1-5 above. This should also justify our reformulation of the

subproblems to avoid infeasibility: Had we started out by applying

Benders' to the original problem (9.1) - (9.3), the subproblems could

have been infeasible for certain choices yS, implying that R would have

been a proper subset of S; specifying the set R would require constraints

of the form (28.3) which would complicate solving the master problem.

This complication arises in most right-hand-side allocation methods,

such as the work of Grinold [22] and the tangential approximation

algorithm of Geoffrion [21] and Chap. 9 of [19], a good part of the

effort goes into specifying the set R by generating approximating

constraints. In our present formulation, however, solving the master

problem involves no more than the projection (23).

We conclude this chapter with brief comments about the form of step

sizes ti and the mechanism of performing the projection in step 4 serving

as a background to our discussion of computational issues in the sub-

sequent chapters.

Held, Wolfe, and Crowder [18] suggest using a step size of the form

-19-



v-v(i)
"ti ' i2 (32)

with 0 < < A < 2

where v is an underestimate of the optimal value v (i.e. v < v),

v(yi) is the optimal value of the master at iteration i with right-hand-

side i as in (14); and finally the denominator denotes the Euclidean

norm of the dual vector Yi(Yi) corresponding to yi, that is,

K

k a2AIl Y)1 - E lyk(Y)112 Z (yk(yk)) 2 (33)

Held and Karp [ 4] and Oettli [ 5] give theoretical justification for

the form in (32) for i = 1.

The subgradient approach is made attractive by the ease with which

the projection in (23) can be performed: For each arc a in the network,

the intermediate capacities (l,...,y ) obtained from (22) have to bea a

projected upon the set

K
Sa - {x (Xi...,x K) I k x = da xk > 0 k) (34)

k=l

where da is the total capacity of arc a. Specifically, we require the

solution a = (Ya' 'Ya) to the minimum norm problem

Minimize {Y'a - x11 2 (35)

subject to x Sa

The procedure involves ordering the components of such that

yi < y2 < < Kyl < y2 < .. < y.

-20-



III. MPLEMENTATION AND COMPUTATIONAL RESULTS

A - THE PRICE-DIRECTIVE DECOMPOSITION ALGORITHM

In this chapter we discuss the implementation and program structure

of the Dantzig-Wolfe decomposition algorithm and present computational

experience obtained for that algorithm.

1. Program Structure

The program for the price-directive decomposition algorithm involves

a linear programming code to solve the mater problem and shortest chain

algorithm to solve the subproblems. The main program, called DCMP for

decomposition, deals with the master problem and communicates with two

subroutines GENCOL and BELL that are described below.

The SEXOP package (Subroutines for Experimental Optimization)

developed by R. E. Marsten [14] is used to solve the master problem at

each iteration. SEXOP consists of a collection of subroutines which are

well suited for column generation and one designed for interactive use.

In particular the number of columns in the linear program are allowed

to vary from one iteration to the next. A subroutine ADDCOL can be used

to add columns to the master problem. The optimal solution to the master

at iteration i serves as a starting solution for iteration i+l in SEXOP

and the convexity constraints ( 11.8.3) are treated as GUB constraints.

Thus SEXOP may be expected to solve the mater problem efficiently at

each iteration. The only disadvantage of SEXOP is that the number of

regular constraints ( II.8.2), which correspond to the number of capaci-

tated arcs in the network in our formulation, are restricted to be less

than or equal to 99 in the current working version. It would not be
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The optimal solution a to (35) then satisfies

a M (36)

where
K

'X - ( Y -da)/K-J (37)

k-J+l

with J defined as

K k
J = Max {j ( Y -d )/K- > Y} (38)

k-j+l a

The projection given above need not be performed if the capacities

on arc a have not been changed in step 3 of the algorithm. Indeed, the

set of arcs for which the capacities have been altered in (22) is given

by

Ti - {aA I Yk a(y) > 0 for some k}. (39)

The arcs in Ti are flagged for projection. Similarly the summation over

A in (33) can be limited to Ti.

Computationally one expects Ti to be small in comparison with A.

In particular any arc which is not individually saturated by any commo-

dity (i.e. for which fk < ia k) will belong to the set A-Ti and so
a ia

its capacity allocation will not be altered at iteration i. This compu-

tational fact suggests that the optimal solution and dual variables of

subproblem (12.1) - (12.5) at iteration i will serve as a good starting

solution for the primal-dual algorithm at iteration i+l since relatively

k k
few components of yi are different from y'

i+l i'
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advisable to use SEXOr for problems with more than around a hundred

regular constraints anyway, since the program would be inefficient com-

pared to commercial codes especially if the problem is sparse. We

reiterate that a salient advantage of SEXOP is the ease of interacting

with it.

The shortest chains are found be Bellman's algorithm for networks

with nonnegative arc costs. The version we use, called BELL, was coded

by B. Golden and is described in [10]. The codes uses a "Forward Star"

network representation scheme [11] in which the arcs (i,j) A are ordered

lexicographically in increasing order. Thus for a given node iN we

list all arcs (i,j)SA in the order of increasing j and then go on to

node i+l to do the same and continue until i = NN, where NN denotes the

number of nodes in the network. Thus two arrays are sufficient to

represent the network topology: A pointer of length NN giving the arc

number (in the above ordering) of the first arc starting with node i;

and an end-node array of length NA listing the J's for all (i,j)EA.

(NA is the number of arcs in the network). This representation scheme

was extended to the rest of our code.

The subroutine BELL finds the shortest distances from a specified

origin s to all other nodes in the network. The labeling assigns each

node i the cost of the shortest path (s) from s to i and a predecessor

node . The output of BELL is thus a predecessor vector and a cost vec-

tor. Given a destination t one may immediately obtain the length of

the shortest path from s to t from the t-entry of the cost vector and

trace through the predecessor vector (starting at t) to obtain the

optimal path in terms of sequence of nodes [s,il,i2,...,in l,t].
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This procedure can easily be extended to a commodity with more than

one destination. Given the source and n destinations, we call BELL

once and trace through the predecessor vector nk times to find the

shortest paths from s to each of the n destinations.

The above is actually done in subroutine GENCOL which generates the

column f to be added to the master problem in a form specified by

ADDCOL. This column has entries equal to Fk in the places corresponding

k k
to capacitated arcs on the path from s to t and zeroes elsewhere.

k k
More specifically if an arc (ie,ie+l) on the path from s to t is capa-

citated and corresponds to the qth capacity constraint we put in the

th k
q entry of f . While tracing through the predecessor vector, GENCOL

also finds the "real" chain costs, c k-f which are required by SEXOP as

the corresponding column costs.

The interaction between the subprograms is shown in Figure 6. The

dual variables t from the master problem are passed on to GENCOL by DCMP.

GENCOL uses t to obtain the modified arc costs (ck-r D) which are then

k
passed on to BELL with the specified origin s . The length of the chain

from sk to tk with respect to modified arc costs, which is wk in

k
( iI.6.1), is then compared to the dual variable at to decide upon entry.

If the column entry criterion is satisfied, GENCOL proceeds to generate

the column f as described above, if not control is transferred back to

DCMP which then considers the next commodity k+l. If no columns are added

to the master problem, it is declared to be optimal by virtue of ( II.7.1)

and the algorithm halts.
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Figure 

Flov-Chart for Dantzig-Wolfe Decomposition

Solve K shortest chain problems
with original arc costs

Set up initial Master Problem with
above chains and GUB artificials

Solve Master Problem t
(4.1 - 4.4)

Obtain duals rt ,ak

Solve shortest chain problem
for commodity k

NO

optimal
solution
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2. Description of Test Problems

We shall now describe the test problems used for the computational

studies. We constructed four networks to test the two decomposition

codes. These are referred to as problems P1 to P4, the basic parameters

of which are given in Table 1. The notation for problem parameters is

as follows:

NA - number of arcs in the network.

NN - number of nodes in the network.

NCAP - number of capacitated arcs.

NCOM - number of commodities,

The basic factors which are varied in the test problems are network

topology and the ratio of capacitated arcs to toal number of arcs, i.e.

NCAP/NA.

As noted earlier, the current implementation of SEXOP limit NCAP

to be less than 100, which explains why the maximum number of capacitated

arcs in our test problems is 98. In Problems P1 and P2 all arcs are

capacitated, whereas in P3 and P4 the ratio NCAP/NA is roughly .48 and

.38 respectively.

The network topologies were chosen with a view twoards the modeling

applications of the multicommodity flow problem: The network structure

in problems P1 and P3 is essentially acyclic (with only a very few

cycles) and may be epected to arise in applications to multicomodity

multiperiod, production-distribution problems or more generally in the

construction of time space diagrams for scheudling vehicles on a net-

work [12]. In our examples we conceive of certain arcs as denoting
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passage of time in a fixed spatial location whereas the others denote

spatial transportation from one point to another. Thus in a production-

distribution example the "time-like" arcs represent keeping an time in

inventory for one time period thereby incurring an "arc" holding cost.

The "space-like" arcs, however, stand for shipment of the items in the

distribution network and the arc costs for these shipments could

reflect transportation costs.

The other network topology - corresponding to P2 and P4 - corresponds

to an undirected communications network. Thus for nodes i and j in the

network (i,j)EA implies (,i)EA. Such networks would arise naturally

in intercity transportation problems as well as in the currently expand-

ing studies of computer networks. We note that the degree of nodes in

this structure is greater than in the above and the networks contain

more chains. The two network structures are different enough to warrant

experimentation. We note that our choice of these structures was to

some extent influenced by the work of Swoveland [24] whose test problems

have the above two structures. All data was generated manually, and the

arc costs basically satisfy the triangle inequality (with a few excep-

tions in any network).

3. Computational Experience with Dantzig-Wolfe Decomposition

For each of the test problems, P1 through P4, a series of runs was

made to investigate the effects of

a) the number of commodities NCOM

b) the total flow FTOT of all commodities

on the number of iterations of the decomposition algorithm (i.e. the
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number of master problems solved to reach optimality) and the total time-

required for the problem solution (excluding input-output). The total

flow FTOT is defined to be the run of the fixed flow requirements Fk over

all commodities, i.e.

K
PTOT - Z Fk

k-1 0

That NCOM is an essential variable for experimentation deserves little

explanation. Obviously in the decomposition code, this parameter deter-

mines the number of subproblems to be solved, the number of GUB con-

straints in the master problems, as well as the rate of growth of the

columns in the master problem from one iteration to another. The role of

FTOT may be explained as follows: Clearly the complicating mutual

capacity constraints ( II.8.2) interfere to the extent that commodities

compete for capacity. If FTOT is small compared to the average arc

capacity the flow of each commodity may be sent on single chain

unimpeded by the capacity constraint whereas if FTOT is large, the flow

of a commodity k must be apportioned over several chains. Thus the

total load on the network is expected to affect solution times.

In order to have some control on the interaction between the effects

of varying NCOM and FTOT; the runs for each problem were divided into

to groups:

a) Holding the total flow fixed, increase the number of

commodities.

In this group of runs one would start with a few commodities (i.e.

OD pairs) and then successively break do-n the flow requirement for each
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commodity into flow requirements for a number of new commodities. Such

runs were motivated by the idea of aggregation of commodities: A

commodity k (which is specified completely by its origin-destination-

OD-pair (sk,tk)) can be broken up into a number of "more detailed"commo-

kkkof F subject to the restriction

is the required flow for commodity k. Obviously FTOT remains

where F is the required flow for commodity k. Obviously FTOT remains

constant in such a process of disaggregation and the load pattern on

the network does not change much either since care will be taken to

choose the si s and t s from the "vicinity" of s and t respectively.

b) Increase the number of commodities increasing the total

flow proportionally.

Here a basic "per commodity" required flow value FAV is chosen and

will be the same for all commodities k. Thus it is clear that we will

have

Fk - FAV Vk, and FTOT = NCOM * FAV.
o

In this case the network traffic is becoming more congested as new commo-

dities (OD pairs) are added.

We shall refer to these two strategies as a) and b) when discussing

the computational results below.

Tables 2-5 summarize the results of our experimentation. All runs

were made on the IBM 370/168 machine of MIT Information Processing Center.
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The runs Pl.1, P1.2, and P1.3 follow the abovementioned strategy a) with

a fixed value of total flow equal to 28.0. The same strategy is used in

runs P1.4 through P1.6 with a total flow of 30.0. An interesting pattern

presents itself in both cases. The number of iterations (no. of master

problems solved to reach optimality) - denoted ITOPT - decreases as the

number of commodities increase for a fixed value of total flow. This

change is due to the fact that the number of chains generated at each

iteration is equal to the number of commodities. Thus many more chains

are available at the end of a given iteration for a run with large NCOM

compared to small NCOM. Moreover the average flow per commodity decreases

in strategy a) as the number of commodities increases (F equals

FTOT/NCOM on the average). Since each column in the master problem

represents a chain with all the flow Fk assigned to it, capacity

constraints are less likely to interfere when Fk grows smaller in com-

parison with the chain capacity.

The run P1.7 was included to test the effect of uneven loading on

the network. We feel that a problem will require more iterations if the

flow requirements are distributed in an uneven fashion compared to a

problem with even distribution of the same total flow value. In P1.8

we consider three OD pairs with flow requirements 9,10, and 9 respective-

ly. In P1.7 we change the requirements to 14, 12, and 2. The total

flow is the same for both runs. We see that the number of iterations as

well as the solution time increases substantially.

Table 3 presents the results of DOS on P2. It may be recalled that

the structure of P2 corresponds to an undirected graph. In the interests

of symmetry we chose our OD pairs symmetrically as well. This means after
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assigning an OD pair (sk,tk ) to an odd-numbered commodity k, commodity

kt1 is given the OD pair (tk,sk) with the same flow value F.

The series of runs P2.5-P2.8 follow strategy b). The average per

commodity flow value chosen is FAV - 6.0. Since the total flow value in

runs P2.5 and P2.6 is small compared to the network capacity, the first

master problem is found to be optimal. This shows the advatange of

starting out with good chains in conjunction with a "Big-M method".

As the number of commodities, and hence the total flow, increases, more

iterations are required.

Comparing runs P2.3 and P2.4 which share the same value of total

flow, once again we see the effect of increasing NCOM in terms of

decreasing the number of iterations. The runs for P2 show that ITOPT

is not necessarily a good indicator of the solution time required by the

problem. For example P2.3 has a lower ITOPT than P2.2 but requires a

much greater solution time. This, by the way, should be attributed to

the SEXOP routine solving the master problem, which seems to slow down

when NCOM is large (thereby having a large number of columns in each

master as well as a greater number of GUB constraints); and not to the

shortest chain routine solving the subproblems as we shall see.

In the runs for P3 strategies a) and b) were used in groups P3.1-

P3.4 and P3.5-P3.7 respectively. Again increasing the number of commo-

dities with fixed total flow decreases ITOPT but the solution time tends

to increase nevertheless. For the second group it can be seen that both

ITOPT and the solution time increase with the number of commodities.

Finally for P4, strategy b) was employed. We remark that the

capacity constraints are rather sparse in this problem, in the sense that
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there is a good chance of being able to find an uncapacitated chain

between an arbitrary pair of nodes. P4 corresponds to an undirected

graph as well. A per commodity flow value of 15.00 (-FAV) was used.

We note a steady increase in solution times with the number of commodi-

ties.

In empirical timing of decomposition algorithms with a master

problem interacting with subproblems possessing special structure, it is

a good idea to investigate how time-consuming the subproblems are to

solve. In addition to locating the portion of the algorithm where most

of the effort is expended; it throws some light on the effect of varying

the number of subproblems - NCOM in our case. For our Dantzig-Wolfe

Decomposition code, the subroutine BELL used to solve the shortest chain

problems should be timed. To this end the network and cost structures

of P1 through P4 were used to obtain an average time per shortest-chain

calculation for the three structures. The results are shown below:

Number Number Ave. Time
Problem Name of Arcs of Nodes (in 10-3 sec.)

P1 98 47 1.47

P2 96 25 1.25

P3 204 83 2.89

P4 268 44 3.03

Thus for an average network of 200 arcs and 10 commodities which may

require 10 iterations on the master level,we may expect an upper limit

of .3 sec. on the total time expended in solving the shortest chain sub-

problems. Given that the total time for the solution of such a problem
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may be 2-3 sec.; this is not a substantially time-consuming activity of

the code. As a further illustration of the use of this information we

compare the runs P2.2 and P2.3. The number of shortest path problems

solved in each run is (ITOPT+1)*NCOM-T where T is the average time per

shortest chain calculation. Thus in going from P2.2 to P2.3 a total

time increase of 60T = 0.075 seconds may be attributed to the additional

time spent in solving shortest path problems. This shows that increasing

NCOM affects the LP solution time much more than the subproblems.

We wish to conclude by noting that our price-directive decomposition

code has not yet been subjected to a second level effort aimed at

shortening its running time. We can easily visualize detailed portions

of the code to which such an effort could be applied. In particular

the subroutine GENCOL could be much more efficient in using the inputs

from BELL to generate columns. Also, one may experiment with different

strategies for column generation. It may be advantageous to have added

columns replace some other nonbasic columns in the master problem.

Another possibility is to ignore a subproblem which has priced optimally

at a certain iteration for a number of subsequent iterations since the

set St of subproblems optimal at iteration t, does not change much from

one iteration to the next.
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Figure 2

Interaction between DCMP and its subprograms

Figure 3

Interaction between RHSD and its subprograms

X,U,C

x ,C
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Table 1

Test Problems

Number of
Problem Name Ar:s (NARC)

P1

P2

P3

P4

98

96

204

268

Number of
Capacitated
Arcs (NCAP)

98

96

95

98

Number of
Nodes (NN)

47

25

83

44

Average Capacity
per capacitated

arc (AVCAP)

6.0

13.0

12.0

16.0
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Table 2

Results for P1

No. of
Commodities

(NCOM)

3

7

6

10

15

3

3

Total Flow
(FTOT)

28.0

30.0

28.0

28.0

Optimal
Value
(VOPT)

486.0

478.0

492.0

518.0

498.0

497.0

482.0

470.0

Iterations
to

Optimality
(ITOPT)

7

5

6

7

12

8

Time (sec.)

.27

.39

.60

.53

.85.

.90

.63

.39
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Run Name

P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

P1.7

P1.8



Table 3

Results for P2

No. of
Commodities

(NCOM)
Total Flow

(FTOT)

Optimal
Value
(VOPT)

Iterations
to

Optimality
(ITOPT) Time (sec.)

4836.0

5364.0

5852.0

5840.0

2304.0

3192.0

4522.0

5602.0

Infeasible
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Run Name

P2.1

P2.2

P2.3

P2.4

P2.5

P2.6

P2.7

P2.8

P2.9

4

10

20

34

10

14

20

24

30

120.0

130.0

150.0

150.0

60.0

84.0

120.0

144.0

180.0

6

7

6

4

1

1

3

4

5

.50

1.73

4.31

3.13

0.04

0.06

0.57

1.37

4.13



Table 4

Results for P3

No. of
Commodities Total Flow

Run Name (NCOM) (FTOT)

P3.1

P3.2

P3.3

P3;4

P3.5

P3.6

P3.7

4

6

12

18

6

12

18

105.0

36.0

72.0

108.0

Optimal
Value
(VOPT)

2271.0

2269.0

2213.0

2088.0

712.0

1444.0

2155.0

Iterations
to

Optimality
(ITOPT) Time (sec.)

10

10

9

6

2

4

9

1.51

1.41

3.48

3.11

0.12

0.81

2.80
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Table 5

Results for P4

No. of
Comodities

Run Name (NCOM)

P4.1

P4.2

P4.3

P4.4

P4.5

6

10

14

20

30

Total Flow
(FTOT)

90.0

150.0

210.0

300.0

450.0

Optimal
Value
(VOPT)

3640.0

6006.0

8858.0

12488.0

18162.0

Iterations
to

Optimality
(ITOPT) Time (sec.)

2

4

5

3

4

0.20

0.58

1.44

1.70

3.98
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IV. IMPLEMENTATION AND COMPUTATIONAL RESULTS

B - THE RESOURCE-DIRECTIVE DECOMPOSITION ALGORITHM

This chapter is devoted to the subgradient optimization algorithm

as implemented to solve the multicommodity flow problem. We will des-

scribe the code we wrote for this purpose and discuss computational

results.

1. Program Structure

The resource-directive decomposition algorithm involves a master

problem, the main component of which is a projection algorithm called

PRJCT; and subproblems which are solved by an Out-of-Kilter code called

HEDY8. The main program is called RHSD (for right-hand-side decomposi-

tion). We now describe each component of the code in great detail.

The main program reads in the problem data and sets up the data

structure required by HEDY8 by calling a subroutine SETDAT. The original

problem data is manipulated by adding artificial return arcs (t ,sk )

for each commodity k. The flow value Fk for that commodity may thus be

viewed as the total flow on this added arc. As a result the flow for

each commodity becomes a circulation flow where the net flow at any node

k k
is zero. These arcs are given cost c and capacity Fk in accordance

o O0

with the subproblem definition in (II. 12.1 - 12.5). SETDAT also trans-

forms multiple arcs between a pair of nodes - i.e. (i,j) and (,i) -

by inserting an additional artificial node in one of the arcs, thereby

adding a new arc to the network. Thus the total number of arcs in the

new network structure is

NA NA + NCOM + NLT
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where NMULT is the number of multiple arcs (corresponding to undirected

arcs in our case) in the original network. This transformation is

required by HEDY8. Several pointer arrays needed by HEDY8 are also con-

structed by SETDAT.

HEDY8 is an efficient Out-of-Kilter algorithm which uses recent

ideas in data manipulation and is found to be computationally superior

to a number of commercial codes. The algorithm, as well as the required

data structure is discussed in detail in [ 1, 2]. As used by our code,

HEDY8 requires the specification of three vectors x, u, and c, of length

NA*, which contain the flow, the capacity (upper bound of flow), and

the reduced cost for every arc in the network. Naturally, as for all

primal-dual methods, flow values need not be feasible (i.e., may have

fa > ua on some arc a). The algorithm then looks for an optimal

solution by maintaining dual feasibility and complementary slackness

and striving for primal feasibility. The subroutine HEDY8 returns the

optimal flows and reduced costs x , c

PRJCT is the name given to the subroutine performing the projection

( II.35) by using the algorithm outlined in equations ( II.35-38). As

noted there, the projection requires an initial ordering of the compo-

nents of the input vector a for arc a. This is done by using the heap-

sort algorithm given in Fortran in [13]. To call PRJCT one need only

specify the parameters K, da and the capacity allocation vector a for

any ar a. PRJCT returns the solution y a

The interaction between program components is shown in Fig. 8.

Upon constructing the data structures and the augmented network structure

to be used by all subproblems;HEDY8 is called to solve each subproblem with
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the initial values of zero flow, the capacity vector y, and the original

arc costs. Thereupon at a general iteration i, the subproblems are

solved with right-hand-side (u=)yk for k=l,...,K. The dual variables

Yk(yk) are obtained from the optimal reduced costs of the subproblem by

the relation:

Max {O, c (1)
i,a a

-k
where a is the optimal reduced cost on arc a. The dual variables in (1)

determine the set of arcs Ti to be flagged for projection [see ( II.39)]

for which the subroutine PRJCT is called.

Note that at any iteration, only the right-hand-side of subproblem

k is changed and this change occurs in relatively few entries of y.

Thus the solution x and reduced costs c to the subproblem at iteration

i are saved to serve as the starting solution at iteration i+l. Thus

2K vectors of length NA are saved which may demand substantial storage

for large K but are believed to speed up the solution of subproblems

substantially. Clearly when solving subproblem k only one artificial

commodity return arc (t ,s ) is given a nonzero upper bound Fk. All
0

the other return arcs have a capacity of 0 for commodity k. This simple

rule allows us to use a single data structure - that of the full

network - horizontally across the subproblems.

One problem in using HEDY8 to solve the subproblems was a mismatch

of data types. HEDY8 accepts only integer values as data and is written

in terms of integer arithmetic. The capacity allocation resulting from

the projection routine are obviously real variables, and as such should

be rounded off before they could be passed to HEDY8 as the vector u.



To achieve this we simply multiplied the capacities by an appropriate

power of ten (depending upon the degree of accuracy required) and placed

the result in the integer array u. We note that as a result, the optimal

k
dual variables i,a defined in (1) above will also be integer and

differ slightly from the real dual variables for the problem. Originally

we.were concerned whether this would affect the convergence properties

of the algorithm. To check this an earlier version of RHSD was coded

to use SEXOP, in place of HEDY8, to solve the subproblems.

A small test problem with 10 arcs, 6 nodes, and 2 commodities was

chosen to carry out the comparison. All arcs were capacitated although

on 5 arcs capacities were large enough not to be binding. Below we

list the optimal value of the master and the step size obtained at

the end of each iteration from the two versions S and H of the algorithm

using SEXOP and HEDY8 respectively. In rounding-off, only 4 significant

digits were used.

iteration v t X
YS _Zs -H

1 753.20 0.0140 752.82 0.0141

2 873.40 0.0072 875.70 0.0070

5 917.55 0.0062 917.49 0.0061

10 941.06 5.8941 941.07 5.8931

11 942.00 3.6250 942.00 5.8000

Convergence is obtained at iteration 11 for both algorithms. The

intermediate results are also in close agreement as seen above. We also

compared the two versions on a larger test problem of 26 arcs, 9 nodes,

and 4 commodities. Again the discrepancies were insignificant.
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Given that rounding off is no poblem, the SEXOP option is inferior

since it currently offers no- possibility of saving the previous sub-

problem solution in core for more efficient re-optimization. The best

one can do is to use the dual simplex method on the solution for sub-

problem k as a starting solution for subproblem k+l. When using HEDY8

however, we save the solution of each subproblem to start off the Out-

of-Kilter algorithm for the same subproblem in the next iteration.

We shall now comment on our computational experience with the sub-

gradient algorithm. The algorithm we presented in Chap. II has a num-

ber of controllable factors which one may vary when searching for the

best algorithmic performance. These factors may be listed as:

1 - Choice of an initial capacity allocation yo £ S

2 - Choice of the artifical costs ck in the subproblem

objective function.

3 - Choice of the estimate v to be used in ( II.32).

4 - Choice of the step-size factors {Ai} in ( II.32).

Most of our computational experimenting focused on issues 3 and

4 of the above. We shall comment on 1 and 2 rather briefly.

1 - The initial capacity allocation y = (yl,...,y ) was set by the

following simple formula:

k *d (2)Yo FTOT

where FTOT is defined to be

K k
FTOT = Z F (3)

k=l 0

as before. This choice is not a very sophisticated one but is definitely
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easy to compute. A more complex alternative would involve solving each

of the subproblems with the original arc capacities (i.e. y = d) thus

obtaining the solution to the multicommodity problem with the mutual

capacity constraints ( II.9.3) relaxed in favor of single-commodity

constraints fk < d for all k. This "interaction-free" flow pattern

can then be used as a basis for determining Yo. This choice seems

attractive particularly when the flow-carrying chains for different

commodities are expected to be essentially diverse from each other,

since one may then expect the optimal flow pattern to be close to the

interaction free pattern discussed above.

2 - The artificial costs ck reflect the extent to which we are

encouraging the variable Fk to achieve its upper bound F . Essentially
O

we chose co values consistent with the artificial costs in the Dantzig-

Wolfe decomposition algorithm. That is, we chose the costs per unit

k
flow c to be around 10-20 times the average routing cost per unit flow.

We had only one occasion to test the sensitivity of our code to this

choice: When running RHSD on Problem P1.5 with 10 commodities we noticed

that many flow values Fk were consistently below their upper bound

( < Fk) with a value of 200 for ck To encourage greater values of

k, ck was increased to 2000, and as a result, 4 commodities attained

the required flow value F. The ratio VBEST/v (where VBEST denotes the
0

best value obtained for the master problem) also increased from .79 to

k
.88. We also found that increasing c leads to a decrease in the values

o

of ti's. However the general behavior of the algorithm is not affected

k
by the choice of c

3 - The subgradient algorithm requires an underestimate of the
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optimal value v to be used in the step-size formula ( II.32). Held,

^ *
Wolfe, and Crowder, however, report using an overestimate v > v for

lack of a readily available underestimate. In our case, too, we decided

to use an underestimate. We recall from Chap. II that

K
* - C K k Fk _*

kZ C V1 (4)

where v are'the minimal routing costs defined in ( II.9.1). Assuming
1~~~k

that ck's are chosen to be equal (c k = c Vk), we may write (4) as

v c FTOT - v 1 . (5)

We see that by (5), any underestimate v1 of Vl(V1 < V1) will define

an overestimate = c FTOT-v1 of v . A very crude overestimate may be

obtained immediately by choosing vl = 0, so that

= c FTOT. (6)
o

A much better estimate may be obtained by solving the interaction-free

version of ( II.9.1-9.3) discussed above where (9.3) is replaced by

fk < d for all k. Denoting the objective function thus defined by VD,f VD,

we clearly have < vl and obtain an overestimate

v = c · FTOT - (7)
o o

We have experimented with both types of overestimates (6) and (7)

and obtained significantly better results with the tigher overestimate

in (7). In two otherwise identical runs on P1.1 the best value for the

master (VBEST) increased from 5097.4 to 5110 in 80 iterations as a result

of using (7) instead of (6) (v = 5114 for this run). The improved
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behavior of the algorithm is specially apparent when values close to v

are obtained.

4 - A critical issue in using a step-size sequence defined by

( II.32) is the choice of the X.'s values. Held, Wolfe, and Crowder [18]

state that the choice of step sizes is imperfectly understood. The

strategy they used for the multicommodity max flow problem was to set

X - 2 for 2N iterations (where N depends on problem size) and then

halving both the values of X and the number of iterations until the lat-

ter reaches a threshold value N , whereupon is halved every N

iterations.

In order to understand the behavior of the algoirthm for different

choices of the { i } sequence, we made a number of runs for the problem

P1.1. Table 6 summarizes the results. We shall now comment on the

results according to the general strategy used for defining the i's:

Constant A.

We initially tried runs with a constant X and obtained rapid con-

vergence for small test problems with 10 and 26 arcs (2 and 4 commodi-

ties respectively). However for the larger P1.1 problem (of 98 arcs)

runs 1 and 2 show that such a strategy does not result in values close

enough to the optimum of 5114. An overestimate of 5600 was chosen

according to (6), thus the values for VBEST are expected to improve if

we use v = 5116 following (7).

Successive Halving of A.

Here we followed the suggestion of Held, Wolfe, and Crowder [18]

discussed before. Runs 3 and 4 show marked improvement over runs 1 and

2 though they also use = 5600. Note that comparing runs 3 and 4 shows
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the iteration numbers chosen for halving X will also affect the best

objective function value obtained. The improvement of run 5 over run

4 is due only to employing the better value of 5116.

Adaptive Control of X.

The above strategy of halving depends upon the choice of a

sequence of iteration numbers at which X is halved. The choice of such

a sequence (or N and N in our earlier discussion) requires some hind-

sight which is problem-dependent. We shall now consider a scheme which

ensures decreasing the size of and does not require the prespecifi-

cation of such a sequence.

To motivate our adaptive strategy, we present the iteration values

and step sizes resulting from a constant = 2 value in Table 7. The

last column represents the ratio of current ti to the last step size

obtained. We see from Table 7 that as soon as a good value of vi is

obtained for the master problem, the corresponding ti becomes relatively

k
large. This is probably due to the fact that most Yia 's become small

or vanish, thus making the denominator of ( II.32) small. The net

effect is that the next perturbation in the capacity vector yi will be

too large causing it to move away to a bad value resulting in a sudden

drop in the objective function value vi. This happens at iterations

29, 35, and 54 of Table 7. It is thus necessary that Ai's get smaller

with increasing i to offset such large fluctuations. This phenomenon

in part explains the efficacy of the halving strategy discussed above.

The adaptive strategy takes two measures to control the step sizes:

a) It decreases the current t. when it is deemed to have too large a

value.
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b) It decreases the value of X be used in the successive steps.

The tracking signal for the adaptive strategy is the ratio ti/ti_1

reported in Table 7 for Run 1. Thus we may summarize it as:

If the ratio t /t > R (some threshold),; reset
i i-l

t i + a t i (8)

X a X. (9)

Some results for adaptive strategies are shown in runs 6-8. In

all cases = 5600, and a = 0.01. c should not be too small since

then two or three triggerings of the scaling operation (9) would result

in an overly small value of resulting in a very small sequence ti.

This, in turn, would mean that each time the vector yi is perturbed by

an insignificant amount so that the vi values will change very slowly

with i. The choice of a = 0.01 in run 6 resulted in this behavior.

To us, the adaptive strategy seems to be a computationally attrac-

tive alternative to the halving strategy. In all cases it resulted in

a better sequence of values vi which came closer to the optimum v 

2. Timing the Projection Routine

As in the case of the Dantzig-Wolfe decomposition code, we found it

useful to time the subroutine which solves the projection problem to

identify whether much time is spent performing the projections.

Recall that the input parameters for PRJCT were NCOM (or K) and

da, the sum of the components of the projection vector ya. In timing

PRJCT we varied NCOM and set d = NCOM. Thus we project K-vectors on
a

the hyperplane defined by
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K K k k
C R x K I x > O k}.

k-l

The results are shown below

NCOM 3 5 10 20 50

Average time (in 10- 4 sec.) 1.13 1.92 4.08 9.34 27.08
per projection

As remarked earlier not all arcs are projected. Let NPi be the

number of arcs projected at iteration i. We observed that NPi/NARC

decreases with i once we enter a reasonable neighborhood of the optimum.

Again this is due to many y a's vanishing once the optimum is neared.i,a

Also one would expect NPi to depend on NCOM: The more commodities there

k
are, the greater the probability of Y being nonzero for some k.

i,a

In a test problem with 26 capacitated arcs and 4 commodities we

computed an average of NP = 15 for 1 < i < 10, and 8 for 10 < i < 19.

The algorithm converged in 19 iterations. Assuming the ratio NPi/NARC

to be 0.5, at worst, for the 3 commodity problem P1.1; we would have to

spend approximately 0.7 seconds for projections in the course of 120

iterations. We have timed RHSD on P1.1 to take approximately 6 seconds.

So approximately 12% of the solution time goes into projections.

3. General Behavior of the Algorithm

We have described the effect of various strategies on the conver-

gence exhibited by the right-hand-side allocation algorithm (RHSD). We

noted that with a good overestimate and an adaptive strategy for the

step size one may get close approximations to the optimal value v . It

may be argued, however, that the output of interest in the optimal flow
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pattern fk* for each commodity k, rather than merely the optimal value.

Moreover if the capacities are integral we would like to obtain integral

values for the optimal flow of each commodity on each arc. The Dantzig-

Wolfe decomposition code exhibits this property regularly. Unfortunately

resource-directive decomposition will generally fail to do this since the

arc capacities allocated to each commodity result from a projection and

may rarely be expected to be integral. To give only one example, the

optimal flow pattern obtained by Dantzig-Wolfe decomposition on P1.1

for commodity 1 loads three chains C1, C2, and C3 with chain flows 5,

3, and 1 respectively. The load pattern obtained from the best solution

to P1.1 with RHSD places the values 4.4618, 2.9937, and 1.5445 on C1,

C2, and C3; and in addition chooses a fourth chain C4 with a flow value

of .0063. Thus RHSD does not yield integral solutions though it essen-

tially chooses the correct chains. Here there may be some hope of

reallocating the flows, once the chains are identified, to achieve

integrality if needed.

The behavior of RHSD worsens as the number of commodities increases.

For 10 commodities the objective function value is far from the optimum

and half the commodities fail to meet the flow requirements. Thus

RHSD should be limited to networks with a small number of commodities

although largest network sizes are not expected to affect the convergence

of RSD much. The solution times are of the order of 6 sec. for 120

iterations on a 3 commodity version of P1.
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Table 7

Results of Run 1 of RHSD

Iteration

1

10

20

28

29

30

34

35

36

53

54

55

vi

2494.2

4312.8

4813.4

4934.1

5080.7

2421.4

4927.0

5076.9

2661.2

4743.9

5084.9

1440.2

ti/ti-_ti

0.039

0.027

0.017

0.005

1.927

0.017

0.009

1.718

0.011

0.027

7.518

0.018

1.70

1.74

0.35

368.09

0.01

0.53

191.0

0.006

.64

278.45

0.002
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V. THE MULTIFLEET ROUTING PROBLEM : AN APPLICATION

In this chapter we describe an application of the decomposition algo-

rithm of Chapter II to solve a Multifleet Routing Problem.

1. The Routing Problem

We start with a brief description of the problem, following [25-271.

The problem may be presented as follows : Given a schedule map of potential

non-stop services, what set of services should be flown to maximize system

income and how many aircrafts are required. The system income is the sum

of revenues associated with the services minus ownership-costs attached

to each aircraft.

We now elaborate on these elements : A schedule map is a space-time

network associated with the system specifying all possible schedules for

an aircraft. As an example consider Fig 4a whichl exhibits the spatial route

map between three cities, A, B, and C. Any flight from, say, A to B departs

from A at a given time and arrives at B at a later time. Thus we may

associate with each city a finite set of arrival and departure times shown

as nodes on the vertical segments A, B and C in Fig 4b. A possible flight

from, say, A to B is shown by a horizontal arc between the departure and

arrival nodes. Thus we htave a potential service leaving city A at 12:00

hours and arriving at B at 18:40 hours. Such 1orizonta1 arcs are called

fligIht or service arcs. ''The vertical arcs mnly be called ground arcs. Tey

allow the aircraft to remain on the ground awaiti ng a departlur ('rime

flows vertically (i(,wnvwards in our di agrim. Final;]ly the third (c ltss of

arcs ar le ccle rcs (or ,overnight arcs). T'ls, allowl tiw flc t t 1 rt, tirn

to tI t schedule cycle. 1Tis is jstii cd ,v tlr asstlt in of sst em
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FIG.4a ROUTE MAP

FIG.4b SCHEDULE MAP
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periodicity : At the end of each cycle all planes are available for the

next cycle.

For a single aircraft type the problem described above may be solved

by the Out-of-Kilter algorithm. In practice, however, there are vehicles

of varying size and operating costs. Since the flow of each aircraft must

be distinguished from other types, consideration of several aircraft types

involves a multicopy network model which we now formulate as a m.c. flow

problem.

2. Problem Formulation

We take the schedule map for our network G = (N,A). Each node i N

thus corresponds to a city and a specified time. The arc set A is the

disjoint union of three sets A , A , A denoting the set of service,

ground, and cycle arcs respectively.

Let f = number of aircrafts of type k on arc a.

and c = cost per unit flow of aircraft type k on arc a.
a

Then the problem is

k k
Max z = X c .f (1.1)

k=1

fk k
s.t. E . = ¥k (1.2)

k < f < k Vk (1.3)

K
f < I Va (LA)

k=I S

.tll Lave c(,nsideretd (,ach aircraft tpe as a Im d it ill5.'x(-Ild Vy k1.

Cons;traint (1.2) is sinmply flow conservait ion :,!- cirrt'lattion flw: fI

c: Cc l con:ni, liLy . (1. 3) impses r nd ower bounds $t- fflov, (>f i sin;l uimposeS I)tf and ~ ll c I (
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type on each arc. (1.4) is the complicating capacity or bundle constraint.

Together with integrality of f it ensures that each service (flight) isa

flown, if at all, by only one aircraft. To have physically meaningful

results the flows should be integral so that (1.1-4) should be viewed as

the linear programming relaxation of an integer program. If the optimal

solution to this relaxation is also integer then the original problem is

solved. Previous computational results [25], 26] for this type of prob-

lems indicate that integral solutions often occur.

To put (1.1-4) in a form compatible with our code we proceed as

follows : We remove all cycles (or overnight arcs) and instead attach a

supersource and a supersink where all aircrafts originate and terminate

respectively. These act as the common OD pair (s,t) for all commodities k.

Thus the topmost node of each vertical line (city) in the schedule map is

joined to the supersource s and the lowest node to t. Te resulting net-

k
work is then acyclic. The ownership costs c attached to cycle arcs

a

a -A may now be attached to the arcs emanating from s. Tihe arcs incidentc

to t are given a cost of zero. The flow value F denotes the total number

of vessels of type k utilized. The problem may then be stated as

k k
Min z = K c .fk (2.1)

k=1

k - k
s.t. f gF = 0 Vk (2.2)

fk ,F > 0 Vk (2.3)

K k
} f < 1 Va c A (2.4)
k-a - s

In (2.1) we minimizes losses. Wlien expanded the obj ective function has

tlie form
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K k k k k k k
z = Z (c F + Z c.f c . f )

a a a a a
k=al a£A s

g s

(3)

where c = ownership cost attached to an aircraft of type k. Thus the

first term inside the parentheses in (3) refers to ownership costs, the

second reflects ground waiting costs, while the third denotes revenues

from flights. Notice that we have chosen the lower bound = 0 and have

imposed no upper bounds. We also note that the set

k { (fk Fk)E fk = gkFk, fk, > O}P = {(fE Fk If = > , , (4)

is a cone. Any feasible flow (satisfying 2.2-3) may be expressed as

I k

k fkk
f = p f.

i=1 1 

with (f ,l

as

) an extreme

K
Min >i

k=l

K
s.t. Z

k=l

k

i=1

k

i=l

ray of P . Thus our master problem may be stated

.k k
c.. P (5.1

1 1

k k
.k fk I acA (5.2
1 l,a - s

Pk > 0
-

k k k k
where c. = c . f = c +

I I 0
I .

a A
g-

Vi, Vk

)

)

(5.3)

k k k l 
c .f. - 7 c . f

;t A51 ,\ s1 r

(6)

Note that we have no convexity constraints (as in TT.4.3) since we are

(ltcomposing over a cone.

A\s bufort ;tti ('I d la vriah Is ' : to (5.2). 1.'-tI cr -itrion fr

rtt -rionI a column inltO tle r estri ctd master is



_k k
c. - T D f < 0

1 1

where D is a matrix transforming f to a subvector of flows on A only.
1 S

Thus the subproblems are, as before, shortest path problems with respect

to the arc costs (c - TD). There are however two minor changes : a) the

arc costs are not all nonnegative and some arcs have negative lengths,

b) the network structure is acyclic. We know that condition (a) causes no

problems as long as no negative cycles exist, which condition (b) insures

so that the BELL algorithm may be applied with impunity. Further the

shortest path algorithm may be accelerated by taking the acyclic structure

into account. We have not adopted this course due to tihe small percentage

of time our code expends on the subproblems as opposed to the master

problem.

3. Implementation and Computational Results

The decomposition code of Chapter III was modified slightly to incor-

porate the changes given above. We shall refer to its new version as DCMP2.

Note that in contrast to old version DCMP, the flow values F are now

decision variables.

The problem solved by DCMP2 has the route map shown in Fig. 5 and

thus involves 5 cities A-E.
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Figure 6 shows the complete schedule map (as taken from [27]). There

are 90 nodes, 58 service arcs, 85 ground arcs, and 5 cycle arcs. Upon

adding supernodes and replacing the cycle arcs for each city by arcs

emanating from the supersource and terminating at the supersink, we will

have two more nodes and ten arcs. Obviously the number of ground and

service arcs remain unchanged. Thus in our notation the problem parameters

are :

NN = 92, NA = 58 + 85 + 10 = 153, NCOM = 2

Only two aircraft types are used (K = NCOM = 2) and the only capacitated

arcs are the service arcs NCAP = A = 58. Reference 1271 gives a full

description of the problem (called the Tech. Airways Problem).

lWoe shall now describe the solution obtained by I)CMP2 : We start by

k
noting that each column (f., ) describes a chain from s to t with unit

flow which fully describes the schedule of an aircraft of type k during

the planning cycle. Thus each vessel starts from a certain city at the

beginning of our time cycle and, upon traversing a combination of service

and ground arcs (corresponding to flight and waiting periods), terminates

its activity in some city at the end of the time cycle. To describe the

optimal solution we need only list those basic columns at optiniality

with strictly positive flow. Note further that for integrality we need

keachi . to be integer otherwise fractional flows will enter the picture.
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The following schedules combine to form the optimal solution :

(SI) Cl - D3 - C8 - C13 - E5 - E6 - C23 - D17

(S2) D1 - D2 - C5 - B13 - B17 - All - A12

(S3) B1 - B2 - A4 - A8 - B23 - B25

(S4) Di - C4 - D6 - D14 - C23 - E8

(S5) B1 - B5 - C14 - C21 - D16 - C26 - C28

(S6) C1 - C2 - E2 - C12 - B17 - C25 - C28

(S7) El - C7 - C9 - B16 - B18 - A12

(S8) Cl - B6 - B7 - A7 - A9 - B24 - B25

(S9) Al - B9 - 1311 - C20 - E7 - C27 - C28

To explain the notation we examine (S4) more carefully : The aircraft

starts in city 1) at node Dl , then flies to C4 followed by anothler flight

back to 1)6. Then tlere is a waiting period in city T) characterized by

D6 - D14 (all intermediate nodes are deleted for simplicity), followed by

two flights first to C23 , then to E8. Thus the scheduile of the aircraft

is completely specified during the planning horizon of one cycle.

The aircraft type is also specified for each schedll]e (thle index k

gives the type) and in our solution schedule (S2) corresponds to a type 2

aircraft). All other aircrafts (8 in number) are of type one. The total

2
fleet size is F + F = 8 + I = 9.

The optimal value for te objective function was found to be

z = $ 17,000 corresponding to zero costs on ground arcs and cwnershiip costs

of $ 1,5)() andT $2,0()0 or a- ircranft tpes I and 2 re spet tivtlv. Altoet ler

31 services arc flown.
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Table 8 shows the convergence of DCMP2 for this problem. The opti-

mality criterion is satisfied after 22 iterations of the master problem.

The CPU time excluding I/O on the IBM 370/168 machine was 0.67 seconds

which is most encouraging for this type of problem. Another encouraging

(though not unexpected) result was the integrality of the optimal solu-

tion.
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Table 8

Convergence Behavior for the Multifleet Problem

Iteration Objective Function

1 6,400

2 6,400

3 6,400

4 8,250

5 8,250

6 10,050

7 11,550

8 11,550

9 11,550

10 11,650

11 11,650

12 12,950

13 12,950

14 13,550

15 14,650

16 15,650

17 15,850

18 16,000

19 1(, OO

290 1 7,000)

21 17, (000

22 17,0)0 (Trminat':)



VI. CONCLUSIONS

We may classify exact algorithms for the m.c. flow problem into three

classes : price-directive decomposition, resource-directive decomposition,

and compact inverse methods (or primal codes). In our computational exper-

iments we have tested two codes, one price-directive and one resource-

directive. Neither requires prohibitive implementation efforts and both

may be built around readily available Linear Programming and Out-of Kilter

codes.

We found that Dantzig-Wolfe decomposition works very well. Our results

combined with some previous experience [24] indicate that price-directive

methods clearly outperform resource-directive methods for these applica-

tions. However the subgradient resource-directive algorithm may still be

recomnmended for very large networks (with few commodities) whichl Dantzig-

Wolfe decomposition cannot handle due to the size of the master problem.

Further research in this area could concentrate on efficient imple-

mentation of primal codes especially in view of the recent advances in

utilizing the problem structure and list-processing techniques as described

in [201. Using BOXSTEP [15,16] to solve m.c. problems may also be inves-

tigated profitably.

The multifleet routing problem described in Chapter V is typical of

a large number of otential applications of m.c. models. The encouraging

results hold promise for solving real scheduling problems in a variety of

contexts described in 1251.

-65-



Postscript

Upon completion of the computational experience on which this report

is based [23], the author came across two papers by Kennington who has

solved multicommodity capacitated transportation problems by two algorithms :

a primal GUB approach [28] and a subgradient procedure similar to ours [291.

The networks he experiments with are somewhat smaller but the results for

the subgradient algorithm generally resemble our conclusions.
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