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Abstract
A conic linear system is a system of the form

(FPd): Ax = b
x E Cx,

where A: X -- Y is a linear operator between n- and m-dimensional linear spaces
X and Y, b E Y, and Cx C X is a closed convex cone. The data for the system is
d = (A, b). This system is "well-posed" to the extent that (small) changes in the data
d = (A, b) do not alter the status of the system (the system remains feasible or not).
Renegar defined the "distance to ill-posedness," p(d), to be the smallest change in the
data Ad = (A, Ab) needed to create a data instance d+ Ad that is "ill-posed," i.e., lies
in the intersection of the closures of sets of feasible and infeasible instances d' = (A', b')
of (FP(.)). Renegar also defined the "condition number" C(d) of the data instance d as

a scale-invariant reciprocal of p(d): C(d) = l)d.

In this paper we develop an elementary algorithm that computes a solution of (FPd)
when it is feasible, or demonstrates that (FPd) has no solution by computing a solution
of the alternative system. The algorithm is based on a generalization of von Neumann's
algorithm for solving linear inequalities. The number of iterations of the algorithm is
essentially bounded by

(C(d) 2 ln(C(d)))

where the constant c depends only on the properties of the cone Cx and is independent
of data d. Each iteration of the algorithm performs a small number of matrix-vector
and vector-vector multiplications (that take full advantage of the sparsity of the original
data) plus a small number of other operations involving the cone Cx. The algorithm
is "elementary" in the sense that it performs only a few relatively simple mathematical
operations at each iterations.

The solution of the system (FPd) generated by the algorithm has the property of
being "reliable" in the sense that the distance from x to the boundary of the cone Cx,
dist(5, dCx), and the size of the solution, I11, satisfy the following inequalities:

1 lixii
iII < cC(d), dist(, Cx) > c2(--d, and dist( x) < c3 C(d),

where c, C2, c3 are constants that depend only on properties of the cone CY and are
independent of the data d (with analogous results for the alternative system when the
system (FPd) is infeasible).
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Computing a Reliable Solution of a Conic Linear System

1 Introduction

The subject of this paper is the development of an algorithm for solving a convex
feasibility problem in conic linear form:

(FPd) Ax = b
x E Cx,

where A : X -> Y is a linear operator between the (finite) n-dimensional normed linear
vector space X and the (finite) m-dimensional normed linear vector space Y (with norms
[Ixll for x E X and IIYII for y E Y, respectively), Cx C X is a closed convex cone, and
b E Y. We denote by d = (A,b) the "data" for the problem (FPd). That is, the cone
Cx is regarded as fixed and given, and the data for the problem is the linear operator A
together with the vector b. We denote the set of solutions of (FPd) as Xd to emphasize the
dependence on the data d, i.e.,

Xd = { X : Ax = b, x E Cx}.

The problem (FPd) is a very general format for studying the feasible regions of convex
optimization problems, and has recently received much attention in the analysis of interior-
point methods, see Nesterov and Nemirovskii [21] and Renegar [28] and [29], among others,
wherein interior-point methods for (FPd) are shown to be theoretically efficient.

Our interest lies in instances of (FPd) where an interior-point or other theoretically-
efficient algorithm may not be an attractive choice for solving (FPd). Such instances might
arise when n is extremely large, and/or when A is a real matrix whose sparsity structure is
incompatible with efficient computation in interior-point methods, for example.

We develop an algorithm called "algorithm CLS" (for Conic Linear System) that either
computes a solution of the system (FPd), or demonstrates that (FPd) is infeasible by com-
puting a solution of an alternative (i.e., dual) system. In both cases the solution provided
by algorithm CLS is "reliable" in a sense that will be described shortly.

Algorithm CLS is based on a generalization of the algorithm of von Neumann studied
by Dantzig [5] and [6], and is part of a large class of "elementary" algorithms for finding a
point in a suitably described convex set, such as reflection algorithms for linear inequality
systems (see [1], [20], [7], [14]), the "perceptron" algorithm [30, 31, 32, 33], and other so-
called "row-action" methods. When applied to linear inequality systems, these elementary
algorithms share the following desirable properties, namely: the work per iteration is ex-
tremely low (typically involving only a few matrix-vector or vector-vector multiplications),
and the algorithms fully exploit the sparsity of the original data at each iteration. Also, the
performance of these algorithms can be quite competitive when applied to certain very large
problems with very sparse data, see [4]. We refer to these algorithms as "elementary" in
that the algorithms do not involve particularly sophisticated mathematics at each iteration,
nor do the algorithms perform particularly sophisticated computations at each iteration,
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Computing a Reliable Solution of a Conic Linear System 2

and in some sense these algorithms are all very unsophisticated as a result (especially com-
pared to an interior-point algorithm or a volume-reducing cutting-plane algorithm such as
the ellipsoid algorithm).

In analyzing the complexity of algorithm CLS, we adopt the relatively new concept of the
condition number C(d) of (FPd) developed by Renegar in a series of papers [27, 28, 29]. C(d)
is essentially a scale invariant reciprocal of the smallest data perturbation Ad = (A, Ab)
for which the system (FPd+Ad) changes its feasibility status. The problem (FPd) is well-
conditioned to the extent that C(d) is small; when the problem (FPd) is "ill-posed" (i.e.,
arbitrarily small perturbations of the data can yield both feasible and infeasible problem
instances), then C(d) = +oo. The condition number C(d) is connected to sizes of solutions
and deformations of Xd under data perturbations [27], certain geometric properties of Xd
[12], and the complexity of algorithms for computing solutions of (FPd) [29], [13]. (The
concepts underlying C(d) will be reviewed in detail at the end of this section.) We show in
Section 5 that algorithm CLS will compute a feasible solution of (FPd) in

O(a1C(d)2 ln(C(d))) (2)

iterations when (FPd) is feasible, or will demonstrate infeasibility in

O(cA2C(d)2 ) (3)

iterations when (FPd) is infeasible. The scalar quantities a1 and E2 are constants that depend
only on the simple notion of the "width" of the cones Cx and CX and are independent of
the data d, but may depend on the dimension n.

As alluded to above, algorithm CLS will compute a reliable solution of the system (FPd),
or will demonstrate that (FPd) is infeasible by computing a reliable solution of an alternative
system. We consider a solution x of the system (FPd) to be reliable if, roughly speaking, (i)
the distance from : to the boundary of the cone Cx, dist(±, dCx), is not excessively small,
(ii) the norm of the solution ]/:fx is not excessively large, and (iii) the ratio dist(iH is
not excessively large. A reliable solution of the alternative system is defined similarly. The
sense of what is meant by "excessive" is measured using the condition number C(d). The
importance of computing a reliable solution can be motivated by considerations of finite-
precision computations. Suppose, for example, that a solution x of the problem (FPd)
(computed as an output of an algorithm involving iterates xl,... ,k = x, and/or used
as input to another algorithm) has the property that dist(±,aOCx) is very small. Then
the numerical precision requirements for checking or guaranteeing feasibility of iterates will
necessarily be large. Similar remarks hold for the case when lxijj and/or the ratio d
is very large.

In [12] it is shown that when the system (FPd) is feasible, there exists a point E Xd
such that

jj.-lJj ciCCd), dist(Jr. 9Cx) > C2 and < cd(d), (4)
C(d) dist(d, dCx)da

where the scalar quantities cl, c2, and C3 depend only on the width of the cone C, and
are independent of the data d of the problem (FPd), but may depend on the dimension n.
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Algorithm CLS will compute a solution z with bounds of the same order as (4), which lends
credence to the term "reliable" solution. Similar remarks hold for the case when (FPd) is
infeasible.

It is interesting to compare the complexity bounds of algorithm CLS in (2) and (3) to
that of other algorithms for solving (FPd). In [29], Renegar presented an incredibly general
interior-point (i.e., barrier) algorithm for resolving (FPd) and showed, roughly speaking,
that the iteration complexity bound of the algorithm depends linearly and only on two
quantities: the barrier parameter for the cone Cx, and ln(C(d)), i.e., the logarithm of the
condition number C(d). In [13] several efficient volume-reducing cutting-plane algorithms for
resolving (FPd) (such as the ellipsoid algorithm) are shown to have iteration complexity that
is linear in ln(C(d)) and polynomial in the dimension n. Both the interior-point algorithm
and the ellipsoid algorithm have an iteration complexity bound that is linear in ln(C(d)),
and so are efficient algorithms in a sense defined by Renegar [28]. Both the interior-point
algorithm and the ellipsoid algorithm are also very sophisticated algorithms, in contrast with
the elementary algorithm CLS. The interior-point algorithm makes implicit and explicit use
of information from a self-concordant barrier at each iteration, and uses this information
in the computation of the next iterate by solving for the Newton step along the central
trajectory. The work per iteration is O(n 3) operations to compute the Newton step. The
ellipsoid algorithm makes use of a separation oracle for the cone Cx in order to perform a
special space dilation at each iteration, and the work per iteration of the ellipsoid algorithm
is O(n2 ) operations. Intuition strongly suggests that the sophistication of these methods
is responsible for their excellent computational complexity. In contrast, the elementary
algorithm CLS relies only on relatively simple assumptions regarding the ability to work
conveniently with the cone Cx (discussed in detail in Section 2) and does not perform
any sophisticated mathematics at each iteration. Consequently one would not expect its
theoretical complexity to be nearly as good as an interior-point algorithm or the ellipsoid
algorithm. However, because the work per iteration of algorithm CLS is low, and each
iteration fully exploits the sparsity of the original data, it is reasonable to expect that
algorithm CLS could outperform more theoretically-efficient algorithms on large structured
problems that are well-conditioned.

In this vein, recent literature contains several algorithms of similar nature to the ele-
mentary algorithms discussed above, for obtaining approximate solutions of certain struc-
tured convex optimization problems. For example, Grigoriadis and Khachiyan [16, 17] and
Villavicencio and Grigoriadis [38] consider algorithms for block angular resource sharing
problems, Plotkin, Shmoys, and Tardos [26] and Karger and Plotkin [19] consider algorithms
for fractional packing problems, and Bienstock [3] and Goldberg et al. [15] discuss results
of computational experiments with these methods. The many applications of such prob-
lems include multi-commodity network flows, scheduling, combinatorial optimization, etc.
The dimensionality of such structured problems arising in practice is often prohibitively
large for theoretically efficient algorithms such as interior-point methods to be effective.
However, these problems are typically sparse and structured, which allows for efficient im-
plementation and good performance of Lagrangian-decomposition based algorithms (see, for
example, [38]), which offer a general framework for row-action methods. These algorithms
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can also be considered "elementary" in the exact same sense as the row-action algorithms
mentioned earlier, i.e., they do not perform any sophisticated mathematics at each iteration
and they fully exploit the sparsity of the original data. The complexity analysis as well as
the practical computational experience of this body of literature lends more credence to the
practical viability of elementary algorithms in general, when applied to large-scale, sparse
(well-structured), and well-conditioned problems.

An outline of the paper is as follows. The remainder of this introductory section dis-
cusses the condition number C(d) of the system (FPd). Section 2 contains further notation,
definitions, assumptions, and preliminary results. Section 3 presents a generalization of the
von Neumann algorithm (appropriately called algorithm GVNA) that can be applied to
conic linear systems in a special compact form (i.e, with a compactness constraint added).
We analyze the properties of the iterates of algorithm GVNA under different termination
criteria in Lemmas 12, 15 and 16. Section 4 presents the development of algorithms HCI
(Homogeneous Conic Inequalities) and HCE (Homogeneous Conic Equalities) for resolving
two essential types of homogeneous conic linear systems. Both algorithms HCI and HCE
consist of calls to algorithm GVNA applied to appropriate transformations of the homoge-
neous systems at hand. Finally, in Section 5, we present algorithm CLS for the conic linear
system (FPd). Algorithm CLS is a combination of algorithms HCI and HCE. Theorem 28
contains the main complexity result for algorithm CLS, and is the main result of this paper.
Section 6 contains some discussion.

We now present the development of the concepts of condition numbers and data pertur-
bation for (FPd) in detail. Recall that d = (A, b) is the data for the problem (FPd). The
space of all data d = (A, b) for (FPd) is denoted by D:

D = {d = (A,b): A E L(X,Y),b E Y).

For d = (A, b) E D we define the product norm on the cartesian product L(X, Y) x Y to be

Ildll = II(A, b)ll = max{llAII, Ilbll) (5)

where Ilbll is the norm specified for Y and IlAll is the operator norm, namely

IIAII = max{llAxll: lxil < 1}. (6)

We define

F = {(A, b) E D : there exists x satisfying Ax = b, x E Cx}. (7)

Then . corresponds to those data instances d = (A, b) for which (FPd) is feasible. The
complement of F is denoted by YC, and so FC consists precisely of those data instances
d = (A, b) for which (FPd) is infeasible.

The boundary of F and of Sc is precisely the set

B = a = aC = cl() n cl(FC)

4
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where S denotes the boundary and cl(S) denotes the closure of a set S. Note that if
d = (A, b) E B, then (FPd) is ill-posed in the sense that arbitrarily small changes in the
data d = (A, b) can yield instances of (FPd) that are feasible, as well as instances of (FPd)
that are infeasible. Also, note that B 0 0, since d = (0, O0) E B3.

For a data instance d = (A, b) E D, the distance to ill-posedness is defined to be:

p(d) = inf{ IIAdl : d + Ad E B},

see [27], [28], [29], and so p(d) is the distance of the data instance d = (A, b) to the set B of
ill-posed instances for the problem (FPd). It is straightforward to show that

(d) _f inf{lld- dllI d E FC} if d E ,
) inf{ ld-dl d E -} if d EC, (9)

so that we could also define p(d) by employing (9). The condition number C(d) of the data
instance d is defined to be:

C(d) = Ild (10)
p(d)

when p(d) > 0, and C(d) = oo when p(d) = 0. The condition number C(d) can be viewed
as a scale-invariant reciprocal of p(d), as it is elementary to demonstrate that C(d) = C(ad)
for any positive scalar ac. Observe that since d = (A, b) = (0, O) E B, then for any d B we
have Ildll = lid-dll > p(d), whereby C(d) > 1. The value of C(d) is a measure of the relative
conditioning of the data instance d. Further analysis of the distance to ill-posedness has
been presented in [12], Vera [34, 35, 37, 36], Filipowski [10, 11], Nunez and Freund [22],
Pefia [23, 24] and Pefia and Renegar [25].

2 Preliminaries, Assumptions, and Further Notation

We will work in the setup of finite dimensional normed linear vector spaces. Both X
and Y are normed linear spaces of finite dimension n and m, respectively, endowed with
norms IIxII for x E X and IIYlI for y E Y. For E X, let B(x, r) denote the ball centered at
x with radius r, i.e.,

B(.7, r) = {x E X : IlIx- il r},

and define B(y, r) analogously for E Y.

We associate with X and Y the dual spaces X* and Y* of linear functionals defined on
X and Y, respectively, and whose (dual) norms are denoted by Ilull* for u E X* and lwll*
for w E Y*. Let c E X*. In order to maintain consistency with standard linear algebra
notation in mathematical programming, we will consider c to be a column vector in the
space X* and will denote the linear function c(x) by ctx. Similarly, for A E L(X, Y) and
f E Y*, we denote A(x) by Ax and f(y) by fty. We denote the adjoint of A by At.

5
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If C is a convex cone in X, C* will denote the dual convex cone defined by

C* = {z E X*: ztx > 0 for any x E C}.

We will say that a cone C is regular if C is a closed convex cone, has a nonempty interior,
and is pointed (i.e., contains no line).

Remark 1 If C is a closed convex cone, then C is regular if and only if C* is regular.

We denote the set of real numbers by R and the set of nonnegative real numbers by R+.

The "strong alternative" system of (FPd) is:

(SAd) Ats E Cx
bts < 0.

(11)

A separating hyperplane argument yields the following partial theorem of the alternative

regarding the feasibility of the system (FPd):

Proposition 2 If (SAd) is feasible, then (FPd) is infeasible.
the following "weak alternative" system (12) is feasible:

If (FPd) is infeasible, then

Ats E C:
bts < 0
s#A0.

(12)

When the system (FPd) is well-posed, we have the following strong theorem of the
alternative:

Proposition 3 Suppose p(d) > O. Then exactly one of
feasible.

the systems (FPd) and (SAd) is

We denote the set of solutions of (SAd) as Ad, i.e.,

Ad = {s E Y* : Ats E C3y, bts < 0}.

Similarly to solutions of (FPd), we consider a solution s of the system (SAd) to be reliable

if the ratio diSllAd is not excessively large. (Because the system (11) is homogeneous,

it makes little sense to bound Ils1l* from above or to bound dist(g, oAd) from below, as all

solutions can be scaled by any positive quantity.) In [12] it is shown that when the system

(FPd) is infeasible, there exists a point s E Ad such that

distA < C4C(d), (13)
dist(g, aAd)
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where the scalar quantity c4 depends only on the width of the cone C. (The concept of
the width of a cone will be defined shortly.) Algorithm CLS will compute a solution with
a bound of the same order as (13).

We now recall some facts about norms. Given a finite dimensional linear vector space
X endowed with a norm llxll for x E X, the dual norm induced on the space X* is denoted
by lIzlI* for z E X*, and is defined as:

lIzll* = max{ztx : 1xl < 1}, (14)

and the H6older inequality ztx < jjzll*llxii follows easily from this definition. We also point
out that if A = uvt, then it is easy to derive that jIAll = ilvl*i ujj.

Let C be a regular cone in the normed linear vector space X. We will use the following
definition of the width of C:

Definition 4 If C is a regular cone in the normed linear vector space X, the width of C is
given by:

Tc = ax{ r B(x,) C C }
11' 11

We remark that TC measures the maximum ratio of the radius to the norm of the center of
an inscribed ball in C, and so larger values of To correspond to an intuitive notion of greater
width of C. Note that i-c E (0, 1], since C has a nonempty interior and C is pointed, and
rc is attained for some (, f) as well as along the ray (cx, crf) for all c > 0. By choosing
the value of oe appropriately, we can find u E C such that ljull = 1 and rc is attained for
(U, TC).

Closely related to the width is the notion of the coefficient of linearity for a cone C:

Definition 5 If C is a regular cone in the normed linear vector space X, the coefficient of
linearity for the cone C is given by:

p = sup inf uTx
uC EX* x E C (15)

Ilull* = 1 lxll = 1.

The coefficient of linearity fc measures the extent to which the norm IIxll can be approxi-
mated by a linear function over the cone C. We have the following properties of /3c:

Remark 6 (see [12]) 0 < c < 1. There exists 8i E intC* such that lujf* = 1 and
/c = min{ t x : x E C, xii = 1}. For any x E C, cllxil < utx < 11xfl. The set

x E C: iitx = 1} is a bounded and closed convex set.

In light of Remark 6 we refer to u as the norm linearization vector for the cone C. The
following proposition shows that the width of C is equal to the coefficient of linearity for
C*:

7
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Proposition 7 (see [13]) Suppose that C is a regular cone in the normed linear vector
space X, and let rc denote the width of C and let c* denote the coefficient of linearity for
C*. Then rc = /3c*. Moreover, c is attained for (u, Tc), where u is the norm linearization
vector for the cone C*.

We now pause to illustrate the above notions on two relevant instances of the cone C,
namely the nonnegative orthant ~R and the positive semi-definite cone Skxk . We first

consider the nonnegative orthant. Let X = En and C = R_+ x E n x > O}. Then we
can identify X* with X and in so doing, C* = as well. If jfxfl is given by the L 1 norm

lxji = Ejn= 1 Ixjl, then note that ilxll = etx for all x E C (where e is the vector of ones),
whereby the coefficient of linearity is /3c = 1 and ii = e. If instead of the L 1 norm, the
norm Ijxll is the Lp norm defined by:

IIlxllp= xjlP /

for p > 1, then for x E C it is straightforward to show that u = (n('1)) e and the

coefficient of linearity is /c = n(V- '). Also, by setting x = e, it is straightforward to show

that the width is rc = n .

Now consider the positive semi-definite cone, which has been shown to be of enormous
importance in mathematical programming (see Alizadeh [2] and Nesterov and Nemirovskii

[21]). Let X = Skxk denote the set of real k x k symmetric matrices, and so n = k(k+1)

and let C = Skxk {X E Skxk : O}, where x >- 0 is the L6wner partial ordering, i.e.,
x > w if x - w is a positive semi-definite symmetric matrix. Then C is a closed convex cone.
We can identify X* with X, and in so doing it is elementary to derive that C* = Skx k, i.e.,
C is self-dual. For x E X, let A(x) denote the k-vector of ordered eigenvalues of x. For any
p E [1, oo), let the norm of x be defined by

IllX = = IIX lAj(x)Plp

(see [18], for example, for a proof that ]lxj[p is a norm). When p = 1, 1lxi1 is the sum of
k

the absolute values of the eigenvalues of x. Therefore, when x E C, lxzl = tr(x) = E xii
i=l

where xij is the ijth entry of the real matrix x (and tr(x) is the trace of x), and so [[x1i is a
linear function on C. Therefore, when p = 1, we have ui = I and the coefficient of linearity

is /c = 1. When p > 1, it is easy to show that u = (k(- 1) I has [o l q = Ull = 1 (where

1/p + 1/q = 1) and that Oc = k(-l). Also, it is easy to show by setting x = I that the

width is 'c = k- P.

8
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We will make the following assumption throughout the paper concerning the cone Cx
and the norm on the space Y:

Assumption 1 Cx C X is a regular cone. The coefficient of linearity P3 for the cone Cx,
and the width -' of the cone Cx, together with corresponding norm linearization vectors f
(for the cone Cx) and f (for the cone CX) are known and given. For y E Y, IIYll = IIY112.

Suppose C is a regular cone in the normed vector space X, and u is the norm linearization
vector for C. Given any linear function ctx defined on x E X, we define the following conic
section optimization problem:

(CSOPc) min ctx

X (16)
s.t. xEC

it = 1.

Let Tc denote an upper bound on the number of operations needed to solve (CSOPc).

For the algorithm CLS developed in this paper, we presume that we can work con-
veniently with the cone Cx in that we can solve (CSOPcx) easily, i.e., that Tcx is not
excessive, for otherwise the algorithm will not be very efficient.

We now pause to illustrate how (CSOPc) is easily solved for two relevant instances of
the cone C, namely R+ and Skx k . We first consider R. As discussed above, when IlxI is
given by Lp norm with p > 1, the norm approximation vector u is a positive multiple of
the vector e. Therefore, for any c, the problem (CSOPc) is simply the problem of finding
the index of the smallest element of the vector c, so that the solution of (CSOPc) is easily
computed as xc = e, where i E argmin{cj: j = 1, ... , n}. Thus Tc = n.

We now consider Skx k. As discussed above, when [lxii is given by

]lxii = llxllp = lAj(X)P)

with p > 1, the norm approximation vector ui is a positive multiple of the matrix I. For
any c E S kxk, the problem (CSOPc) corresponds to the problem of finding the normalized
eigenvector corresponding to the smallest eigenvalue of the matrix c, i.e., (CSOPc) is a min-
imum eigenvalue problem and is solvable to within machine tolerance in O(k 3 ) operations
in practice (though not in theory).

Solving (CSOP) for the cartesian product of two cones is easy if (CSOP) is easy to solve

for each of the two cones: suppose that X = V x W with norm Ilxl = I1(v, w)II =1 lvI + lwil,
and C = Cv x Cw where Cv C V and Cw C W are regular cones with norm linearization
vectors uv and Uw, respectively. Then the norm linearization vector for the cone C is

L = (v,uw), tic = min{(Cv, ew }, and Tc = Tcv + Tcw + 0(1).

9
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We end this section with the following lemmas which give a precise mathematical char-
acterization of the problem of computing the distance from a given point to the boundary
of a given convex set. Let S be a closed convex set in Rm and let f E Rm be given. The
distance from f to the boundary of S is defined as:

r = min{lf - zl : z E S}. (17)
z

Lemma 8 Let r be defined by (17). Suppose f E S. Then

r = min max 8
V Z

Iivl < 1 s.t. f - z - v = O0
z E S.

Lemma 9 Let r be defined by (17). Suppose f ' S. Then

r = min Ilf-zII
Z

s.t. z E S.

3 A Generalized Von Neumann Algorithm for a Conic Linear
System in Compact Form

In this section we consider a generalization of the algorithm of von Neumann studied
by Dantzig in [5] and [6], see also [9]. We will work with a conic linear system of the form:

(P) M=g
EC (18)

UtX = i,

where C C X is a closed convex cone in the (finite) n-dimensional normed linear vector
space X, and g Y where Y is the (finite) m-dimensional linear vector space with Euclidean
norm Ilyl = 11Y112, and M E L(X,Y). We assume that C is a regular cone, and the
norm linearization vector i of Remark 6 is known and given. (The original algorithm of
von Neumann presented and analyzed by Dantzig in [5] and [6] was developed for the case
when C = R+ and ii = e.) We will refer to a system of the form (18) as a conic linear
system in compact form, or simply a compact-form system.

The "alternative" system to (P) of (18) is:

(A) Mts- ii(gts) E intC*, (19)

and a generalization of Farkas' Lemma yields the following duality result:
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Proposition 10 Exactly one of the systems (P) of (18) and (A) of (19) has a solution.

Notice that the feasibility problem (P) is equivalent to the following optimization prob-
lem:

(OP) min IIg-MxII
x

s.t. xEC
utx = 1.

If (P) has a feasible solution, the optimal value of (OP) is 0; otherwise, the optimal value of
(OP) is strictly positive. We will say that a point x is "admissible" if it is a feasible point
for (OP), i.e., x E C and iitx = 1.

We now describe a generic iteration of our algorithm. At the beginning of the iteration
we have an admissible point x. Let v be the "residual" at the point x, namely, v = g - Mt.
Notice that liIll = 119- MIlI is the objective value of (OP). The algorithm calls an oracle
to solve the following instance of the conic section optimization problem (CSOPc) of (16):

min vt(g-Mp) = min t(gf t- M)p
p p

(20)s.t. pEC s.t. pEC
tp = 1 itp = 1,

where (20) is an instance of the (CSOPc) with c = (-Mt + ugt)v. Let be an optimal
solution to the problem (20), and ti = g - Mi.

Next, the algorithm checks whether the termination criterion is satisfied. The termina-
tion criterion for the algorithm is given in the form of a function STOP(.), which evaluates
to 1 exactly when its inputs satisfy some termination criterion (some relevant examples are
presented after the statement of the algorithm). If STOP(.) = 1, the algorithm concludes
that the appropriate termination criterion is satisfied and stops.

On the other hand, if STOP(.) = 0, the algorithm continues the iteration. The direction
/p-x turns out to be a direction of potential improvement of the objective function of (OP).
The algorithm takes a step in the direction p - x with step-size found by constrained line-
search. In particular, let

x(A) = + A(p- ).

Then the next iterate x is computed as x = x(A*), where

A* = argminAE[0 ,1]llg-MS(A)lJ = argmine[o,1]llg-M(~+A(fip-))I = argminxE[0, 1] Il(1-A)v+AzIlI.

Notice that is a convex combination of the two admissible points x and p and therefore x
is also admissible. Also, A* above can be computed as the solution of the following simple
constrained convex quadratic minimization problem:

min 1(1 - A)v + AxII 2 = min A2I- w2 + 2A(vt(,w - v)) + llv[I2. (21)
AE[O,1] AE[O,1]

11
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The closed-form solution of the program (21) is easily seen to be

A*= min t(v ' 112}. (22)

The formal description of the algorithm is as follows:

Algorithm GVNA

* Data: (M, g, x0) (where x0 is an arbitrary admissible starting point).

* Initialization: The algorithm is initialized with x° .

* Iteration k, k > 1: At the start of the iteration we have an admissible point x k - 1 :

xk- 1 E C, iUtk-1 = 1

Step 1 Compute v k - 1 = g - Mx k- 1 (the residual).

Step 2 Solve the following conic section optimization problem (CSOPc):

min (vk-l)t(g - Mp) = min (vk-1)t(gt - M)p
p p (23)

s.t. pEC s.t. pEC
uitp = 1 tp = 1.

Let pk-1 be an optimal solution of the optimization problem (23) and w k - =

g-Mpk-l. Evaluate STOP(.). If STOP(.) = 1, stop, return appropriate output.

Step 3 Else, let

Ak-1 = argminxE[0,1]{lgl - M(x k - l + A(pk - l _ xk-1))1} (24)

= m (vk-1)t(vk-1 _ Wk-1) 
n l llk-l- W k-1112

and
X = k-1 + A k-l(pk- Xk-1).

Step 4 Let k -- k + 1, go to Step 1.

Note that the above description is rather generic; to apply the algorithm we have to specify
the function STOP(.) to be used in Step 2. Some examples of function STOP(.) that will
be used in this paper are:

1. STOPi(v k - l ,wk - l) = 1 if and only if (vk-1)twk-1 > 0. If the vectors vk - l, wk - 1

satisfy termination criterion STOPI, then it can be easily verified that the vector
s = -H is a solution to the alternative system (A) (see Proposition 11). Therefore,
algorithm GVNA with STOP = STOP1 will terminate only if the system (P) is
infeasible.

12
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2. STOP2(vk-l,wk- l ) = 1 if and only if (vk-l)twk - l > lVk-L11 This termination
criterion is a stronger version of the previous one.

3. STOP3(vk-1,wk-l,k) = 1 if and only if (vk-)twk- l > 0 or k > I, where I is some
pre-specified integer. This termination criterion is essentially equivalent to STOP1,
but it ensures finite termination (in no more that I iterations) regardless of the status
of (P).

Proposition 11 Suppose vk- 1 and w k - 1 are as defined in Steps and 2 of algorithm
GVNA. If (vk-1)twk-l > 0, then (A) has a solutions and so (P) is infeasible.

Proof: By definition of w k- l ,

0 < (k-l)tW k - = (k-l)t(g2t - M)p k- 1 < (vk-)t(git _ M)p

for any p E C, Utp = 1. Hence, (gflt - M)tvk-1 E intC* and s = -ivl is a solution of

(A). I

Analogous to the von Neumann algorithm of [5] and [6], we regard algorithm GVNA as
"elementary" in that the algorithm does not rely on particularly sophisticated mathematics
at each iteration (each iteration must perform a few matrix-vector and vector-vector mul-
tiplications and solve an instance of (CSOPc) ). Furthermore the work per iteration will
be low so long as Tc (the number of operations needed to solve (CSOPc) ) is small. A
thorough evaluation of the work per iteration of algorithm GVNA is presented in Remark
17 at the end of this section.

As was mentioned in the discussion preceding the statement of the algorithm, the size
of the residual 11v kll is decreased at each iteration. The rate of decrease depends of the
termination criterion used and on the status of the system (P). In the rest of this section
we present three lemmas that provide upper bounds on the size of the residual throughout
the algorithm. The first result is a generalization of Dantzig's convergence result [5].

Lemma 12 (Dantzig [5]) If algorithm GVNA with STOP = STOPI (or STOP = STOP3)
has performed k (complete) iterations, then

1lvkIl _ M - gfit (25)

Proof: First note that if x is any admissible point (i.e., x E C and iitx = 1), then
ixllI < I =x , 1 and so

11 - MxI1 = 1(gi t - M)xll < 11M - gtll llX < IIM - g (26)
-C
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From the discussion preceding the formal statement of the algorithm, all iterates of the
algorithm are admissible, so that xk E C and iitxk = 1 for all k. We prove the bound on
the norm of the residual by induction on k.

For k = 1,

Ilv II = ig- g t II _IM - gii tl
c ocV'

where the inequality above derives from (26).

Next suppose by induction that IIvk-11 < IM-gH At the end of iteration k we have
- cvk-1 '

Ivkll = 1Jg - MxklI = 11(1 - Ak-1)(g - Mx k- l) + Ak-l(g - Mpk-1)I
(27)

= 1(1 - Ak-1)v k- 1 + Ak-lw k- 1

where pk-1 and wk - 1 were computed in Step 2. Recall that Ak- 1 was defined in Step 3 as
the minimizer of 11(1 - A)vk - l + AWk-ll over all A E [0, 1]. Therefore, in order to obtain an
upper bound on v k , we can substitute any A E [0, 1] into (27). We will substitute A = .

Making this substitution, we obtain:

_ k v + _W( - l- )vk- +wk (28)
ll||< i k 1 + k-1 k

Squaring (28) yields:

IIVkll2 < 1 ((k - 1)21vk-11l2 + k-1112 + 2(k - 1)(vk-)(wk-)) (29)

Since the algorithm did not terminate at Step 2, the termination criterion was not met, i.e.,
in the case STOP = STOPI (or STOP = STOP3), (vk-l)twk - l < 0. Also, since pk-1 is

admissible, w k - l 1 = ig - Mp k - 1 g < IM-0g t Combining these results with the inductive- c
bound on [1vk-1 and substituting into (29) above yields

IvkII <2 _ IIIM_ ll2

(k 1)2 - + - 2
- k2 O -(k-) C 

We now develop another line of analysis of the algorithm, which will be used when the
problem (P) is "well-posed." Let

7R = 7M = {MX x E C, Bt = = 1), (30)

and notice that (P) is feasible precisely when g E A7l. Define

r = r(M, g) = inf{lg - hll : h E 0&7} (31)

where 7H is defined above in (30). As it turns out, the quantity r plays a crucial role in
analyzing the complexity of algorithm GVNA.
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Observe that r(M, g) = 0 precisely when the vector g is on the boundary of the set 'H.
Thus, when r = 0, the problem (P) has a feasible solution, but arbitrarily small changes
in the data (M, g) can yield instances of (P) that have no feasible solution. Therefore
when r = 0 we can rightfully call the problem (P) unstable, or in the language of data
perturbation and condition numbers, the problem (P) is "ill-posed." We will refer to the
system (P) as being "well-posed" when r > 0.

Notice that both - = 7M and r = r(M, g) are specific to a given data instance (M, g)
of (P), i.e., their definitions depend on the problem data M and g. We will, however, often
omit problem data M and g from the notation for 7l = 7ilM and r = r(M, g). It should be
clear from the context which data instance we are referring to.

The following proposition gives a useful characterization of the value of r.

Proposition 13 Let = lM and r = r(M, g) be defined as in (30) and (31). If (P) has
a feasible solution, then

r = min max 0 = min max 0
v h v x

Iv < 1 s.t. g-h-Ov=0 1IvI <1 s.t. g-Mx-v =0 (32)
hEaT xEC

UtX = 1.

If (P) does not have a feasible solution, then

r = min Ig-h t = min 119g-Mxll
h x 33

s.t. h E T s.t. x E C (33)
UtX = 1.

Proof: The proof is a straightforward consequence of Lemmas 8 and 9. I

In light of Proposition 13, when (P) has a feasible solution, r(M, g) can be interpreted
as the radius of the largest ball centered at g and contained in the set NH.

We now present an analysis of the performance of algorithm GVNA in terms of the
quantity r = r(M, g).

Proposition 14 Suppose that (P) has a feasible solution. Let vk be the residual at point
xk, and let pk be the direction found in Step 2 of the algorithm at iteration k + 1. Then
(vk)t(g - Mpk) + r(M, g)llvk II < 0.

Proof: If vk = 0, the result follows trivially. Suppose vk # 0. By definition of r(M,g),
there exists a point h E l such that g - h + r(M, g) 1 = 0. By the definition of N,

15
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h = Mx for some admissible point x. It follows that

vk

g - Mx = -r(M, g) vkl 

Recall that pk E argminp{(vk)t(g - Mp) : p E C, atp = 1}. Therefore,

(vk)t(g - Mpk) < (vk)t(g - Mx) = -(vk)tr(M,g) Ivk = -r(M,g)ll kl.

Therefore
(vk)t(g - Mpk) + r(M, g)lvkll < 0.

I
Proposition 14 is used to prove the following linear convergence rate for algorithm

GVNA:

Lemma 15 Suppose the system (P) is feasible, and that r(M,g) > O. If GVNA with

STOP = STOPI (or STOP = STOP3) has performed k (complete) iterations, then

Ik 11 < [l 3lle- 2 4 iM-gtl 4

Proof: Let x be the current iterate of GVNA. Furthermore, let = g - Mx be the residual
at the point x, p5 be the solution of the problem (CSOPc), and wD = g - Mp. Suppose that
the algorithm has not terminated at the current iteration, and x = x + A* (p - x) is the next
iterate and v is the residual at x. Then

Il)12 = 11(1 - A*)v + A*b 112 = (X*)2lv -_112 + 2AX*t(D - ) + I-ll2, (35)

where A* = min { , t( .1}. Since the algorithm has not terminated at Step 2, the

termination criterion has not been satisfied, i.e., in the case of STOP = STOP1 (or

STOP = STOP3), vt < 0. Therefore

t(v _ w) < I112 - TtW + (tll7V2 -_ t wv) = Il - W112,

so that t( < 1 and A* = t ) Substituting this value of A* into (35) yields:
I1f-D1II1 -iial 2

K!!12 = II~~ - ?11fl(36)Ip)12 = V11211CV 112 - (f)2 (36)I11 - 112

Recall from Proposition 14 that vtw < -r(M,g)j1111j. Thus, llv1j2(11Z112 - r(M,g)2) is an
upper bound on the numerator of (36). Also, 3lv - wlI2 = 1,J112 + IIll112 - 2 t > I11 2.
Substituting this into (36) yields

112 I112(1111 - r(M, g) 2) = (__I2 li112 < llvK - Mg 1112_
K2I1 •H ,1 < 12 (11 (i()2llu1 12 llzu1g2 Ilgu - MII

16
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where the last inequality derives from (26). Applying the inequality 1 - t < e- t for t =

IlgtMI ), we obtain:
( /3cr(Ma) 2

y11~ 2 < vUii2e - 119t- M )

or, substituting i = v k - l and v = vk,

IlVkII < Ik-1j lie 2 ig t-M}l) (37)

Applying (37) inductively, we can bound the size of the residual 11vkl by

k (3cr(M,g)) 2

2 kj 11< 111v°lie 2 ilglt-M l 

We now establish a bound on the size of the residual for STOP = STOP2.

Lemma 16 If GVNA with STOP = STOP2 has performed k (complete) iterations, then

411M - giitjI
/3cvk7

Proof: Let x be the current iterate of GVNA. Furthermore, let = g - M be the residual
at the point , P be the solution of the problem (CSOPc) and w = g - Mp. Suppose that
the algorithm has not terminated at the current iteration, and = x + A* (p - 2) is the next
iterate and v is the residual at . Then

ll112 = 11(1 - A*)v + A**wll2 = (*) 2115 - l112 + 2A*vt(tC - V) + lv11 2, (38)

where A* is given by (22). Consider two cases:

Case 1: 11112 < Vtv. It can be easily shown that in this case A* = 1. Substituting this
value of A* into (38), algebraic manipulations yield

11=112 = IlF112 < - 2 = 1 2 <2 4112 (39)
- 2 2 -1611 M gt2 (3)

The second inequality in (39) follows from the assumption that the algorithm did not
terminate at the present iteration. This implies that the termination criterion was not met,

i.e., vtw < I. The last inequality follows since

11,112 < tM- gitl12 < 811M - glIl2

The need for the last inequality may not be immediately clear at this stage, but will become
more apparent later in this proof.
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Case 2: 1lI 12 > Dtv. It can be easily shown that in this case A* = i Substituting

this value of A* into (38) yields:

I112 = Ii - ( -t( _ ))2
11g - 112

Since vt5 < ILf, we have:

vt(- - ) > EII__2
2

so that

[11Il2 < lv211 _ 14 I < Ii11 2 -
_1 _ 4 _ C

-sic 41 - 2 1611M - gi tI[2'
since

lW- v112 < llvi-2 + IIi 2 + 2llvjll i • 1411M getlI2

Combining Case 1 and Case 2, we conclude that

p12 1_ A11 4 \ 411M - gtll
l2l , where = 1M (40)

Next, we establish (using induction) the following relation, from which the statement of the
lemma will follow: if the algorithm has performed k (complete) iterations, then

72
llvkl12 < -. (41)

First, note that 1v 1 112 < IIM-g t 2 < i thus establishing (41) for k = 1. Suppose

that (41) holds for k > 1. Then, using the relationship for v and established above with
v= vk+ and = vk, we have:

_ Ilvk 4

I1Vk+lt[2 < 11Vk[I 2 _ 11V 11

or, dividing by llvk+1 12 lIvkll2,

1 1 Ivk 112 1 1

ljVk112 Vk+12 11k+11122 11k1112 lVk2±I22 Ivk -

Therefore,
1 1 1 k 1

lik+1112 - Ilvk 1 + 72 > 2 + 

and so
72

Ivk+1112 < • l+

thus establishing the relation (41), which completes the proof of the lemma. I
To complete the analysis of algorithm GVNA, we now discuss the computational work

performed per iteration. We have the following remark:

1_111_-�·�1__111 1___1.1_�_1�-.1.1^_-I _·l�--l__^----^L-_�IIl·.·_i�-�·LI_�.. -.I 1���·�_�__.��_._�11_1___1_1_11____-
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Remark 17 Each iteration of algorithm G VNA requires at most

Tc + O(mn)

operations, where Tc is the number of operations needed to solve an instance of (CSOPc).
The term O(mn) derives from counting the matrix-vector and vector-vector multiplications.
The number of operations required to perform these multiplications can be significantly re-
duced if M and g are sparse.

4 Elementary Algorithms for Homogeneous Conic Linear Sys-
tems

In this section we develop and analyze two elementary algorithms for homogeneous conic
linear systems: algorithm HCI (for Homogeneous Conic Inequalities) which solves systems
of the form

(HCI) Mts E intC*,

and algorithm HCE (for Homogeneous Conic Equalities) which solves systems of the form

(HCE) Mw = 0,
w E C.

Here the notation is the same as in Section 3, and we make the following assumption:

Assumption 2 C C X is a regular cone. The width Tc of the cone C and the coefficient
of linearity i3c for the cone C, together with vectors ii and u of Remark 6 and Proposition
7 are known and given. For y E Y, IYil = Y112.

Both algorithms HCI and HCE consist of calls to algorithm GVNA applied to transforma-
tions of the appropriate homogeneous system. Algorithms HCI and HCE will be used in
Section 5 in the development of algorithm CLS for general conic linear system (FPd).

4.1 Homogeneous Conic Inequality System

In this subsection, we develop algorithm HCI (for Homogeneous Conic Inequalities)
and analyze its complexity and the properties of solutions it generates. Algorithm HCI is
designed to obtain a solution of the problem

(HCI) Mts E intC*. (42)

We will assume for the rest of this subsection that the system (HCI) of (42) is feasible. We
denote the set of solutions of (HCI) by SM, i.e.,

SM = {s : Mts E intC*}.

19
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The solution s returned by algorithm HCI is "sufficiently interior" in the sense that the
ratio dists ,OM)is not excessively large. (The notion of sufficiently interior solutions is very
similar to the notion of reliable solutions. However, we wish to reserve the appellation
"reliable" for solutions and certificates of infeasibility of the system (FPd).)

Observe that the system (HCI) of (42) is of the form (19) (with g = 0). (HCI) is the
"alternative" system for the following problem:

(PHCI) Mx = 0
x E C (43)

UtX = 1,

which is a system of the form (18). Following (31) we define

r(M, 0) = infllhll : h E 07)}, (44)

where, as in (30), 7- = {Mx : x E C, iitx = 1}. Combining Proposition 13 and a separating
hyperplane argument, we easily have the following result:

Proposition 18 Suppose (HCI) of (42) is feasible. Then (PHCI) of (43) is infeasible and
r(M, 0) = min{llMxll : x E C, itzx = 1}. Furthermore, r(M, 0) > 0.

Algorithm HCI, described below, consists of a single application of algorithm GVNA
to the system (PHCI) and returns as output a sufficiently interior solution of the system
(HCI).

Algorithm HCI

* Data: M

* Run algorithm GVNA with STOP = STOP2 on the data set (M, 0, x ° ) (where x°0 is
an arbitrary admissible starting point). Let be the residual at the last iteration of
algorithm GVNA.

. Define s = -['. Return s.

The following theorem presents an analysis of the iteration complexity of algorithm HCI,
and shows that the output s of HCI is a sufficiently interior solution of the system (HCI).

Theorem 19 Suppose (HCI) is feasible. Algorithm HCI will terminate in at most

La.6r ).MAI
2T (45)

iterations of algorithm GVNA.

20
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Let s be the output of algorithm HCI. Then s E SM and

11,91il~~ < 21l~MJ~ -(46)
dist(s, SM) - cr(M, O)

Proof: Suppose that algorithm GVNA (called in algorithm HCI) has completed k itera-
tions. From Lemma 16 we conclude that

k1 < 4__11_M

where vk = -Mxk is the residual after k iterations. From Proposition 18, r(M, 0) < [IMxjI

for any admissible point x. Therefore,

411MI
r(M, 0) < llVk < __

Rearranging yields
161IM 112

- < r(M, O)2'

from which the first part of the theorem follows.

Next, observe that jIslj = 1. Therefore, to establish the second part of the theorem,

we need to show that dist(s, aSM) > crl(M,0) Equivalently, we need to show that for any

q E Y* such that Ilqll* < 1, Mt (s + ci(m0 q) E C*. Let p be an arbitrary vector satisfying

p E C, futp = 1. Then

(Mt (s + M,)) St0 t tMp + /3cr(M,O) tMP.
m c2(M,0 q p 211M1 q MP. (47)

Observe that by definition of s

tMp= vp vtwk- 
tMP = Ii> I

where v = vk - 1 is the residual at the last iteration of algorithm GVNA. (The first inequality
follows since p is an admissible point, and the second inequality follows from the fact that
the termination criterion of STOP2 is satisfied at the last iteration.) On the other hand,

Ocr(M, O)qM /cr(M ) IMII r(M,0)
211M p > - 211MII Ilqllp 2

Substituting the above two bounds into (47), we conclude that

(Mt( cr(M, 0 ) t I Il_ r(M, 0) >0
mls + 211MIJ q P> 20.

I~~~~~111
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4.2 Homogeneous Conic Equality System

In this subsection, we develop algorithm HCE (for Homogeneous Conic Equalities) and
analyze its complexity and the properties of solutions it generates. Algorithm HCE is
designed to obtain a solution of the problem

(HCE) Mw=O (48)
w E C.

We assume that M has full rank. We denote the set of solutions of (HCE) by WM, i.e.,

WM={w: M = O, E C}.

The solution w returned by algorithm HCE is "sufficiently interior" in the sense that the
ratio Iwl c is not excessively large. (The system (HCE) of (48) has a trivial solutiondist~w,0C)
w = 0. However this solution is not a sufficiently interior solution, since it is contained in
the boundary of the cone C).

We define
p(M) min max 0

v W

vl < 1 s.t. Mw-Ov = 0 (49)
wEC

11w1 _< 1.
The following remark summarizes some important facts about p(M):

Remark 20 Suppose p(M) > O. Then the set {w E WM w O} is non-empty, and M
has full rank. Moreover, p(M) < H[MI and

I[(MM t)- 1 < ( (50)

This follows from the observation that p(M)2 < A(MMt), where A1(MMt) denotes the
smallest eigenvalue of the matrix MMt.

We will assume for the rest of this subsection that p(M) > 0. Then the second statement
of Remark 20 implies that the earlier assumption that M has full rank is satisfied. In
order to obtain a sufficiently interior solution of (HCE) we will construct a transformation
of the system (HCE) which has the form (18), and its solutions can be transformed into
sufficiently interior solutions of the system (HCE). The next subsection contains the analysis
of the transformation, and its results are used to develop algorithm HCE in the following
subsection.

22



Computing a Reliable Solution of a Conic Linear System

4.2.1 Properties of a Parameterized Conic System of Equalities in Compact
Form

In this subsection we work with a compact-form system

(HCEo) Mx = 0
x C (51)

Utx = 1.

The system (HCEo) is derived from the system (HCE) by adding a compactifying constraint
utx = 1. Remark 20 implies that when p(M) > 0 the system (HCEo) is feasible.

We will consider systems arising from parametric perturbations of the right-hand-side
of (HCEo). In particular, for a fixed vector z E Y, we consider the perturbed compact-form
system

(HCE 6) Mx = 6z
xEC (52)

Utx = 1,

where the scalar 6 > 0 is the perturbation parameter (observe that (HCEo) can be viewed
as an instance of (HCED) with the parameter = 0, justifying the notation). Since the
case when z = 0 is trivial (i.e., (HCEt) is equivalent to (HCEo) for all values of ), we
assume that z 0. The following lemma establishes an estimate on the range of values of J
for which the resulting system is feasible, and establishes bounds on the parameters of the
system (HCE 6) in terms of .

Before stating the lemma, we will restate some facts about the geometric interpretation
of (HCEj) and the parameter r(M, z) of (31). Recall that the system (HCE6 ) is feasible

precisely when z E %l = {Mx: E C, utx = 1}. Also, if the system (HCE6 ) is feasible,
r(M, 6z) can be interpreted as the radius of the largest ball centered at z and contained
in -. Moreover, using the inequality /3ci x I< Utx < x for all x E C, it follows that

Pcr(M, O) < p(M) < r(M, O0).

Lemma 21 Suppose (HCEo) of (51) is feasible, and z E Y, z O. Define

6 = max{ : (HCEs) is feasible}. (53)

Then P() < r(IM,O) < 6 < +c. Moreover, if p(M) > 0, then > 0, and for any 6 E [0, ],jjzjl - Jjz1-
the system (HCEa) is feasible and IIM - ztii < IIMi + 6llZl and r(M, z) > (j)) p(M).

Proof: Since R is a closed set, is well defined. Note that the definition of implies that
6z E 07l. Also, since z 0 and R is bounded, < +oo. To establish the lower bound on
6, note that for any y E Y such that Ilyll < 1, r(M, O)y E Wt. Therefore, if we take y = IIzI
we have r(M,O) z E RA, and so (HCE3) is feasible for = r(M,O) Hence, - > ((MO) > P(M)11-11 - lz11 1 ll 11
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The bound on IM - zutiJ is a simple application of the triangle inequality for the
operator norm, i.e., JIM - zuit l < IMII + aIJzJJ Ilull* = IMII + 11zI.

Finally, suppose that p(M) > 0. Then > 0. Let E [0,6] be some value of the
perturbation parameter. Since a < , the system (HCEj) is feasible. To establish the lower
bound on r(M, z) stated in the lemma, we need to show that a ball of radius $-~r(M, O)
centered at z is contained in . Suppose y E Y is such that IlYll < 1. As noted above,
6z E R and r(M, O)y E . Therefore,

3z + r(M, O)y = (z) + I- (r(M,O)y) E A,

since the above is a convex combination of z and r(M, O)y. Therefore, r(M, Jz) >
Fa-r(M, 0) > $-p(M), which concludes the proof. I

We now consider the system (HCE6) of (52) with the vector z = -Mu, where u is as
specified in Assumption 2. The system (HCEa) becomes

(HCEa) Mx =-JMu
x E C (54)
utx = 1.

The following proposition indicates how approximate solutions of the system (HCEa) of
(54) can be used to obtain sufficiently interior solutions of the system (HCE).

Proposition 22 Suppose p(M) > 0 and > O. Suppose further that x is an admissible
point for (HCE5), and in addition x satisfies

1 p(M)2

ljMx + JMuI < -arc M
2 jMjj

Define

w = (I- Mt(MMt)-1M)(x + 3u). (55)

Then Mw = 0 and

1w - (x + Ju)II < - 3c (56)2

which implies that w E C, dist(w, dC) > 1rc, and JlwlJ < -TC + + 6.

Proof: First, observe that w satisfies Mw = 0 by definition (55). To demonstrate (56) we
apply the definition (55) of w to obtain

11w - (x + u)I = IIMt(MM t)-M(x + u){I < IIMIf ' Ij(MM t )-'jJ· IM(x + au)II

< aCp(M)2 . IMJ I. II(MM t>)-1 II rcp(M)2 . II(MMt )-111 aC
2-lMIJ 2 - 2'
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since II(MMt)- 111 < 1 from Remark 20.

The last three statements of the proposition are direct consequences of (56). Notice that
B(x + Ju, Jrc) C C since B(u, rc) C C and x E C. Combining this with (56) and the
triangle inequality for the norm we conclude that w E C and dist(w, aC) > rc. Also,

1 1
11wII < 11w - ( + Su)II + 11x + u 11I < src + - + 3,

which completes the proof. I

Notice that w defined by (55) is the projection of x + Ju onto the set {w : Mw = 0}
with respect to the Euclidean norm on the space X. Although the norm on the space X
may be different from the Euclidean norm, we will refer to the point w defined by (55) as
the Euclidean projection of x + Ju.

It is interesting to note that it is not necessary to have < for Proposition 22 to be
applicable.

4.2.2 Algorithm HCE

The formal statement of algorithm HCE is as follows:

Algorithm HCE

* Data: M

* Iteration k, k > 1

Step 1 = k 2 1- k , compute 1():

-(6) 22p22 In 27C+2 + (57)

Step 2 Run GVNA with STOP = STOP3 with I = 1() on the data set (M, -Mu, x0)
(where x° is an arbitrary admissible starting point).

Step 3 Let x be the last iterate of GVNA in Step 2. Set w = (I-Mt(MMt)-lNM)(x+
6u). If jIw - (x + Ju)11 < 1 rc, stop. Return w.
Else, set k +- k + 1 and repeat Step 1.

The following proposition states that when p(M) > 0 algorithm HCE will terminate
and return as output a sufficiently interior solution of (HCE).
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Theorem 23 Suppose (HCE) satisfies p(M) > O. Algorithm HCE will terminate in at
most

2 p(M) 1) + 2 (58)
iterations, performing at most

4 2161IM112 ( 4OMI + lg 2 ( + 2 (59)
3 p(M) 2 3 P(M)-rcc \p(M)I

iterations of algorithm GVNA.

Algorithm HCE will return a vector w E X with the following properties:

1. W E WM,

2. dist(w, C) > rcp(M)811M II

3. 11wll < 2c

4. lwll < 1111MII
dist(w,oC) - p(M)tCr'

Proof: We begin by establishing the maximum number of iterations algorithm HCE will
perform. Suppose that x is an admissible point for the system (HCEj) for some value 6 > 0.
The residual at point x is defined in algorithm GVNA as v = -Mu - Mx = -M(x + Ju).
From Proposition 22, having a residual with a small norm will guarantee that the projection
w of the point x + Su will satisfy the property 11w - (x + Su)II < ½'rcS. In particular, it is
sufficient to have lvll < e with

= -6cP(M)2 (60)
2 IMII

We now argue that if < I (M), then Step 2 of algorithm HCE will terminate in I(5)- 2 IMII
iterations and produce an iterate with the size of the residual no larger than e given by
(60).

Suppose <6 < p(M) Let be as defined in (53). Applying Lemma 21 for z = -MuS 2 1M11

we conclude that the system (HCE 6) is feasible for any 6 E [0, ], and 6 > M > M > .
Hence the system (HCEs) is feasible, and furthermore

IIM + sMutll < (1 + 6)IIMII < -IIMII

(since < ), and

r (M, -MU)> ( ) p(M) 1P(M
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Since the system (HCE6) is feasible, from Proposition 11 it must be true that algorithm
GVNA with STOP = STOP3 will perform I = I(d) iterations, where

() 2C622 (n 27C62 ( c > p(M)2 M In ) + )) (61)3c6 2T0- 6p(L) w + c \\P(M)2TC

since I< p(M). Applying Lemma 15 we conclude that after I(a) iterations of GVNA the

residual v ( 6) satisfies:

I(6) 3Cr(M,-JMu) 2 cp(M) 2

I I'(6)11 <I 11v11e2 V IIM+6Mutl < Mx° + 6Mue 2 311MJ

-(M2 In 211M112 (1+ s- h ) / c (M ) p(M')23c
p(M) 2 P (M)-r C _311M _

< + JIM=le E.
Tc 211MIJ

We conclude that if 0 < a < 1 p(M) then algorithm GVNA of Step 2 of HCE will perform
I(a) iterations and w defined in Step 3 will satisfy the termination criterion of HCE.

In principle, algorithm HCE might terminate with a solution after as little as one itera-
tion, if the point w defined in Step 3 of that iteration happens to be sufficiently close to the
point x + Su. However, in the worst case algorithm HCE will continue iterating until the
value of a becomes small enough to guarantee (by the analysis above) that the corresponding
iteration will produce a point satisfying the termination criterion. To make this argument
more precise, recall that during the kth iteration of the algorithm HCE, = 2k = 21-k
Hence, HCE is guaranteed to stop at (or before) the iteration during which value of falls
below I p(M) for the first time. In other words, the number of iterations of HCE that are
performed is bounded above by

mink 21-k < IMlp() 

Therefore algorithm HCE will terminate in no more than

Fo p(M)gl (62)

iterations, which proves the first claim of the theorem. Also, notice that throughout the
algorithm,

k > p(M) (63)
>4 IIMI 

To bound the total number of iterations of GVNA performed by HCE, we need to bound
the sum of the corresponding I(6)'s:

K Krca I r9 4k (n 8C4k (9k 2kP-1 ) ) 1(64)
k=l k=l 8r3
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It can be shown by analyzing the geometric series EK=l 4 k that the sum in (64) satisfies
K I(k) < 4 ( 5K) + K Tref

k=l I(3 ) < -I(5 ) + K. Therefore

( (K)2 ln (2 (K)2 (1+C 1 K))1+K

n 811MI12 (1+ 411M1 + Flog 2 +p(M)I +2
p(M)2C P(M C2 | 102 VP(M)

< 4 7211M12 ( 4M011i1
3 p(M)2 /0C Vp(M) 3TcI3c] + log2 p(M)J +2

<-4 2161M12 (4011MI 
p(M)rcc) + [log2 p(M +2.

The first inequality in (65) follows from (63). We have thus established the second claim of
the theorem.

It remains to show that the vector w returned by algorithm HCE satisfies conditions 1
through 4. Let 5K denote the value of a during the last iteration of HCE. Applying Proposi-
tion 22 combined with (63) we conclude that conditions 1 and 2 are satisfied. Furthermore,

Ilwl < K TC + 1
2 3c

which establishes condition 3, and

+K< 3 1 5
+ 3 I< - 2 Oc - 2c

1lwll <
dist(w, dC) -

jKT c+ 1 +K

2TCK1 J+
½wFx

= 2 tc+ 1
2/3crc3K

< 2 + p(M),Bcw¢
+ <11MI

Tc p(M)3cc '

which establishes condition 4 and completes the proof of the theorem. 

5 Algorithm CLS for resolving a general conic linear system.

In this section we indicate how algorithms HCI and HCE can be used to obtain reliable
solutions of a conic linear system in the most general form. A general conic linear system
has the form

(FPd) Ax = b
x E Cx

of (1), and the "strong alternative" system of (FPd) is

(SAd) Ats C:
bts < 0

4
3

K

E I(jk) <
k=l

7211MI12

p(M)2C

(65)

1)
TO-· 
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of (11). We develop algorithm CLS, which is a combination of two other algorithms, namely
algorithm FCLS (Feasible Conic Linear System) which is used to find a reliable solution
of (FPd), and algorithm ICLS (Infeasible Conic Linear System), which is used to find a
reliable solution to the alternative system (SAd). We first proceed by presenting algorithms
FCLS and ICLS, and studying their complexity. We then combine algorithms FCLS and
ICLS to form algorithm CLS and study its complexity.

Recall that Assumption 1 is presumed to be valid for the cone Cx.

5.1 Algorithm FCLS

Algorithm FCLS is designed to compute a reliable solution of (FPd) of (1) when the
system (FPd) is feasible. Consider the following reformulation of the system (FPd):

-bO + Ax = 
0>0, xE Cx.

System (66) is of the form (HCE) of (48) under the following assignments:

M=[ -b A]

C = +x Cx,

with norms defined as follows:

* I1(0,x)11 = 101 + IIxI, (, ) E x X

* IlvIl = Ilvll2, v E Y.

Then the norm approximation vector for C is easily seen to be ui = (1, f) with 3c = 3.
Moreover, the width of the cone C is -rc = > r and is attained at u = 1 (, f)

Proposition 24 Suppose (FPd) of (1) is feasible and p(d) > O. Then the system (66) is
feasible, M has full rank, and we have

IIMiI = lldil, and p(M) = p(d),

where p(M) is defined in (49).

Proof: Feasibility of the system (66) is trivially obvious. The expression for IMI[ = lldll
follows from the definition of the operator norm. The last statement of the proposition is
a slightly altered restatement of Theorem 3.5 of [29]. Since p(M) = p(d) > 0, Remark 20
implies that M has full rank. I

We use algorithm HCE to find a sufficiently interior solution of the system (66) and
transform its output into a reliable solution of (FPd), as described below:
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Algorithm FCLS

* Data: d = (A, b)

Step 1 Apply algorithm HCE to the system (66). The algorithm will return a vector
w = (, ).

Step 2 Define x = . Return x (a reliable solution of (FPd) ).

Lemma 25 Suppose (FPd) is feasible and p(d) > 0. Then algorithm FCLS will terminate

4 216C(d)2

3 /32
In (80C(d)) + Flog 2 C(d)l + 2

iterations of algorithm GVNA. The output x will satisfy

1. E Xd,

2. 115I < 22C(d) 1,

3. dist(5, OCx) > i22(d)'

4. Hlljl < 22C(d)
dist(!,&Cx) -- P

Proof: To simplify the expressions in this proof, define ca dist(tb, OC) = dist ((H, o), (R+ x Cx))

From Theorem 23 we conclude that algorithm HCE in Step 1 will terminate in at most

4
3

216C(d)2
/32 In

(80C(d) )
-r:

+ Flog 2 C(d) + 2

iterations of algorithm GVNA, which establishes the first statement of the lemma.

Next, from Theorem 23 we conclude that the vector C = (, x) returned by algorithm
HCE in Step 1 satisfies:

-b0+A = 0, (,) ER+ x Cx, a > rcp(M) > (
- 811MII - 16C(d)'

+ 5 10 + 11-1t< 25 2tic,
55 1(0,)l <

20' a -
1Mll < 22C(d)

P(M)O3cTc- A

Note in particular that (68) implies that > a > 0, so that is well-defined, and A =
b, E Cx, which establishes statement 1.

Next,

111 j1 1 = -I 11 - < 
O8 8a

1 < 22C(d)
-1<

in at most

(67)

(69)

30
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which proves 2.

To prove 3, define r TT (1 + l:ll). Then a simple application of (69) implies that

r > 22c Further, let p E X be an arbitrary vector satisfying ]IpI < r. Then

ipII I < 0 9r= (1 - l+f(l) = -1- ( + fl-][) =+ ,

and so x + 0p E Cx, and hence x + p = E Cx. Therefore, dist(M, aCx) > r > 22(d)
establishing 3.

Finally,
111II < 11l-_ IIXII · IkII < 1w[I < 22C(d)

dist(, dCx)- r a(l + llll) - a - 3r

which establishes 4. 

5.2 Algorithm ICLS

Algorithm ICLS is designed to compute a reliable solution of (SAd) of (11) when the
system (FPd) is infeasible. Consider the following compact-form reformulation of the system
(FPd):

-br + Ax = 0
r + ftx = , (70)
r>O, x ECx.

The alternative system to (70) is given by

-bts >0 (71)

Ats E intC. (71)

System (71) is of the form (HCI) under the following assignments:

M=[-b A]

*C = +x Cx,

with norms defined as follows:

* l(r,x)ll = rl + ilxll, (r,x) E x X

* IIvII = iiv112, v E Y.

Then the norm approximation vector for C is easily seen to be ui = (1, f) with c = 3.
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Proposition 26 Suppose the system (FPd) is infeasible and p(d) > O. Then the system
(70) is infeasible, and we have

JIM = dll,

p(d)
p(d) < r(M, 0) < P ,

where r(M, 0) is defined in (44).

Proof: Infeasibility of the system (70) follows from Proposition 3. The expression for
JIMI = lldll follows from the definition of the operator norm. Next we establish the bounds
on r(M, 0). Since the system (70) is infeasible r(M, 0) is computed using (33) as

r(M,) = min fi-M(rx)I =min = min br-Axll
r+ft = 1 r+f Pt = 1 (72)
r >O, x E Cx r O, E Cx,

which is exactly program Pg(d) of [12] (for the case when Cy = {0}). Therefore, applying
Theorem 3.9 of [12] we conclude that Pr(M, O) < p(d) < r(M, 0), that is, p(d) < r(M, O) <
p(d) I

We use algorithm HCI to compute a sufficiently interior solution of the system (71) and
show that it is a reliable solution of (SAd), as described below:

Algorithm ICLS

* Data: d = (A, b)

Step 1 Apply algorithm HCI to the system (71). The algorithm will return a vector
s.

Step2 Return s (a reliable solution of (SAd) ).

Lemma 27 Suppose (FPd) is infeasible and p(d) > O. Then algorithm ICLS will terminate
in at most

16C(d)
2 J (73)

iterations of G VNA. The output s satisfies s E Ad and

llsll < 2C(d)
dist(s, DAd) -

Proof: From Theorem 19 we conclude that algorithm HCI in Step 1 will terminate in at
most

r(M, 0)2 _ 6
Cd

2
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iterations of GVNA, which establishes the first statement of the lemma. Furthermore, the
output s satisfies s E SM and

Ilsil < 211Ml < 2C(d)
dist(s, &SM) - 3cr(M,O) -

Since'SM C Ad, the result follows. I

5.3 Algorithm CLS

Algorithm CLS described below is a combination of algorithms FCLS and ICLS. Algo-
rithm CLS is designed to solve the system (FPd) of (1) by either finding a reliable solution
of (FPd) or demonstrating the infeasibility of (FPd) by finding a reliable solution of (SAd).
Since it is not known in advance whether (FPd) is feasible or not, algorithm CLS is designed
to run both algorithms FCLS and ICLS in parallel, and will terminate when either one of
the two algorithms terminates. The formal description of algorithm CLS is as follows:

Algorithm CLS

* Data: d = (A, b)

Step 1 Run algorithms FCLS and ICLS in parallel on the data set d = (A, b), until
one of them terminates.

Step 2 If algorithm FCLS terminates first, return its output x. If algorithm ICLS
terminates first, return its output s.

Although Step 1 of algorithm CLS calls for algorithms FCLS and ICLS to be run in
parallel, there is no necessity for parallel computation per se. Observe that both algorithms
FCLS and ICLS consist of repetitively calling the algorithm GVNA on a sequence of data
instances. A sequential implementation of Step 1 is to run one iteration of algorithm GVNA
called by algorithm FCLS, followed by the next iteration of algorithm GVNA called by the
algorithm ICLS, etc., until one of the iterations yields the termination of the algorithm.

Combining the complexity results for algorithms FCLS and ICLS from Lemmas 25 and
27 we obtain the following complexity analysis of algorithm CLS:

Theorem 28 Suppose that p(d) > 0 and Assumption is satisfied. If the system (FPd) is
feasible, algorithm CLS will terminate in at most

8 216(d)2 In 80C d) + 2 log 2 C(d)] + 4

iterations of GVNA, and will return a reliable solution x of (FPd). That is, x will have the
following properties:
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· E Xd,

* iin < 22C(d) 1,

fir* dist(i, aCx) > 22(d)

* dist(z ,9Cx) - fr

If the system (FPd) is infeasible, algorithm CLS will terminate in at most

2 16C(d)2 1

iterations of GVNA, and will return a reliable solution s of (SAd), thus demonstrating
infeasibility of (FPd). That is, s will satisfy the following properties:

sE Ad,

* 1IsI1 < 2C(d)
dist(s,aAd) -

Proof: The proof is an immediate consequence of Lemmas 25 and 27. The bounds on the
number of iterations of algorithm GVNA in the theorem are precisely double the bounds in
the lemmas, due to running algorithms FCLS and ICLS in parallel. I

6 Discussion

Discussion of complexity bound and work per iteration. Observe that algorithm
CLS (as well as algorithms FCLS and ICLS) consists simply of repetitively calling algorithm
GVNA on a sequence of data instances (M, g), all with the same matrix M = [-b A], and
with right-hand side of the form g = 0 or g = -Mu for a sequence of values of the
parameters . Viewed in this light, algorithm CLS is essentially no more than algorithm
GVNA applied to a sequence of data instances all of very similar form. The total workload
of algorithm CLS, as presented in Theorem 28, is the total number of iterations of algorithm
GVNA called in algorithm CLS. In this perspective, algorithm CLS is "elementary" in that
the mathematics of each inner iteration is not particularly sophisticated, only involving some
matrix-vector multiplications and the solution of one conic section optimization problem
(CSOPc,,) per iteration of GVNA, see Remark 29.

Remark 29 Each iteration of algorithm GVNA used in algorithms FCLS and ICLS uses
at most

Tcy + O(mn)

operations, where Tcx is the number of operations needed to solve an instance of (CSOPcx).
The term O(mn) derives from counting the matrix-vector and vector-vector multiplications.
The number of operations required to perform these multiplications can be significantly re-
duced if the matrices and vectors involved are sparse.

II =_ __ _�I I II1IYIYI1I__LI___XI·-^I- I�L·-QPII�· X1 .II-�._
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In addition to running algorithm GVNA, algorithm CLS (in particular, algorithm,
FCLS) computes several Euclidean projections using formula (55). This computation can-
not be considered elementary since, in particular, it involves computing an inverse of a
square matrix MMt which requires O(m3 ) iterations. However, since the matrix M used
by algorithm FCLS is the same in all projection computations, this step of the algorithm

can be implemented by computing the projection matrix P I - Mt(MMt)-lM "off-line"
(before calling algorithm CLS). Then the projections required by the algorithm FCLS can
be computed by means of matrix-vector multiplication. Since algorithm FCLS will per-
form no more than O(ln(C(d))) computations of Euclidean projections (see Theorem 23),
the multiplications involving matrix P will not increase the computation time significantly
even though matrix P is not likely to have a nice sparsity structure.

Other formats of conic linear systems. In this paper, we have assumed that the
problem (FPd) has "primal standard form" Ax = b, x E Cx, where Cx is a regular cone.
Instead, one might want to consider problems in "standard dual form" b-Ax E Cy, x E X,
or the most general form b - Ax E Cy, x E Cx. Elementary algorithms for problems in
these forms, with the cones Cy and/or Cx assumed to be regular, are addressed in detail in
[8]. In general, these problems can be approached by converting them into primal standard
form above and applying algorithm CLS as described in this paper. The technique for
converting problems of general form b - Ax E Cy, x E CX into primal standard form
was originally suggested by Pefia and Renegar [25] and can be interpreted as introducing
scaled slack variables for the linear constraints. This approach is extended to problems
in standard dual form in [8]. In some cases, however, the problem can be treated by an
elementary algorithm directly, without converting it into standard form. These approaches
are also presented in detail in [8].

Converting Algorithm CLS into an Optimization Algorithm. Converting algorithm
CLS into an optimization algorithm is a logical extension of the work presented in this paper.
Suppose that we are interested in minimizing a linear function ctx over the feasible region of
(FPd). Then algorithm CLS could be modified, for example, with the addition of an outer
loop that will add an objective function cut of the form ctx < ct± whenever a solution is
produced at the previous iteration. This may be a topic of future research.

Ill-posed problem instances. The complexity bound of Theorem 28 relies on the fact
that (FPd) is not ill-posed, i.e., p(d) > 0. The algorithm CLS is not predicted to perform
well (and in fact, is not guaranteed to terminate) in cases when p(d) = 0. This does not
constitute, in our view, a weakness of the algorithm, since such problems are exceptionally
badly behaved in general. In particular, an arbitrarily small perturbation of the data can
change the feasibility status of such problems, which makes it rather hopeless to compute
exact solutions or certificates of infeasibility.
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