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ABSTRACT

This paper illustrates the application of mathematical programming

to formulate and solve a simple energy planning problem. The energy sys-

tem is represented as a network where energy flows from sources to end

uses. The model formulated is dynamic and takes explicitly into account

the depletion over time of fossil fuels. The problem is to determine,

given an existing technology, the minimum cost flow of energy in each

period, and also the optimal depletion path of energy resources. It

is a subproblem of the more complex long term problem of choosing an

optimal set of technologies.
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1. Introduction

1.1 Definition of the Problem:

The energy system is represented as a simple network (see figure 1)

where energy flows from sources to end uses; to each path is associated

a cost (for extracting, processing and distributing the resource) and

an efficiency of conversion. Hence the basic structure of the model is

similar to that of the Brookhaven Energy System Optimization Model (BESOM)

[2,4]. But, unlike BESOM, the problem considered here is dynamic, i.e.,

it takes into account intertemporal trade-offs. The basic structure is

also similar to Nordhaus' model [7], but here we make an explicit distinc-

tion between extraction cost and processing cost. Moreover, Nordhaus

assumes constant extraction costs over time, while we consider a more

general structure for extraction cost functions. For depletable non-

renewable resources (for instance fossil fuels), the marginal cost of

extracting a unit of a resource is a non decreasing function of the

cumulative quantity already extracted from that source. An example of

such a function is the following, for a given resource i:

KiRi

Fi(si) = R

where Ri is the estimated quantity of recoverable resources and si is the

cumulative quantity extracted . For non-depletable resources, this cost

would be constant or null.
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Most existing technologies rely on fossil fuels (coal, oil,

gas) i.e., on non-renewable depletable resources. Hence, according

to our assumption on extraction costs, they are characterized by

non decreasing operating costs and decreasing returns to scale. Many

modern technologies, such as geothermal or solar energy, use non-

depletable or renewable resources. Their operating cost is thus

constant, but it is assumed that some high fixed cost, corresponding

to overhead cost for research and development, investment, installation,

has to be paid prior to use. These technologies are hence characterized

by increasing returns to scale. The problem is to determine the optimal

selection and timing of new technologies, as well as the minimum total

cost flow of energy to meet a demand given over time for each end use.

In fact, we are considering two problems, distinct but closely related.

One of them is to determine the optimal timing and sequencing of new

technologies. The other one is to determine, given an existing tech-

nology, the optimal flow of energy in each period, and hence the optimal

depletion path for depletable resources. Both problems are formulated

in this section but only the second problem will be addressed in this

paper. This problem corresponds to the present situation, or the near

future, when a set of technologies exists and cannot be changed immediately.

Hence it has to be solved in a first phase. It can also be considered

as a subproblem of the more complex long-term problem of choosing an

optimal set of technologies.



-4-

1.2 Scope of the paper:

Our goal here is to illustrate the application of mathematical

programming to formulate and solve the energy planning problem described

in the previous subsection. We demonstrate the possible use of the models

and their possible contribution. Even with simple models, we obtain

interesting results.

In section 2, the problems previously described are formulated

as mathematical programs (PDR) and (PNT). Two problems closely related

to (PDR) are also formulated. The approach chosen here to solve the

nonlinear program (PDR) is generalized linear programming. The method

is discussed in the context of problem (PDR) in section 3. We applied

it to a model derived from BESOM.

Implementation issues are presented along with preliminary results

in section 4. This condensation has of course weakened the model's

realism significantly but the purpose of this paper is to provide a

demonstration of a method, not to provide specific policy recommendations.

As computations were progressing, we added to the realism and complexity

of (PDR). We discuss possible extensions in section 5.

2. Some Mathematical Programming Formulations:

Unfortunately, the precise mathematical statement of the problem

requires the use of a great deal of notation. For our purposes we

also need to give several problem statements. They all appear in this

section.

2.1 Notations and Formulation of the Basic Problem:

Subscript i corresponds to different energy resources, j to demand

categories, t to time periods. All the energy quantities are expressed in
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BTU. The other notations are as follows:

p(t) Discount factor for time period t.

dj (t) Demand for j to be met in period t.

x i(t) Flow from i to j in t.

cij Processing cost for a unit of energy along the
path (i,j).

wij Efficiency factor for the path (i,j).

s.(t) Cumulative quantity extracted from source i up to period t.
This variable describes the state of source i at
time t.

Fi(si(t)) Marginal cost of extraction from i when the
state of the source is si(t).

T Planning horizon assumed given for the moment.

The problem of optimally using a given technology can be presented as

the following non linear pogram :

T
(PDR) Min p(t) Ici+ Fi(s (t))] x i (t)

t=O i,j ij

s.t. C wijxij(t) = d(t) all j, all t

si(t+l) = si(t) + Z xij(t) all i, all t

X

x. (t) > 0 all i, all j, all t
13J

si(O) given all i
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Additional notations:

E Set of existing technologies.

M Set c new technologies.

D Set of depletable resources (used by technologies
of E).

N Set of resources used by technologies of M.

Yij(t) Flow of energy from i to j in period t using the
new technology (i,j).

ij(t) ={1 if technology (i,j) M is implemented in t
0 otherwise.

f , Fixed cost of introduction of technology (i,j) M.

eij Operating cost of technology (i,j) M .

The problem of determining an optimal set of technologies can be

formulated as the following nonlinear mixed integer program:

T

(PNT) Min p(t){ [cCij+ Fi(si(t))] xij(t)
t=O (i,j) E

(i j)M [f j (ij i (t)ij 

s.t. w wZ x. (t) + Z WijYij(t) = dj(t) all j, all t
ieD wi j ij N

si(t+l) = si(t) + xi(t) all i, all t
j ]

t
Yij(t) < Y E ij (T) all (i,j)EM, all t
Yij(t)ly _< YZ ij( )T=O

T
t560 (t) < 1 all (i,j)cM

t=O ij

xij(t) > , Yij(t) > O 6ij(t) = ,1

_I Illll____·___lg___II.--_� _-.

all i, all j, all t
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This last problem will be addressed in a subsequent paper. Only

the solution to problem (PDR) is discussed here.

2.2. Finding a Feasible Solution:

This solution will alternatively be called intuitive solution,

recursive solution or semi dynamic solution. It is an approximation

to the true optimum and is useful as a starting solution for the algo-

rithm presented in section 2.

Define x in the following way:

for each j x0 j (t) = d(t)

for i* such that cij+ Fi*(si*(t))=min c+ Fi(t))j~jii i]

and x (t) = 0O for i i*
ij

This strategy can be interpreted as supplying each end use from the

cheapest resource technology combination. It has been proved [8 ] that

such a solution is optimal for a single end use (only one j) and for

non decreasing demand over time (if the rate of increase is not too

high), but this is not generally true for a multi commodity problem

(a counter example is given in [ 8 ]).

This solution is feasible. It corresponds to a myopic view of

the world, where the allocation in period t is done by looking only at

the present, or at most the near future, which is frequently done in

practice. This solution can be useful as a first step in a more sophis-

ticated approach and, in some cases, will not be so far from the true



-8-

optimum, for instance when the function F are very flat.

X© is very easy to express because of the very simple structure

of (PDR), which was presented that way for clarity and ease of expo-

sition. But in later sections, we add to the realism of (PDR) and

give it a gradually more complex structure. Fortunately, the concept

of this intuitive solution can be generalized very easily.

Consider problem (PDR) with some additional constraints, without

specifying at the moment what these constraints are. At time t, the

state of the system is characterized by si(t) for all i, and the one

period problem to determine the minimum cost flow in period t, given

the state of the system, is:

P(t,s(t)) Min Z (cij+ Fi(si(t)))x ij(t)
i,j

s.t. Z wijxij(t) = dj(t) all j

additional constraints for period t

xij(t) > 0 all i,j

The solution x is obtained by solving sequentially the problems

P(t, s(t)) from t=O to t=T as indicated clearly in the following

diagram:
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O.
Y

/

STOP

NO

-- t = t+l

t=O

si(o) are initially given all i

solve P(t,s(t)) (it is an LP)

0obtain solution x ij (t) all i, j
ij

0
si(t+l) = si(t) + x..(t) all i

i i i i 1

Compute new cost coefficients for

this new state of the system (and

eventually new right hand side

for additional constraints).
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The advantage of this procedure is that it only requires solving

a sequence of small linear programs instead of solving a large

non linear program (like (PDR)). If we could know apriori how

good an approximation to (PDR) this is,it would be very useful. In

section 4, it will be interesting to compare the solution obtained

by solving (PDR) with the intuitive solution.

2.3 A Total Extraction Cost Formulation:

In (PDR), we assumed that the marginal cost of extraction of

a resource is a function of si(t), the cumulative quantity extracted

up to period t, but can be considered constant during period t, i.e.

between si(t) and si(t+l). This may be valid in some cases, for

instance if the function Fi is relatively flat in that region, or

if si(t+)-si(t) is small enough, but rigorously the cost of extracting

si(t+l)-si(t) units of resource i should be:

si (t+l)

f Fi F( i
si(t)

Then (PDR) is only an approximation to the real problem, which is:

T s.(t+l)
(P)Min p(t) [ c.ij xij (t) + Fi(i(t))d i(t)]

t-O i'j ij i is (t)

~is.t. EI wijxij(t) = dj(t) all j, all t

Z Xij(t) = si(t+l)- si(t) all i, all t

xij(t) > 0 all i,j,t

si(0) given all i
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Let Gi(si) Fi(E) d be the integral of Fi.

Then the objective function of (P ) is:

T
Min Z p(t)[ cijxij(t) + (Gi(si(t+l)) - Gi(si(t)))].

t=0 ij i

The objective function of (P') can alternatively be written

T T 1

Z p(t) cijxij (t) + Z p (t)EG i(si( t + l ) ) - p(O)Gi ( s i ( ) )

t-0 i j t= i

where

p (t) - p(t) - p(t+l) for t = 0...T-1

p (T) = p(T)

In this form, it is easy to see that if the functions G are convex,

which is implied by our assumption on the functions Fi(Fi > 0), then

the objective function of (P ) is convex because p (t) > 0 for all t.

For the functions Fi defined earlier,

Gi (si) cte - KiRi Log(Ri-Si)

and therefore the total cost of extracting s. units would be

R i

Gi(si) - G i (0) = Log Rt-Si R

In a sense problem (P ) is more accurate than problem (PDR); (P ) is

thus preferable, especially if the function is very steeply increasing

in period t or has an unsmooth behavior in that range. But the func-

tions Fi are more readily available in some cases, for instance if

they are the results of an economic study or estimated econometrically.

U··llllll�-----l��------II-�
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If they have a simple analytic form, they can be integrated to obtain

explicitly the functions Gi but sometimes they are available only

implicitly, as, for example, the cost functions estimated for coal

extraction by Zimmerman [11], and it may be necessary to work with

problem (PDR). In other words, for purposes of model integration,

it might be easier to work with problem (PDR). We come back to this

question later.

The notion of intuitive or recursive solution can be extended

to problem (P ) but the problem to be solved in each period is no longer

linear. Hence one of the most important advantages of this intuitive

solution is lost. We will also have the occasion in section 4 to compare

the solutions of problems (PDR) and (P ).

3. Generalized Linear Programming [9], [5]:

To apply the algorithm, problem (PDR) is reformulated as follows

(assuming si(0) = 0):

T t-l

(P1) Min Z p(t)[ cjxij (t) + Fi( m ())mi(t)]
t=O i ij i T= i

s.t.

(1t) = dijij(t) all j, all t

(2) Z xi(t) - mi(t) = 0 all i, all t
ji

xij(t) > 0 all i, j, t
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After experimentation with different formulations, this last

one appeared to be the most appropriate for application of

generalized linear programming.

At iteration K of the algorithm, K points m have been

generated and the corresponding master problem is:

T K-1 T t-l
(MP1 ) Min O(t) cijxij(t) + k (t) F( Z mik ()) mik (t)]

t=O i,j k=O t=O i T=0

s.t. (1) Z wijxij(t) = dj(t) all j, all t
i

(2) E xij(t) - mi(t) = 0 all i, all t

K-l k

K-1

(4) Z X =1
k=O

xij(t) > 0 all i,j,t

The procedure is started with only one point k = 0 based on the intuitive

solution:

0 0
mit) = x (t) all i, t

ij

where xi(t) was defined in section 1.2.

Letting ik (t) be the dual variables to constraints (3), the corresponding

subproblem is:
T t-l

(SUB 1) Min t iO(t) Fi( mi(T)) mi(t) - . (t) mi(t)
t=0 i T=0

m i (t) > 0

all i, t
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This problem is separable in i, thus we just have to solve one sub-

problem for each resource i:

T t-l k
(SUB i) Min E p(t) Fi( m.(T)) mi(t) - wi (t) m(t)

mi(t) > 0 t=0 T=0

all t

With our assumption on the functions Fi (they are non-decreasing), this

problem involves minimization of a pseudo convex function on RT [6].

Hence any local minimum is a global minimum, and could be found by

solving the optimality conditions:

T-1
p(T) Fi( Z mi(t)) - i (T) > 0 and = 0 if mi(T) > 0

0

t-l , t
p(t) Fi( Z mi(T)) + p(t+l) mi(t+l) Fi (E mi(T)) +......

0 0

,T-1 k
+ p(T) mi(T) Fi( Z mi (T))- i (t) > and = 0 if mit) > 

0

for t = ....T -

In theory, this system could be solved by backward recursion, starting

with period T, especially when the positivity constraints are dropped.

But, due to the erratic behavior of the dual variables in the first

iteration of the algorithm, it was found in practice that the procedure

reacted very poorly to the vector sent back to the master problem by

solving this system. HIence it was preferred to solve (SUBi) directly

by dynamic programming.

For a given resource i, let Vit(si) be the optimal value of the
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objective function of(SUBi) from period t to T, when the state of

the system is s i.e., when T-t periods remain. The recursive

relation satisfied by this function is:

Vit (si ) = min {((t)Fi(si) - xi(t)) mi(t) + Vit+l(si+mi(t))}
mi(t)>O

with ViT+ 0
iT+l

The decision variables mi(t) appearing in this minimization

problem vary continuously, and not discretely. Similarly the state

variables are continuous variables. But we can derive some upper

bounds on the values of the state variables in each period, hence

obtaining upper bounds for the variables mi(t). Thus the problem

can be discretized; an appropriate grid is defined with different

increments over the limits of the range in each period. The discrete

approximation to the subproblem is solved by dynamic programming.

The value of the objective function of the subproblem for the vector

thus obtained is compared to -, the dual variable of the convexity

row (4); if it is smaller than A, the vector is sent back to the

master problem and a new column is added to (MP1). Otherwise the grid

is refined, and so on, until a suitable vector is found, or until the

approximation is sufficient and the current solution is declared

optimal.

Hence, at each iteration, we solve only an approximation to

the subproblem. An advantage of this approach is that we do not have

to know Fi explicitly, neither its derivative. We just need a procedure
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which, given a value for si, returns a value for Fi(si); this can

be another model, such as an econometric model, or Zimmerman's model

for coal [11] . Whereas for solving the optimality conditions we need

to know both Fi and its derivative. Besides by using dynamic programm-

ing, we do not need to make any assumptions of the functions F. Of

course, then the subproblem may not involve minimization of a pseudo-

convex function, as is the case when the functions Fi are increasing.

4. Implementation Issues and Computational Results:

For our purpose, we experimented with a simplified, condensed and

aggregate version of BESOM. Most of the data were derived from BESOM

or related material [ 1 , [2], [10] . We start with a gross and global

model, where we do not distinguish explicitly between different real

technologies but we just consider xij to be the flow of energy from

resource i to end use j, using a fictitious technology with associated

cost and efficiency. (For instance, in our model, there is one variable

representing the quantity of coal converted into electricity, whereas

there are, in fact, several ways to produce electricity from coal). It

is not conceptually harder to consider all real technologies, but the

model has to be much more disaggregated, detailed and complex,

thus making computations longer and the data collection task more tedious.

The emphasis here is on comparing C!ifferent types of fuels and other

resources, examining substitution possibilities, rather than on comparing

different individual technologies.

The model will be gradually refined and the improvements will be

described as they are introduced. On the supply side, we start by con-

sidering only fossil fuels, to examine what would happen if the energy
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system relied entirely on depletable resources. The index i runs

from 1 to 5, and we distinguish between two types of coal, under-

ground and surface, two types of oil, domestic and foreign, and

natural gas. For the marginal extraction cost for each re-

source, we use for simplicity and lack of something better the

functions described above:

KiRi

iFi(si ) = Risi
The data for those are given in Table 1. The case of foreign oil is

somewhat delicate as the reserves are depleted by other agents than

the United States. We have experimented with alternative treatments.

These are described for each run. On the demand side, there are 11

demand categories: space heat, process heat and miscellaneous, water

heat, air conditioning, ore reduction, petrochemicals, four trans-

portation categories - rail, automobile, truck and bus, and air transpor-

tation - and miscellaneous electric. Time 0 is 1975. We experimented

with a 5-period model, 1975-80, 1980-85, 1985-90, 1990-2000, 2000-2020,

and a 6-period model where we added period 2020-2050.
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TABLE 1

(a) These numbers are quite arguable and controversial and we do
not claim to have exact figures. See [1], [3] and [10] for
different data.

The data common to all the runs are presented in the Appendix. They

are the demand for all categories for all time periods, the cost and

efficiency data for all the possible combinations, and the discount

factors based on interest rate of 5%. Electricity is both a

demand category and an intermediate source of enervgy. Hence the

corresponding row has to be rewritten in the following wav:

Xiel(t) - x elj(t) = del(t) for all t
i j

The units for the data are given in the Appendix. The decision varia-

bles xi(t) are in 1015 BTU and the cost function in 10 $.ii

Total Recoverable
Resources Capital cost K. Total Recoverable

i in $/106 BTU1 Resources at time 0
in 1015 BTU (a)

1 Underground
coal 1.2 31,900

2 Surface
coal .9 9,200

3 Domestic
oil 2.0 844

4 Foreign
oil 2.4 5,800

5 Natural
gas 1.75 780
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For each run we discuss both computational issues and the

numerical results obtained.

Run 1:

The model used for Runs 1 and 2 is the simplest, and has

the formulation (PDR), except that an upper bound is imposed on

the total quantity used of a resource, to make sure that no more

than what is left in the last period is used. This constraint is

si(T + 1) Ri for all i -

The planning horizon is 5 periods long (T=5), up to 2020.

For imported oil, the same type of function for marginal extraction

costs is used, as for other resources. But the demand for oil from

the rest of the world is assumed given, and contributes to the de-

pletion of foreign oil. Thus, in each period the amount of remaining

foreign oil is not only a function of the cumulative quantity domes-

tically used starting at time 0. We assume the following are the

demands for oil in each period of the rest of the world (in 1015 BTU):

425, 480, 530, 1170, 2695, leaving as the amount of recoverable

resources for foreign oil at the beginning of each period: 5800,

5375- s4 (1), 4895 - s4 (2), 4365 - s4 (3), 3195 - s4 (4), where s4(t)

are decision variables in the model.

The initial solution (intuitive solution) and the best known

solution are shown in Tables 2 and 3 respectively. The first thing

to notice is that with this planning horizon these data (demands, cost,
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TABLE 2

QUANTITIES EXTRACTED (1015 BTU)
FROM EACH SOURCE IN EACH PERIOD

PERIOD
t \ 1 3 4 5 6

RESOURCE
i 1975-80 1980-85 1985-90 1990-2000 2000-20 2020-50

Underground coal 11.16 13.23 15.715 35.876 79.675
1

Surface coal 139.23 167.94 190.39 415.065 1029.305
2

Domestic oil 102.87 104.385 0.0 0.0 636.745
3

Foreign oil 0.0 0.0 138.25 321.945 902.60
4

Natural gas 73.16 116.785 119.21 285.625 35.720
5

INITIAL SOLUTION

NUMBER OF GLP INTERATIONS: 1

OBJECTIVE FUNCTION VALUE=COST: 11875.80

(109$)
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TABLE 3

QUANTITIES EXTRACTED
FROM EACH SOURCE IN EACH PERIOD

BEST SOLUTION

NUMBER OF GLP ITERATIONS: 52

OBJECTIVE FUNCTION VALUE=COST: 11613.9492

LAGRANGEAN (APPROXIMATION):

PERIOD
t 1 2 3 4 5 6

RESOURCE
i 1975-80 1980-85 1985-90 1990-2000 2000-20 2020-50

Underground coal 11.155 13.217 15.711 35.866 79.670
1

Surface coal 139.258 107.9794 190.433 415.185 1029.340
2

Domestic oil 102.846 122.670 18.757 294.385 0.0
3

Foreign oil 0.0 0.0 119.463 27.560 1539.319
4

Natural gas 73.153 98.472 119.198 285.507 35.714
5

11604.7969
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etc.), the depletable resources are not exhausted by the end of

the 5 periods. Secondly, the best known solution gives an improve-

ment in the objective function (as compared to the initial solution)

of 261.85 units or 2.25%. These two solutions are very close, and

for all practical purposes the intuitive solution might be a satis-

factory approximation, at least in this case. This is investigated

further in the following runs.

We now analyze in more detail the differences between the two

solutions: in the first period, the quantities obtained are very

close, probably due to the linearity in the first period. Then, in

all periods, the last solution gives quantities extracted of coal

that are very close to those dictated by the initial solution. This

is due to the fact that the functions F1 and F2 are very flat, due

to large quantities of resources. The main differences occur for

oil, domestic and imported, and mostly in the distribution between

domestic and imported oil in each period, except in period 2, where

less gas is used than in the initial solution, and more domestic oil.

The reasons for this behavior are clear: for these data and planning

horizon, the resources are not exhausted and there is not much room

for substitution. The most critical resource is oil and this is

where sensitivity appears. Besides, the very simplistic structure of

the model creates the so-called flip-flop behavior for oil; i.e., either

the demand s satisfied entirely with domestic oil, or entirely with

foreign oil, using the cheapest in the current period. This is not

realistic, as the quantity of imported oil should be limited. This is

done in later runs (run 3 and subsequent).
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Run 2:

The model used for this run is the same as the one used for

run 1, with the following exceptions: the planning horizon is now

5 periods long (up to 2050) and there is no constraint on the total

usage of foreign oil, thus allowing the possibility of shortage in

the last period. As the rest of the world demand for oil in period

5 is 2695 x 10 BTU, the remaining recoverable resources at the

beginning of period 6 are 500 - s4 (5).

The results are displayed in Tables 4 and 5. The run was con-

ducted to optimality where is .05%. The absolute difference

between the initial solution and the optimal solution is 610.18, giving

a relative difference of 3.9%, which is still small.

In this run, domestic oil as well as natural gas are exhausted

in the last period. There is also a shortage of foreign oil in the

last period if the demand for oil from the rest of the world is not

lowered. By comparing Tables 4 and 5, we notice that the best solution

recommends more reliance on coal starting in period 4,as well as saving

domestic oil for use in the last two periods. Its' use is lowered in

the first two periods and is null in periods 3 and 4. (It is also

interesting to compare Tables 5 and 3.) Coal is used to produce elec-

tricity starting in period 4, and electricity is used as an alternative

source of energy to oil for transportation (rail, automobile) in the

last period. Hence we see a limited introduction of the electric car.

In conclusion, for this planning horizon we see the depletion

effect in action, thus making the recursive solution significantly

different from the optimal solution. Again here, the optimal solution
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TABLE 4

QUANTITIES EXTRACTED
FROM EACH SOURCE IN EACH PERIOD

PERIOD
t 1 2 3 4 5 6

RESOUR
\i 1975-80 1980-85 1985-90 1990-2000 2000-20 2020-50

Underground coal 11.16 13.23 15.715 35.876 79.676 163.301
1

Surface coal 139.23 167.94 190.39 415.065 1029.305 6590.570
2

Domestic oil 102.87 106.385 0.0 0.0 636.745 0.0
3

Foreign oil 0.0 0.0 138.25 321.945 902.60 698.02
4

Natural gas 73.16 116.785 119.21 285.625 35.72 149.290

INITIAL SOLUTION

NUMBER OF GLP ITERATIONS: 1
OBJECTIVE FUNCTION VALUE = COST: 16322.7734
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TABLE 5

QUANTITIES EXTRACTED
FROM EACH SOURCE IN EACH PERIOD

BEST SOLUTION

NUMBER OF GLP ITERATIONS: 66
OBJECTIVE FUNCTION VALUE = COST: 15712.586
LAGRANGEAN (APPROXIMATION): 15708.656

R X 1 2 3 4 5 6

1975-80 1980-85 1985-90 1990-2000 2000-20 2020-50

Underground coal 11.155 13.217 15.711 105.02 664.224 1129.647
1

Surface coal 139.258 175.089 242.391 539.104 1192.661 4377.262
2

Domestic oil 44.955 45.617 0.0 0.0 278.262 475.167
3

Foreign oil 47.733 58.757 118.484 280.011 394.442 512.490
4

Natural gas 83.312 109.430 85.300 128.141 130.330 243.396
5
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advocates a heavy reliance on foreign oil, which is unrealistic and

in complete disagreement with the government policy of independence.

As mentioned before, this is corrected in subsequent runs by limit-

ing the quantity of oil imported. The second drawback of this solu-

tion is that it recommends a sudden reliance on coal, thus making

the extraction of coal grow at a fast rate. This is unrealistic as

the productive capacity of coal has to be built progressively. This

will be modified in run 5 and subsequent.

Run 3:

Runs 3 and 4 differ from runs 1 and 2 mainly by the way they

treat foreign oil. Here the depletion effect of foreign oil by United

States consumption is neglected; i.e., it is assumed that the United

States demand for non-United States oil is small compared to the

world demand. This is equivalent to saying that the cost of foreign

oil is given in each period and independent of the decision variables

of the model, or that the supply or foreign oil is perfectly elastic

at a given price in each period. To determine these costs, we just

use the function of the previous runs, using some forecasted world

demand for oil (see [3] ) to obtain the cost in each period, as given

in Table 6.

We also impose a limit on the quantity of foreign oil imported

in each period. The upper bound is equal to 40% the forecasted United

States demand for oil in each period if things remain the same; i.e.,

the present usage of oil continues in the future, with no substitution or
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TABLE 6

PERIOD 1 2 3 4 5 6

Price of foreign
2.24 2.415 2.654 2.976 4.066 25.984

oil $/10 BTU

. _ . _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~j
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TABLE 7

QUANTITIES EXTRACTED
FROM EACH SOURCE IN EACH PERIOD

INITIAL SOLUTION

NUMBER OF GLP ITERATIONS: 1

OBJECTIVE FUNCTION VALUE = COST: 12162.53

PERIOD
t

tS 1 2 3 4 5 6

RESLU1975-80 1980=85 1985-90 1990-200 2000-20 2020-50

Underground coal 11.16 13.23 15.715 35.876 79.676
1

Surface coal 139.23 167.94 190.390 415.085 1509.382
2

Domestic oil 61.72 62.63 82.95 193.167 443.53
3

Foreign oil 41.141 41.754 55.30 128.778 600.25
4

Natural gas 73.460 116.785 119.21 285.625 35.72
5

________________________________________________ -_______________________
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TABLE 8

QUANTITIES EXTRACTED
FROM EACH SOURCE IN EACH PERIOD

BEST SOLUTION

NUMBER OF GLP ITERATIONS: 105

OBJECTIVE FUNCTION VALUE = COST: 11812.102

LAGRANGEAN:

1 2 3 4 5 6

1975-80 1080-85 1985-90 1990-2000 2000-20 2020-50

Underground coal 11.155 15.782 61.732 35.866 79.670
1

Surface coal 139.258 183.808 144.412 415.186 1777.215
2

Domestic oil 61.698 80.916 63.184 193.107 606.561
3

Foreign oil 41.148 41.754 55.30 128.778 266.142
4

Natural gas 73.153 79.484 138.934 285.507 130.330

11770.246
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introduction of new technology. Maybe we would prefer to express

this in the following way: the quantity of oil imported in each

period cannot be more than a certain percentage of the total oil

consumption in the United States in that period. But this formulation

would create difficulties when domestic oil starts to be in short

supply as, if there is no domestic oil remaining to be extracted, then

no oil can be imported. This is not desirable, as imported oil would

be very important in a transition phase.

In this run, the planning horizon is 5 periods long. The results

are summarized in Tables 7 and 8. The optimal solution and the ini-

tial solution are still very close in total cost (relative difference

of 3%). The quantities recommended by each solution in each period

are not very different. The optimal solution recommends using more

coal in periods 2 and 5. In this solution, imported oil is always

used at its upper bound, except in the last period, where it is replaced

by coal and gas; less gas is used in period 2. No resource is exhausted

before the end of the planning horizon. Again here, the optimal solu-

tion recommends more reliance on coal than is probably feasible.

Run 4:

It is the same as run 3 with a 6-period planning horizon. Results

are summarized in Tables 9 and 10. Now the initial solution and the

best solution are significantly different (12%). The optimal solution

advocates even more reliance on coal than in Runs 3 and 2, calling for

the same comments as before. Domestic oil and natural gas are

exhausted by the end of the 6th period. Imported oil is always used at
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TABLE 9

QUANTITIES EXTRACTED
FROM EACH SOURCE IN EACH PERIOD

INITIAL SOLUTION

NUMBER OF GLP ITERATIONS: 1

OBJECTIVE FUNCTION VALUE = COST: 17533.137

PERIOD 1 2 3 4 5 6
t.

RESOURCE 1975-80 1980-85 1985-90 1990-2000 2000-20 202,0-50
i 

Underground coal 11.16 13.23 15.715 35.876 79.675 163.30
1

Surface coal 139.23 157.94 190.39 415.065 1509.38 6582.56
2

Domestic oil 61.722 62.63 82.95 193.167 443.53 0.0
3

Foreign oil 41.141 41.754 55.30 128.78 600.25 689.74
4

Natural gas 73.16 116.785 119.21 285.625 35.72 149.29
5

RUN 4
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TABLE 10

QUANTITIES EXTRACTED
FROM EACH SOURCE IN EACH PERIOD

BEST SOLUTION

NUMBER OF GLP ITERATIONS: 43

OBJECTIVE FUNCTION VALUE = COST: 15716.13

LAGRANGEAN:

PERIOD 1 2 3 4 5 6
t

RESO 1975-80 1980-85 1985-90 1990-2000 2000-20 2020-50

Underground coal 11.50 23.78 22.36 82.35 627.28 2317.24
1

Surface coal 138.92 157.41 260.02 550.57 1229.60 2662.67
2

Domestic oil 45.29 62.62 63.18 151.23 56.97 466.71
3

Foreign oil 47.148 41.75 55.30 128.78 615.74 689.74
4

Natural gas 89.56 116.77 60.24 139.71 130.33 243.40

RUN 4

15637.59
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its maximum availability. If the upper bound is made tighter in

the last period, the problem becomes infeasible. The quantities

given in Table 10 are probably unrealistic in the sense that foreign

oil would be in shortage before the end of the planning horizon.

This proves again that the beginning of the 21st century is a critical

time, where it will be necessary that new technologies be implemented.

The advantage of the model used in Runs 3 and 4 is that it

allows for testing the policy which aims at some independence from

the rest of the world by reducing the size of oil imports. The per-

centage of oil imports can be made smaller and smaller, until feasi-

bility is lost. This is also a critical issue for the introduction

of new technologies.
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5. Discussion of the model and possible extensions:

5.1 The first extension that comes to mind is to add to the realism

of the model, thus making its structure more complex. This could be

done, for instance, by including additional constraints, such as pollu-

tion control, capacity limits, political and institutional constraints.

The next possibility would be to disaggregate the model, taking into

account more demand categories and/or more technologies, thus describ-

ing the energy system in more details. For example, the methodology

described in the previous sections could be applied directly to BESOM

which is quite detailed and large already. It would be straightforward

to apply the algorithms and programs described above to these models.

5.2 We always assumed demands to be given and inelastic in each

period. It would be very important to model demand elasticities at

least within periods. This is, for instance, critical if we want to

model conservation policies. Pure conservation, i.e. reduction in demand,

or conservation through increased efficiency can be taken into account

through model (PDR), by making the stream of demand over time more

slowly increasing or constant. But, to assess the consequences of

taxes or tax credits, we need to make demand elasticities explicit (at

least self elasticity in this case).

Also it is very important to allow substitution in the transporta-

tion sector for instance. The transportation sector is the most reliant

on oil. When oil runs out and if independence is preferred, gasoline

for cars will become increasingly more scarce and more expensive;
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consumers may demand less transportation by living closer to their

working place, thus the importance of self elasticity, or may use

increasingly more public transportation, where electricity can be

used more easily, thus the importance of cross-elasticity. Commercial

transportation may rely more heavily on rail and less on trucks. If

demand functions could be estimated for each period, some revenue

function or welfare function such as consumers' surplus could be

used in the optimization problem. This function could be linearized

by using generalized linear programming as is done above for the cost

function.

5.3 A question which was ignored all through this paper is the

problem of terminal conditions and planning horizon. The only time

terminal conditions are vaguely specified is by putting upper bounds

on the total quantity consumed of a resource. The problem of specify-

ing a planning horizon is very critical and very hard in long-term

planning. The optimal strategy is heavily dependent on the planning

horizon specified, as a set of equations admits a feasible solution

for some value of the planning horizon and does not when its value

is slightly increased, thus creating serious discontinuities. But

this problem would not be so serious for (PNT) as,when non-depletable

resources are introduced, they would allow for feasibility to infinity.

This would ensure the existence and implementation of a backstop tech-

nology as used by Nordhaus [7] and others. For problem (PDR) the

time at which feasibility is lost, i.e. when exhaustion of resources occurs,

for a given set of resources could be characterized and then used as

planning horizon.
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5.4 The next extension to problem (PDR) and also its motivation is

problem (PNT) which will be discussed, together with methods to solve

it and its solution, in a forthcoming paper.

Footnotes:

. Note that for large Ri,this function is nearly constant (very

flat), i.e., a resource existing in large quantity can be con-

sidered nearly non-depletable.

2. The objective function of (PDR) is not convex but it is pseudo-

convex (see Mangasarian [6] ).

3. This new variable will have a negative reduced cost and will

enter the basis in (MP1).
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Technology Matrix With Cost and Efficiency Data

processing cos COAL OIL GAS HYDROPOWER NUCLEAR ELECTRICITY
($/106 BTU)

(Efficiency Under Sur- Domes- For-
Factor) ground face tic eign

Space Heat 3.13 2.92 2.79 3.48

_ _ (.97) (.91) (.91) (.9

Process eat .34 .41 .29 .4

.... ___ _ (.97) (.91) (.91) (.9

Water Heat 2.11 2.37 i 2.47

._......_.. , (.91) (.91) ,, I (.9

Air Cona. 24.51 24.56

............ - -... _ K (.91) (.9

Ore Reduction .37 .5

(.97) \, _ .. . (.9

Petrochemicals .13 .65 .22

(.97)._ (. 91) . _ -..

Rail 5.8 26.72

...... (91) (.9

Automobile 6.18 29.41

.91) ( .9

Truck-Bus 17.83

91

Air Transp. 4.42

(.91 -

Electricity 10.27 8.38 7.79 7.30 10.33

(.32) (.31) (.31) ( .37) (.32)i

Notes: Cost includes: capital cost, operating cost, maintenance cost, fuel delivery cost,
enduse cost; but not extraction cost.

Efficiency factors do not take account of end use efficiencies.
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Demand Data

PERIOD 1 2 3 4 5

DEMAND \ 1975-80 1980-85 1985-90 1990-2000 2000-20 i2020-50

lo5 B Tu) 

Space Heat 56.3 60.16 62.15 129.08 276.26 509.04

Process Heat & Misc. 57.83 71.84 83.06 186.41 509.5 1436.67

Water Heat 14.93 16.65 17.96 38.16 86.1 ! 160.26

Air Cond. 1.93 3.13 4.73 13.26 32.5 61.23

Ore reduction 10.82 12.82 15.24 34.79 77.28 i 158.4

Petrochemicals 20.95 30.94 39.51 87.24 212.7 l 474.09

Rail 3.08 3.27 3.65 8.08 19.7 43.89

Automobile 45.61 49.74 52.39 117.22 256.74 i 521.28

Truck - Bus 18.92 24.43 28.3 66.70 163.16 295.95

Air Transportation 11.00 17.54 23.48 62.81 172.56 330.15

Misc. Electric 22.02 29.46 35.34 83.99 239.32 586.47

Discount Factor
P .885 .684 .543 .377 .181 i .054

(Interest rate 5% )

_________ ____ ___ ____ _____ ____ ____ I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Note: Demands are corrected for end-use efficiency.


