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Abstract

Our concern lies in solving the following convex optimization prob-
lem:

Gp: minimizer cTx
s.t. Ax = b

x E P,

where P is a closed convex subset of the n-dimensional vector space
X. We bound the complexity of computing an almost-optimal solution
of Gp in terms of natural geometry-based measures of the feasible re-
gion and the level-set of almost-optimal solutions, relative to a given
reference point xr that might be close to the feasible region and/or the
almost-optimal level set. This contrasts with other complexity bounds
for convex optimization that rely on data-based condition numbers or
algebraic measures, and that do not take into account any a priori ref-
erence point information.
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GEOMETRY-BASED COMPLEXITY

1 Introduction, Motivation, and Main Result

Consider the following convex optimization problem:

Gp: z* := minimums cTx
s.t. Ax = b

x E P,

where P is a closed convex set in the (finite) n-dimensional linear vector space
X, and b lies in the (finite) m-dimensional vector space Y. We call this prob-
lem linear optimization with a ground-set, and we call P the ground-set. In
practical applications, P could be the solution of box constraints of the form
1 < x < u, a convex cone C, or perhaps the solution to network flow con-
straints of the form Nx = b, x > O. However, for ease of presentation, we will
make the following assumption:

Assumption A: P has an interior, and {x I Ax = b} n intP 0.

For > 0, we call x an -optimal solution of Gp if x is a feasible
solution of Gp that satisfies CTX < z* + . The chief concern in this paper
is an algorithm and associated complexity bound for computing an -optimal
solution of Gp.

Let It be any norm on X, and let B(x, r) denote the ball of radius r
centered at x:

B(x, r) := {w X II w - xI < r}

The norm 11 might be a problem-appropriate norm for the actual problem
context at hand. However, in Section 5.1, we will examine in detail two norms
on X that arise "naturally" in association with the ground-set P.

The computational engine that we will use to solve Gp is the barrier
method based on the theory of self-concordant barriers, and we presume that
the reader has a general familiarity with this topic as developed in [5] and/or
[7], for example. We therefore assume that we have a p-self-concordant bar-
rier Fp(.) for P. We also assume that we have a l, 1i-self-concordant barrier
Fl1 II(') for the unit ball:

B(O, 1) = {x I IxI < 1}

The work here is motivated by a desire to generalize and improve sev-
eral aspects of the general complexity theory for conic convex optimization
developed by Renegar in [7], key elements of which we now attempt to sum-
marize in a brief and somewhat simplified manner. In [7], the general convex
optimization problem Gp is assumed to be conic, that is, P is assumed to
be closed convex cone C, and the data for the problem is given by the array
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GEOMETRY-BASED COMPLEXITY

d = (A, b, c). One complexity result that can be gleaned from [7] is as fol-
lows: assuming that Gp has a feasible solution, there is an algorithm based
on interior-point methods that will compute an -optimal solution of Gp in

O cn C(d)+c + + ds-,)+
C dist(t, C) min{, ldl} JJ

iterations of Newton's method (see Theorem 3.1 and Corollary 7.3 of [7]),
where we use the notation ?c to denote the complexity value of the barrier for
the cone C. Here x C C is a given interior point of the cone C that is specified
as part of the input to the algorithm, dist(i, AC) is the distance from x: to the
boundary of C, Ildll is the (suitably defined) norm of the data d, and is a
positive scalar that must be specified as input to the algorithm. The quantity
C(d) is the condition number of the data d, defined as:

C(d) :- ind , (2)
min{pp(d), pD(d)}

where pp(d), pD(d) are the primal and dual distances to ill-posedness, see [7]
for details and motivating discussion. (C(d) naturally extends the concept
of condition number of a system of equations to the far broader problem of
conic convex optimization.) The complexity result (1) is remarkable for its
breadth and generality, as well as for its reliance on natural data-dependent
concepts imbedded in condition-number theory. In order to keep the presen-
tation brief, we have shown a simplified and slightly weaker complexity result
in (1) than the verbatim complexity bound in [7]. Furthermore, [7] has many
other complexity results related to conic convex optimization in finite as well
as infinite-dimensional settings.

While the significance of (1) and the many related results in [7] cannot
be overstated, there are certain issues with this type of complexity bound that
are not very satisfactory. One issue has to do with undue data dependence.
Given a data instance d = (A, b, c) for Gp and a nonsingular matrix B and
a vector ir of multipliers, we can create an equivalent representation of the
problem Gp using the different data d = (A, b, c) := (B-1A, B-lb, c - ATr).
The two data instances d and d will generally give rise to different complexity
bounds using (1) since in general C(d) C(d), etc., yet both data instances
represent the same underlying optimization problem.

Another issue with the condition number approach is that the prob-
lem must be in conic form. While any convex optimization problem can be
transformed to conic form, such a transformation might not be natural (such
as converting a quadratic objective to a linear objective using a second-order
cone constraint, etc.) or unique (and so might further introduce arbitrarily
different data for the same original problem). Yet a third issue with the condi-
tion number approach has to do with the fact that the theory assumes that the
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GEOMETRY-BASED COMPLEXITY

data is arising only in the linear equation system and the objective function,
and that the cone C is fixed independent of any data. In this format, data
used to defined the cone is not accounted for in the theory.

A fourth issue has to do with the role of the starting point . The
bound (1) is not dependent on or sensitive to the extent to which jx might be
nearly feasible and/or nearly optimal. It would be nice to have a complexity
bound that accounted for the proximity of x to the feasible and/or optimal
solution set.

The algorithm and analysis presented in this paper represent an at-
tempt to overcome the above-mentioned issues. In Sections 3 and 4, we develop
and analyze interior-point algorithms FEAS and OPT for finding a feasible so-
lution t of Gp and an -optimal solution x of Gp, respectively. This pair of
algorithms and their complexity analysis depend on certain geometry-based
measures for analyzing convex optimization problems and the concept of a
reference point xr, which we now discuss.

1.1 Reference Point and Interior Point

The phase-I algorithm FEAS requires that the user specify two points as part
of the input of the algorithm, the reference point xr, and an interior point
x° E intP. The reference point r might be chosen to be an initial guess of
a feasible and/or optimal solution, the solution to a previous version of the
problem (such as in warm-start methodologies), or the origin 0 of the space
X, etc. If P is the box defined by the constraints I < x < u, then xr might
be chosen as a given corner of the box such as Xr -= I; if P is convex cone
C, -x might be chosen to be the origin x = 0, or a known point on the
boundary or the interior of C, etc. Certain properties of Xr will enter into the
complexity bounds derived herein, particularly related to the distance from
xr to the feasible region, to the set of -optimal solutions, and to the set of
nicely-interior feasible solutions. There is no assumption concerning whether
or not xr is in the ground-set P or satisfies the linear equations Ax = b.

Algorithm FEAS also requires an initial point x° E intP. This interior
point will be used in many ways to measure how interior other points in P
are. (By analogy, in linear optimization e := (1,..., 1)T is used to measure
the positivity of other vectors v by computing the largest a for which v > ae.)
It will be desirable for x°0 to be nicely interior to P. We define:

T := -F(XO) := min {dist(x ° , aP), 1} . (3)

Although the quantity dist(x° , 0P) will enter into our complexity bounds for
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GEOMETRY-BASED COMPLEXITY

solving Gp through the quantity (xO), we do not require that we know the
value of dist(x °, &P). However, for the two important classes of norms that we
will consider in Section 5.1, we will show that dist(x°, P) > 1 which implies
that (x 0 ) = 1; this will be very desirable from a complexity point of view.

1.2 Phase I Geometry Measure g

The complexity of the phase-I algorithm FEAS will be bounded by the follow-
ing geometric measure which we denote by g:

g := minimumx,r

s.t.

max{llx - r II, 1}

min {r, 1}

Ax = b

B(x, r) C P.

If we ignore for the moment the "1"s in the numerator
the ratio defining g, (4) could be re-written as:

g := minimumx

s.t.

and denominator of

dist(x rll

dist(x, aP)

Ax = b

xEP.

(5)

and so g (or j) measures the extent to which Xr is close to an interior feasible
solution x that is itself not too close to the boundary of P, and g (or j) is
smaller to the extent that Xr is close to feasible solutions x E intP that are
themselves far from the boundary of P.

The ratios defining g and arise naturally in the complexity of the
ellipsoid algorithm applied to the problem of finding a feasible solution of
Gp. If one were to initiate the ellipsoid algorithm at the ball centered at the
reference point xr with a radius given by Ilxr - ll + (where (x, f) are an
optimal solution of (5)), then it is easy to see that a suitably designed version
of the ellipsoid method would compute a feasible solution of Gp in O (n2 ln(j))
iterations, under the presumption that the norm 11- 11 is ellipsoidal. (We refer
readers to [4] for an excellent treatment of the ellipsoid algorithm.) In the more
typical context in continuous optimization where we do not have an a priori
bound on the distance from the feasible region to the reference point, there

(4)

~~~In
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GEOMETRY-BASED COMPLEXITY

is a natural projective transformation of the problem for which the ellipsoid
algorithm will compute a feasible solution of Gp in O (n2 ln(g)) iterations, see
Lemma 4.1 of [2]. Therefore g is a very relevant geometric measure for the
Phase-I problem in the context of the ellipsoid algorithm. Herein, we will see
that g is also relevant for the complexity of the Phase-I problem for a suitably
constructed interior-point algorithm.

Incidentally, the constants "1" appearing in the numerator and denomi-
nator of the ratio defining g in (4) appear for the convenience of the complexity
analysis, and could be replaced by any other positive absolute constants 71, 72.

1.3 Phase II Geometry Measure De

Our complexity analysis of the phase-II algorithm OPT will rely on the max-
imum distance from the reference point Xr to the set of c-optimal solutions:

D,:= max{ : -x Ax = b, x E P, CTx < z* } . (6)

At first glance it may seem odd to maximize rather than minimize in defin-
ing De. However, consider the ill-posed case when z* is finite but the set of
optimal solutions is unbounded, which can arise, for example, in semidefinite
optimization. Then the dual feasible region has no interior, and so we would
not expect to have an efficient complexity bound for solving Gp. In this con-
text, the more relevant complexity measure is the maximum distance to the
e-optimal solution set (which would be infinite in this case) rather than the
minimum distance (which would be finite in this case). Also, in [1] in the case
of conic optimization with xr 0, it is shown that D, defined using (6) is
inversely proportional to the size of the largest ball contained in the level sets
of the dual problem, and so De is very relevant in studying the behavior of
primal-dual and/or dual interior-point algorithms for conic problems.

1.4 Main Result

Theorems 3.1 and 4.1 contain complexity bounds on the phase-I and phase-
II algorithms FEAS and OPT, respectively. Taken as a pair, the combined
complexity bound for the algorithms to compute an e-optimal solution of Gp
using the reference point xr and the interior-point x ° is:

5



GEOMETRY-BASED COMPLEXITY 6

( Op -P + 11 I +- min{dist(x0,P),1} + IxO - rl 
O V/0p + 1 I11 In ) (7)

+g + D + max{ , 1}

iterations of Newton's method, where the

:= max{cTw I liwl < 1,Aw = } < IlcI .

Note that (7) depends logarithmically on the phase-I and phase-II geometry
measures g and D,, the inverse of the distance from x° to the boundary of P,
as well as the distance from x° to the reference point xr.

In Section 5.1, we present two choices of norms 11. * on X that arise
naturally and for which the complexity bound (7) simplifies to:

( ln (g + D +p + max {-,1} + xox0 rI))

iterations of Newton's method. In Section 5.2, we show how the condition-
number based complexity bound (1) can be derived as a special case of Theo-
rems 3.1 and 4.1.

2 Summary of Interior-Point Methodology

We employ the basic theoretical machinery of interior-point methods in our
analysis using the theory of self-concordant barrier functions as articulated
in Renegar [7] and [8], based on the theory of self-concordant functions of
Nesterov and Nemirovskii [5]. The barrier method is essentially designed to
approximately solve a problem of the form

OP: z = min{cTw I w E S),

where S is a compact convex subset of the n-dimensional space X, and E X*.
The method requires the existence of a self-concordant barrier function F(w)
for the relative interior of the set S, see [7] and [5] for details, and proceeds
by approximately solving a sequence of problems of the form

OPF,: min{Tw + F(w) w E relintS},

for a decreasing sequence of values of the barrier parameter P. We base our
complexity analysis on the general convergence results for the barrier method
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presented in Renegar [7], which are similar to (but are more accessible for
our purposes than) related results found in [5]. The barrier method starts
at a given point w ° E relintS. The method performs two stages. In stage I,
the method starts from w ° and computes iterates based on Newton's method,
ending when it has computed a point ti that is an approximate solution of
OPA for some barrier parameter that is generated internally in stage I. In
stage II, the barrier method computes a sequence of approximate solutions wk
of OP,, again using Newton's method, for a decreasing sequence of barrier
parameters k converging to zero. The goal of the barrier method is to find
an -optimal solution of OP, which is a feasible solution w of OP for which
cTW < + E. One description of the complexity of the barrier method is as
follows:

* Assume that S is a bounded set, and that w ° E relintS is given. The

barrier method requires

O( ln ( sym(wO, S ) )) (8)

iterations of Newton's method to compute an c-optimal solution of OP.

In the above expression, R is the range of the objective function TW

over the set S, that is, R = zu - zl where

zl =min{cTw I wES} and zu = max{ T w w S),.

and sym(w, S) is a measure of the symmetry of the point w with respect to
the set S, and is defined as

sym(w, S) := max{t y E S w-t(y-w) E S).

This term in the complexity of the barrier method arises since the closer the
starting point is to the boundary, the larger is the value of the barrier function
at this point, and so more effort is generally required to proceed from such a
point.

The barrier method can also be used in equation-solving mode, to solve
the system:

wESw E S (9)
Tw = (9)

for some given value of d. A description of the complexity of the barrier method
for equation-solving mode is as follows:

_11__···_____1_··___1_1_�·1�__�_�_
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GEOMETRY-BASED COMPLEXITY

* Assume that S is a bounded set and that w ° E relintS. If 6 E (z l, zu),

the barrier method requires

( x/ln (0± sym(wO, S) +-min {zu - 6, - z l} (10)

iterations to compute a point tb that satisfies zt E S, T = . Further-

more, &2 will also satisfy:

sym(&t, T) > 3.5 +1.25 (11)

where T is the level set:

T :={w w E S,i Tw = 6)

Because it will play a prominent role in our analysis, we present a derivation
(11) based on [5] and [7], under the assumption that S has an interior and
contains no line. Let wc denote the analytic center of T, namely

w := argminw {F(w) I w T}

For w E S, let I denote the norm induced by the Hessian H(w) of the
barrier function F(.) at w, namely IIvIIw := vTH(w)v, and let 7(w) denote
the Newton direction for F(.) at w, namely (w) := -H(w)-lVF(w). Recall
from Proposition 2.3.2 of [5] that all w E T satisfy 11w - wc IIw < 3 + -1.
There is a fixed constant y < 1, the value of y being dependent on the specific
implementation of the barrier method, such that the final iterate &z E T of
the barrier method will satisfy Jl(t) - jCll j< -y for some multiplier A. By
taking a fixed extra number of Newton steps if necessary, we can assume that

y . Then from Theorem 2.2.5 of [8] we have lT - w cl < Y+ (13 9,
and so for all w E T we have

11w - wlIk < jw - wl + IwC -

< ( ) 1W - Wc
lw

c 9 (12)

< 8(39 + 1)+.
< 3.50 + 1.25.

(The second inequality above follows from Theorem 2.1.1 of [5].) Furthermore,
if w satisfies TW = and l w- ll ,< 1, then w E T (also from Theorem 2.1.1
of [5]), and together with (12) this then implies that sym(&, T) > 312

--3.50+1.25 '

8
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Remark 2.1 Note that (11) implies that for any objective function vector

s E X*:

max sTw- sT < (3.50 + 1.25) (ST - min sT)
wET w- ET

T (> I - Tmaxs w-s > ( (S-
wET - 3.59+ 1.25 

min sTW
wET

3 Complexity of Computing a Feasible Solu-

tion of Gp

In this section we present and analyze algorithm FEAS for computing a feasible
solution of Gp using the barrier method in equation-solving mode. The output
of algorithm FEAS will be a point that will satisfy Ax = b, E P, as well as
several other important properties that will be described in this section. The
computed point x will also be used to initiate algorithm OPT, to be presented
in Section 4, that will start from x and will then compute an e-optimal solution
of Gp.

Algorithm FEAS will employ the barrier method in equation-solving
mode to solve the following optimization problem denoted by P1 :

P1 : t* := maximums,t, t

s.t. Az = (b- Axr)0
z + OXr - tx ° E ( - t)P
0<1

(15)

0>t
t > -2
11z _< 1

where Xr and x°0 are the pre-specified reference point and interior-point, re-
spectively, and where we use the notation caP as follows:

{x E X x = w for some w E P}
recP
0

if a > O
if a = 0
if c < 0

(16)

and

(13)

(14)

_ �_II I�_ 1_1 __
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and where recP denotes the recession cone of P.

Note that P1 is an instance of the optimization problem OP of Section
2, with w = (z, t, 0), = (0, 1, 0), etc. We will employ the barrier method in
equation-solving mode to solve P1 for a feasible solution (, t, 0) with objective
value TW = := 0, i.e., for a feasible solution (, t, 0) of P1 for which t = 0. We
will then convert this solution to a feasible solution of Gp via the elementary
transformation:

:= + xr (17)
0

(where the algorithm will ensure that 0 > 0 and so (17) will be legal). Note
that if (, 0, 0) is feasible for P1 and 0 > 0, then it is straightforward to verify
that from (17) satisfies Ax = b, EC P.

In order to solve P1 for a solution (z,t, 0) = (2,0,0), we first must
construct a suitable barrier function for P1. Let S1 denote the feasible region
of P1, namely:

S :={(z,t, ) I Az = (b-Axr)0, + X _ tX0 (O-t)P, < 1, 0 > t, t >-2, z <1} 
(18)

and consider the barrier function:

F(z, t, 0) :=-ln(t+2)-ln(1-0)+Fi 1(z)+400 [F( + OX - tO) -2p ln(O - t)

(19)

Define:
0 := 2 ? 011 + 800dp.

Then from the barrier calculus, and in particular from Proposition 5.1.4 of [5],
we have:

Proposition 3.1 F(z, t, ) is a -self-concordant barrier for S1. I

Note that = ( + ,91 11).

We will initiate the barrier method at the point (z, t, 0)° := (0, -1, 0).
Thus our algorithm for finding a feasible point of Gp is as follows:

Algorithm FEAS: Construct problem P1 and the barrier function (19). Us-
ing the starting point (z,t, )° := (0,-1,0), apply the barrier method, in

_I-~X _1 _ II _
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GEOMETRY-BASED COMPLEXITY 11

equation-solving mode, to compute a feasible solution (, t, 0) of Pi that sat-
isfies t = = 0. If such a solution is computed, then compute t using (17).

We now examine the complexity of algorithm FEAS. To do so, we first
bound the symmetry of S1 at the point (z, t, 0)0:

Proposition 3.2 (z, t, 0)0 := (0, -1, 0) is a feasible solution of Pi, and

sym ((z, t, )0, s1) min {dist(x 0, OP), 1}
sym ( ( z , t , ) , S > 3 + 211)0 - x-1[

The proof of Proposition 3.2 is deferred to the end of the section.

We will also need the following relationship between the optimal value
of Pi and g :

Proposition 3.3 Let t* denote the optimal value of P1. Then

01(min {dist(x °, oP), 1}) < - < ( +1 + - x11) 

The proof of Proposition 3.3 is also deferred to the end of the section.

We next examine the range of the objective function value of P1. Be-
cause

zu =max{t I (z,t, 0) E Si} = t* < 

(from the constraints t < 0 < 1 of P1) and

z = min{t I (z, t, 0) C S 1 } > -2,

we have

R := max{t I (z,t,O) E S1} - min{t (z,t,O) E S < 3. (20)

Finally, observe that z < -1 (from Proposition 3.2), and so with := 0 we
have:

min{zu - , 5 - z) > min{t*, 1) = t* >
1

g (g + 1 + 1x0 - xr ) 

where the last inequality is from Proposition 3.3. Combining Propositions 3.2
and 3.1 as well as (20) and (21), and using (10) and Proposition A.1 of the
Appendix, we obtain the following:

(21)

_ _1 � �I _^··IY-·IU-C-�-OII-�_II�. _(·_



GEOMETRY-BASED COMPLEXITY 12

Theorem 3.1 Under Assumption A, algorithm FEAS will compute a feasible

solution (2, t, 0) of P1 and by transformation a feasible solution x of Gp, in at

most:

min {dist(xO, OP), 1} + Ix -x r 1j +g))

iterations of Newton's method. 

Given the output (, t, 0) and the transformed point sx given in (17)
from algorithm FEAS, define the following set:

S2 := {x X Ax = b,x c P, IXxr-I } (22)

The following characterizes important properties of (2, t, 0) and x that will be
used in the analysis in Section 4:

Lemma 3.1 Suppose that Assumption A is satisfied, and let (, t, 0) and be

the output of algorithm FEAS. Then

(i) X E S2, and sym(t, S2) > 3.51.25

(ii) _ < (3.50 + 2.25)g

(iii) [ r - <rx < (3.50 + 2.25) g

(i) 1-0> 3.5+2.25

(V) 1 - Hi1z Ž 3.50+2.25

(vi) Let (x, r) be an optimal solution of (4). Then

(3.59 + 3.25)2 c , .

Proof of Lemma 3.1: It follows from Proposition 3.3 that t* > 0, and so from
the barrier method the point (, t, 0) = (, 0, 0) will satisfy A2 = (b - Axr),
Z + Oxr E int(0P), < 1, 0 > 0, and Ii2i < 1. Then 0 > 0 validates (17), and
also Ax = b, x E P, and jlt - Xr = 11p2I < , whereby we see that E S2.
This proves the first assertion of (i).
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Let T := S n {(z,t,0) t = 0} where recall that S is
region of P1, see (18), and let T2 := S1 n {(z,t,0) t = 0,0 = 0}.
(11), (, t, 0) = (, 0, it) will satisfy

the feasible
Then from

sym((2J, ), T) > 1
- 3.50 + 1.25

Furthermore, since T2 is the intersection of T1 with an affine space passing
through (, t, 0), then it also follows that

1
sym((, t, 0) T2) > 1.25

- 3.50 + 1.25

Also, the affine transformation (z, t, 0) ( + xr) maps T 2 onto S2 (see (22))
and maps (, t, 0) to x, and since symmetry is preserved under affine transfor-
mations, it follows that

1
sym(g, S2) > 1.25

- 3.5V + 1.25
(23)

completing the proof of (i).

Let := min{lx - xr IAx = b,x C P}, and note that

1I I 1
max 0= = > - -

(z,t,O)CTi max{5, 1} - max{g, 1} g

since g > a and g > 1. Noting as well that min(,,t,o)ET 0 = 0, it follows from
(13) that

(3.5i + 1.25)0 = (3.5z9 + 1.25)(0 - min(Z,t,0)CT1 0)

> max(z,t,o)cT 0 -

> I -
g9

and rearranging yields < (3.50 + 2.25)g. This proves (ii). (iii) then follows

since II - xr = 11 < < (3.5 0 + 2.25)g. Noting that max(,t,o)T 1 0 < 1 and
it follows from (14) that

min(,t,o)eT 0 = 0, it follows from (14) that

1 - > max(,t,o)eT1 0 - > ( 3 1 25)( - min(,t,O)cET 0)3.573+1.25-

3.50+1.25

and rearranging yields 1 -0 > 9125 which proves (iv).--3.50+2.25 '

13



GEOMETRY-BASED COMPLEXITY 14

We now prove (v). Given , there exists E X* satisfying 11 ,* = 1
and fT 2 = 1111, see Proposition A.3 of the Appendix. Then

1-f- 2l > max(z,t,)ET Tz _-- T

> (3.5+125)(T Z-min(,t,O)eT ZTz)

Ž (3 .50+1.25 )(11l - 0)

where the second inequality above is from (14), and rearranging yields 1 -

11 1 < ( 35+2.25)' proving (v).

In order to prove (vi), we will use the following claim:

there exist (, ) satisfying Ax = b, B(, r) C P, - xrll + = , (24)

and
min{, 1}

-> g(3.5 9 + 3.25) (25)

where (x, r) is an optimal solution of (4). We assume for the rest of the proof
without loss of generality that < 1 and so min{r, 1} = r.

Before proving (24) and (25), we use them to prove part (vi) of the
Lemma. From (24) and (25) we have S2 and so from (23) x := -

(35_2_25)(x - 2) C S2 . Rearranging this, we obtain

3.5t9 + 2.25 1 1
= z $ -x + x (26)

= 3.50 + 3.25 3.53 + 3.25

and so is a convex combination of x E S2 and J E S2. It then follows from

(26) that B (, 350325) C [P B (r, )] which combined with (25) proves
(vi).

It remains to prove (24) and (25). We consider two cases:

Case 1: (g + )0 < 1. Let = and = . Then Ax = b, B(, r) C P, and
Xlzr- ll + r = (xr- l + < + oi Furthermore, r = r > 9(3.5o+3.25)'

and so (24) and (25) are proved.

Case 2: (g + r) > 1. Let x = (1 -)x + , where

1 + (3.50 + 2.25)((9 + r)-1) (27)

---.-I__
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and let = r3i. Then Ec [0, 1], and so A = b, and B(x, f) C P. Also,

II - xrI + = (1-)( - ) +( -xr)l + r

< (1- ) +llog+X11 

< _ p)(1)(3.5V+1.25
(1 - ) ( 33.59+2 25) + g + r

1

where the last inequality follows from part (v) of the lemma, and the last
equality follows directly from (27). Also,

r=/r= >
1 + (3.5z0 + 2.25)(/(g9 + ) - 1) 9(3.5t9 + 3.25)

since 0 < 1, r < 1, and g > 1. This then proves (24) and (25) in this case.I

Proof of Proposition 3.2: Note first that (z, t, 0)0 = (0, -1, 0) is feasible
for P1. It suffices to show that if (0 + d, -1 + a, 0 + ) is feasible for P1,
then (0 - fid, -1 - a, 0 - P6) is feasible for P1, where / = 3+21Io-xrIl' and

where T is given by (3). Note that < < . Since (O + d, -1 + a, O + ) is
by presumption feasible for P1, then Ad = (b - Axr)6, d + 6xr + (1 - a)x° E
( + - a)P, < 1, > - 1 + , Ildll < 1, -1 + o > -2, and it follows that

-2 < < 1 and -1 < c < 2 . (28)

Let (z, t, 0) := (-/d, -1 - a, -3). Then Az = (b - Axr)0, and IzII < 1
since , < 1. Also 0 = - < 2 < 1 from (28) and < . Next, notice that

1
0-t=--06 + 1 + a = 1 -(6 - a) > 1 (1+1) > 0from (28) and I< 2
Also, t = -1 - a/ > -2 since a < 2 and 3 I. It remains to prove that
z + Ox r- tx° E ( - t)P. To see this, note first that

[- d - S3(xr -x°)ll- a3 + 3/ < /(IIdII + 2IIxr - x° 11) + 2 (from(28))
< /(3 + 211xr - x°I)
= T .

Then

i +__a - d - 6(xr-x ° )II< (1 + 2 x - x° ll) (from(28))
1+211 X -X0°1 

\ 3-2+211xr-xO1

< T (since T < 1).

Therefore x 0 + P-y/ (-d - 6(xr - x°)) C P from (3), and rearranging yields

-/d- /3xr + (1 + a/)x E (1 + a/3 - /3)P,

____IYIII__IIIIIII____
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which is the same as z + Oxr - tx ° E ( - t)P. This shows that (z, t, 0) is
feasible for P1, and so sym((z, t, O)°, S) > / as desired.!

Proof of Proposition 3.3: Let (, r) be an optimal solution of (4), and note
from (4) that we can assume that r < 1. From Assumption A, r > 0. Define
the following:

z max{ xr, 1}' max{- , 1}' max{, (29)

where

g±1AiPj~xr~xoj= (30)
9g++ X1 |

'
- XO 

Then / < 1, since in particular g > 1, and from (29) we have Az = (b-Axr)9,
0 < 1, -2 < t < , and 1z11 < 1. If (z, t, 0) also satisfies

z + r - tx° E ( - t)P, (31)

then (z, t, 0) is feasible for P1, whereby

t* > t= r (32)
max{ Ijj-Xr 1} - g g(g ++ xrr - x ° )11 '

proving the second inequality of the proposition. Therefore, to prove the
second inequality of the proposition, we must show (31). Note first that

- Xxr1 > I + -° 11, (33)

and

0 It xol o I I 0 oI = 0 -°|O < r, (34)

where the last inequality above follows from (33), and 0 > t (since / < 1 and
r< 1), and so

+ Oxr - tO t
0 - t = + 0 t- x ) P

since from (34) we have tt I.-x 0I < and B(,r) C P. Therefore z+Oxr-

tx E ( - t)P, and we have proven the second inequality of the proposition.

To prove the first inequality of the proposition, let (z*,*, , 0*) be any
optimal solution of P1, and note from (32) that t* > 0. Therefore * > 0, and
define

z* t*T
X -= +xr, r = * (35)9* O*

where is defined in (3). Then Ax = b, and for any d satisfying IdI < we
have x°0 + Td E P from (3). Also, z* + *xr - t*x ° E (* - t*)P. If * > t*,
then

x + rd = _ t* Z) + x _ tx + (- (x°0 +d) E P.O* O* t O*-

1 _111_____·____�__1_·^�^l�-_IIIP�·__.
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If 0* = t*, then z* + O*xr - t*x° E recP, and so

Z* + 0*Xr - t*x 0

x + rd = + ( + Td) P.

In either case, x + rd E P, and so B(x, r) C P. Therefore

max{ lxr - xll, 1} = ax lxr- l1 g < max , 
minir, 1 r 7'

since r < 1. Now
1 0* 1
-= <

r t*T -t*T

and l- r= A LL < tLT, so g < 1t proving the left inequality of the
proposition.l

Certain ideas and constructs used in the results of this section arose
from or were inspired directly from Section 3 of Renegar [7], including the idea
of solving phase-I by using the barrier method in equation-solving mode, trans-
forming to the original problem via an elementary projective transformation,
and establishing key properties of the output of the algorithm (upper bounds
on norms and lower bounds on distances from constraints) using symmetry
properties of the output of the barrier method.

4 Complexity of Computing an -optimal So-

lution of Gp

In this section we present algorithm OPT for computing an e-optimal solution
of Gp initiated at the point x, using the barrier method in optimization-mode,
where x is the output of algorithm FEAS.

Using i as a starting point, we will modify Gp slightly by adding a level-
set constraint of the form "cTx < cT + - " to Gp for some suitably chosen
positive scalar offset s which will then render the point x in the interior of the
half-space generated by the constraint cTx < CTX + s. The question then arises
as to how to choose the offset . One would think that should be chosen
proportional to the norm of c :

lcll* := max {T I I WI < 1} . (36)

However, because the objective function cTx of Gp differs only by a constant
from the modified objective function (c - ATT)Tx over the feasible region of

17
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Gp for any given value of 7r, we must be mindful of the equations Ax = b.
From this perspective, it is natural to choose proportional to:

s := max{cTw iwil < 1, Aw = 0} , (37)

and note §s is the maximum objective value over the unit ball, "reduced" by the
subspace constraints Aw = 0, and so is the norm of the linear functional CTx
over the vector subspace of solutions to Aw = 0. However, even for otherwise
computationally tractable norms such as the Lo norm in Rn, the computation
of s is not trivial; in fact its computation is a linear program for the LX norm.
We therefore will instead use the information inherent in the barrier function
F1j II(.) for the unit ball as a proxy for the 1. j1 in constructing the offset . Let
H(0) denote the Hessian matrix of F11 II(.) at x = 0, and define:

s2 := max {cTw Aw = O, wTH(O)w < 1} , (38)

and note that 2 admits a closed form solution when rank(A) = m:

s2= cTH(0)-1c - TH(O)-IAT (AH(0)-1AT)- 1 AH(O) -1 c

It will be convenient for our purposes to determine proportional to s2 as
follows:

:= 11 11 + 1) (39)

and we consider the following amended version of Gp:

Pg: z* := minimum, cTx
s.t. Ax = b

x _ P
CTx < CTX +-- 

Note that since is feasible for Gp, then is also feasible for Pg,
and Pg and Gp have the same optimal objective function value and the same
set of optimal solutions. (The idea of solving phase-II by adding a level set
constraint of the objective function was used by Renegar [7], but without an
explicit construction for computing the offset .)

In order to apply the barrier method (in optimization mode) to compute
an e-optimal solution of Pg, we need to specify the barrier function to be used.
The obvious choice is:

18
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F(x):= Fp(x) - In (CTX + S -CTX) (41)

whose complexity value is at most 9 p + 1.

It is easily seen that > 0, and that > 0 except when the objective
function cTx is constant over the entire feasible region of Gp, in which case x
is then an optimal solution of Gp. In light of this observation, the algorithm
for computing an -optimal solution of Gp is as follows:

Algorithm OPT: Compute s and construct problem Pg and the barrier func-
tion (41), using (38) and (39). If > 0, then using the starting point x (where
x is the output of algorithm FEAS), apply the barrier method, in optimization
mode, to compute an -optimal solution x of Pg. Otherwise, = 0, and is
an optimal solution of Gp and no further computation is required.

The rest of this section is devoted to proving the following complexity
bound for algorithm OPT:

Theorem 4.1 Under Assumption A, and starting from the point computed

by algorithm FEAS, algorithm OPT will compute an e-optimal solution of Gp

in at most:

O( /pln(g+De+0p+011i +max{ ,1}))

iterations of Newton's method. I

Remark 4.1 Note that we could replace by Iic I* in the iteration bound of

Theorem 4.1, since < IcII*.

We begin the analysis underlying the proof of Theorem 4.1 by relating
the two quantities and :

Proposition 4.1 (611 1+1 - < S

Proof: Since F11 1i(x) is a 011 i1-self-concordant barrier for B(0, 1) = {x I 1xII <
1}, then F(x) := F11 (x) - F 11I(-x) is a 211 I 1-self-concordant barrier for
B(0, 1), whose analytic center is xc = 0, and note that the Hessian of F(x)

19
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at x = 0 is 2H(0) where H(x) is the Hessian of Fi11 i() at x.
Proposition 2.3.2 of [5] it follows that

{x I xT(2H(O))x < 1} c B(0, 1) c
{x

I xT(2H(O))x < 3(2 1 11 ) +

From this it then follows that s 2 < < (61 +1) 82, and therefore the result

follows from (39).1

We will make use of the following lemma which bounds the growth of
the level sets of Gp.

Lemma 4.1 Suppose that x is a feasible solution of Gp satisfying cTi_ < a

for some given level a, and further suppose that B(x, r) c P for some r > 0.

Suppose that Q satisfies:

Q> max{x -ll I Ax = b,xE P, cTx < a} (43)

Then for all t > 0 and for all x satisfying Ax = b, x E P, cTx < a + t, the

following inequality holds:

2t)

Proof: Given the hypotheses of the lemma, suppose that x satisfies Ax = b,
x E P, and CTX < a + t. Define s1 := x cTx- a. If s < 0, then cTx < a, and
therefore IIx - ll < Q < Q(1 + 2), proving the result. Suppose instead that
s1 > 0, and define

a - cT + if

a -cTi +± . sa-cT~+~+s ~ x,~~~t
(44)

where c E argmaxv{cT v Av = 0, livIl < 1}. Then IjC1I < 1, and CT = .
Also x - rc E P, A(x - fc) = b, Ax = b, x E P, and so it follows from (44)
that Aw = b, w C P, and CTW = , since cT = . Therefore

-rs a-cT+fQ > ||w- =11 ( ) c () (x -) I

> xI -X I( q-cTjI+rsg __ rs 1

- a-CT.;V+~IO -- x T a-c]---$ )+

Then from

(42)
(42)

20
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Therefore

Ix - l < Q ( + _aCT+s) + )-CT.+

< (1+ ) + s

However, as noted above, x - rc E P and A( - rc) 
CT < c, and so

b, and T(i - frS) <

Therefore from (45) we have

||x-x|| < Q + s()

< Q (l+rS

since x 1 = cTx - t.

Lemma 4.2 Suppose that De is finite. Then there exists (, f) satisfying

A = b, B(x, ) c P, CT < Z*+e, and r> min{i,1}min 1, cT z

(46)

where (x, f) is an optimal solution of (4).

Proof: Without loss of generality we can assume that ir < 1. Suppose first
that cT5 < z* + e. Then setting x = x and r = fr, we have CTX < z* + e, Ax = b,
B(x, f) C P, and r = r = min{l, ct,-- -}, proving the result. Suppose instead
that CTŽ: > z* + , and let

= Ax + (1 - A)x* r = r

where

CT - Z*

and x* is an optimal solution of Gp (x* is guaranteed to exist since D is
finite by hypothesis). Then A [0, 1], and so : satisfies Ax = b, CG P, and
by construction of A we have CTX = z* + e. Furthermore B(x, f) C P, and
r = Air = = -f min 1, } proving the result.I

Define S3 to be the feasible region of Pg, namely

S3 := {X I Ax= b,x E P,CT < ' +s}

21
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Lemma 4.3 Suppose that x c S3. Then

lix-4l < h

where

h:= 3D,+(3.5,0 + 2.25) g+4gDe (g + De) [(3.50 + 2.25) g + D+ + 6011 11+] max {-,}

Remark 4.2 h is bounded from above by a polynomial in g, 'Op, 9
11 II, De, and

max {, 1}.

Proof of Lemma 4.3: Suppose that x E S3, and let (, r) be as described in
Lemma 4.2. Then

||X - x| < II - I + -x -X -2ll

< jx-x D + (3.50 + 2.25)9
(47)

where the last inequality uses (6) and Lemma 3.1. It thus remains to bound
lix - xll. To this end, we will invoke Lemma 4.1 with a = z* + e.
Q := 2De satisfies

Then

max{ llx - 5I Ax = b, x P, cTx < a}

maxx{l-Xxrll + Ixr- I Ax = b, x P, cTx < z* +e}

< 2D = Q,

and so x, f, a, and Q satisfy the hypotheses of Lemma 4.1. Now let t
[CTX + S - a]+ , and so a + t > cTt + . Then if x E S3, x also satisfies Ax = b,
x E P, cTx < a + t, and so from Lemma 4.1 we have:

x_-J < Q( + 2t)

2D, 4De

< 2De + s4Dr t max{1, CT-Z* }<min{P,l} (from Lemma 4.2)
(48)

< 2De + 4D, (cT-Z*+) max{1 , CTa-z* }_min{},l }

22
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But now observe that

CT - * + sC Xz+ = CT- cTx* + s (where x*solves Gp)

•< s(l -x r + lx* - xrIl) + s (from Proposition A.2)

< s(l - xr II + llx* - xr) + (6d 11 + 1) (from Proposition 4.1)

< s [(3.5v9 + 2.25)g + D, + 6 9
1 11 + 1]

(49)
where the last inequality uses (6) and Lemma 3.1. We also bound cTX - z*
using Proposition A.2:

(50)

Substituting (49) and (50) into (48) we obtain

lix- < 2D6 + 4De[(3.5V+2.25)g+De+6Vj[ 1+l]max{l, ( g + D e)}

< 2DC + 4DEg[(3.59 + 2.25)g + DE + 6t911I + 1](g + DE) max {1,

(5

Finally, substituting (51) into (47) we obtain the desired bound.I

Lemma 4.4
1

1}
1i)

< (3.5V + 2.25)2 hsym (2, S3)

where h is the quantity defined in Lemma .3.

Proof: Let := T(3.5+225)2h For any v satisfy x + v c S3, we must show that
- /v E S3 . To do so, we must show that A( - v) = b, - v C P, and

CT( - 3v) < CTi + . Note that E S3 and + v E S3 imply that Av = 0,
and so A( - v) = b. Also, from Lemma 4.3, we have llvi < h. And with

a := min {1, l-I} where 2, t are part of the output of algorithm FEAS, we
have + v E P (since x + v C P and a C (0, 1]). Observe that

X+ aV --_XrII< II r-x +h< l 1 -
0 -

23
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and so +tv c S2 (see(22)). Then from Lemma 3.1 we have - 5 25 E S 2,
and note that

> min {1, (3.50+2.25)Oh }

> min {1, h(3.5o+2.25) }

(from Lemma 3.1)

(since < 1)

1
h(3.50+2.25)

Therefore 3.501.25 > 1 = , and so T - v C S 2, whereby - 3v C P.
3.51Finally, .25 h(3.52.25)

Finally, note that

CT( _ V) < cT + gllVI

< cT + ph

< cT +s h

< C X+S .

(from Proposition 4.1)

(since h < 1)

Therefore - v S3, and the result is proved.l

Proof of Theorem 4.1: To prove the theorem, we invoke the complexity
bound for the barrier method in optimization mode stated in (8). The barrier
F(x) for P defined in (41) has complexity value < tp + 1 = O( 9 p). The
starting point t has symmetry bounded by Lemma 4.4:

< (3.50 + 2.25)2 h
sym(x, S3 )

this bound being a polynomial in g, 29p, 011 11, De, and max{{, 1}, see Remark
4.2. The range R of the objective function of Pg is bounded as follows:

R < CTz + S- * < S((3.529 + 2.25)g + De + 6 11 11 + 1)

from (49). Therefore R is bounded above by a polynomial in max{, 1}, p,
011 , g, and De. Combining all of these terms and using Proposition A.1 of
the Appendix, we obtain the complexity bound of

0 ( 2pIn (g + D + p + ± 1 1 + max{ -,1})

iterations of Newton's method.l

(52)
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5 On Natural Norms, and Condition-Number

Complexity

5.1 Two Natural Norms on X

In this subsection we briefly discuss two norms on X that arise naturally based
on x° and P.

The First Norm. For the given point x°0 E intP, define the set Bxo:

Bo := [P -x] n [ - = {v I x +v E P, x - vE P} .

Then Bzo is the smallest symmetric set B for which x°0 + B C P. Under the
assumption that P contains no line, B will be compact, convex, and contain
the origin in its interior, and so can be used as the unit ball of a norm. Indeed
this norm is constructed as follows:

llvl0o := min,, a
s.t. x ° + v EP

x ° - V CE P

(The norm 11 Ilxo, in either explicit or implicit form, appears throughout
much of the analysis in [5].) Under 11 I[o, it is easily shown that (x ° ) =
dist(x 0, aP) = 1, and so the explicit dependence of the complexity bounds in
Theorems 3.1 and 4.1 on dist(x °0, P) disappears. Also, we can construct a
barrier function for the unit ball Bxo using the barrier Fp(.) for P:

F11 Ii(v) := Fp(x° + v) + Fp(x °- v),

whose complexity parameter 01I 11 is bounded above as follows:

11 11 2p .

Therefore the explicit dependence of the complexity bounds in Theorems 3.1
and 4.1 on 901 11 disappears as well. With this choice of norm, then, the com-
bined complexity bound of the algorithms FEAS and OPT becomes:

( /pln (g+DE+t9p +max{-,1} + x°-xr ))

iterations of Newton's method.

· lsll�·lllllsllll�··-UI� Ipl -------^

25



GEOMETRY-BASED COMPLEXITY

(The norm j l xo is referred to as a generalization of the L-norm
because in the case when P = Ri and x°0 = e, we recover the LO-norm as

llvllo for v E Rn.)

The Second Norm. The second norm we consider is constructed using the
barrier function Fp(.) for P. For the given point x°0 E intP, define the norm

|IVIIF,xO := vTHp(xO)v,

where Hp(x°) is the Hessian of Fp(.) evaluated at x = x°0. It then follows from
Theorem 2.1.1 of [5] that B(x °, 1) C P and so dist(x °, &P) > 1. Also,

F11 (v) := -in (1- THp(xO)v)

is a 911l 11 = 1-self-concordant barrier function for the unit ball of this norm.
Therefore the explicit dependence of the complexity bounds in Theorems 3.1
and 4.1 on dist(x °, P) and t11 11 disappear, and like the previous norm, the
combined complexity bound of the algorithms FEAS and OPT becomes:

O ( / 9pln(g+D,+dp+max{!,1}+ 1x°- xr))

iterations of Newton's method.

5.2 Relation to Condition-Number based Complexity

Bounds

In this subsection we indicate how the condition-number based complexity
bound for conic convex optimization presented in (1) can be obtained as a
special case of Theorems 3.1 and 4.1. To do so, assume that P is a closed
convex cone C, and for convenience we will assume that C is pointed and has
an interior. We assume that we have a dc-self-concordant barrier Fc(.) for C,
and we assume as in [7] that the norm 11. II on X is an inner-product norm
Ilv := vTv, and so the barrier function

Fl 11 (v) := -In (1 - vTv)

is a 11 II = 1-self-concordant barrier for the unit ball.

Let us set xr := 0 and let x °0 E intC be given, and assume that we have
rescaled x°0 so that 1x°011 = 1. Then from Theorem 17 of [3], it follows that g
will satisfy:

26



GEOMETRY-BASED COMPLEXITY

g < 3C(d) I1x0H
dist(x 0, OC)

and from Theorem 1.1 and Lemma 3.2 of [6] it follows that

D, < C(d)2 + C(d) 
--C 4

where C(d) is defined here using (2). Then under the hypothesis
the combined complexity of algorithms FEAS and OPT from
and 4.1 is:

that < IIcII*,
Theorems 3.1

o(l nzlcn(+ dist(x0, p) + C(d) + ))

iterations of Newton's method, which compares favorably to (1).

(53)
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APPENDIX

Proposition A.1: If a, b > O0 then ln2 + (ln a + lnb) < ln(a + b). If in

addition a b > 1, then ln(a + b) < In 2 + (ln a + In b)

Proof: We have 2ab < a 2 + b 2 +2ab = a + b. If also a,b > 1, then

a + b < 2 maxta, b} < 2 max{a, b} min{a, b} = 2ab. The results then follow by

taking logarithms.l

Proposition A.2: If x 1, x 2 satisfy Axl = Ax 2 = b, then

IC T1 CTX21 < X _ 211 < (X X + ) 

Proof: From the definition of s in (37), we have

IcTxl1 _ Tx 2 = ICT(xl _ x2)1 < Sx 1 - x2 11I < (11x - || + |X2 - r11) 

The following proposition is a special case of the Hahn-Banach Theo-

rem; for a short proof of this proposition based on the subdifferential operator,

see Proposition 2 of [3].

Proposition A.3: For every z E X, there exists z E X* with the property

that I2jIj* = 1 and IIzII = Tz. I
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