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Center Problem With Applications

Kok Choon Tan*
Robert M. Freundt

March 1991

Abstract

The general parametric center problem is to trace the (analytic) center of a linear
inequality system Ax < b as the data (A, b) of the system is parametrically de-
formed. We propose an algorithm, which is based on Newton's method, for generating
a piecewise-linear path of approximate centers as the deformation parameter varies over
a prespecified range. We then apply this algorithm and methodology to four mathe-
matical programming problems. Our algorithm when applied to the generalized linear
fractional programming problem (GLFP) requires Q((m + k)k) iterations to achieve
a fixed improvement in the objective functional value, where m is the total number
of constraints, and k is the number of linear fractional functionals in the objective
function. When applied to the linear programming problem, our algorithm specializes
to Renegar's path-following algorithm.

*Department of Mathematics, National University of Singapore, Kent Ridge, SINGAPORE 0511.
tSloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139.

1



1 Introduction

The (analytic) center of a system of m linear inequalities in R ' of the form Ax < b, assuming

the polyhedral set {x E R' JAx < b} is nonempty and bounded, is the unique optimal solution

of the nonlinear program, which we call the center problem,

m

CP: max Elns,
i-=1

s.t. Ax + s = b

s>O.

(See Sonnevend [23,24].)

Since the seminal work of Karmarkar [13], it has been shown by various researchers that

the concept of centers plays an important role in the development of efficient interior-point

algorithms for linear and convex quadratic programming problems. (See Anstreicher [2],

Bayer and Lagarias [3,4], Freund [5], Jarre [12], Mehrotra and Sun [17], Renegar [22], Sonn-

evend [23,24] and Vaidya [27] among many others.) For example, in Karmarkar's projective

scaling algorithm, at each iteration, the problem is transformed so that the current iter-

ate is mapped onto the center of the transformed feasible set before a projected gradient

step is taken to reduce a logarithmic potential function. The potential function was used

intelligently by Karmarkar to monitor the progress of the'algorithm.

In this paper, we are primarily interested in tracing the path of centers as the system of

linear inequalities is parametrically deformed. Specifically, let :, denote the center of the

system (A + aB)x < b + ad, where A and B are m x n matrices, b and d are m-vectors, and

a is a scalar parameter. That is, &a is the (optimal) solution to the nonlinear program

m

CP(a) max E In si
i=1

s. t. (A+aB)x + s = b + ad

s>O.

As the parameter a increases (or decreases), we are interested in generating a piece-wise

linear path of approximate centers , such that :, is close to ,, for all values of a over

2



a specified range. (In the appendix, we present three closely related measures of closeness

to the center.) We call this the General Parametric Center Problem, as opposed to the

Right-hand-side (RHS) Parametric Center Problem considered in [8].

Suppose there are k nonzero rows in the matrix B and I > 1 nonzero rows in the ma-

trix [B, d]. That is, we allow I linear inequalities to vary with the parameter, (I - k) of

which involve varying only the right-hand-side. We propose an algorithm, which is based

on Newton's method, for generating a piecewise-linear path of approximate solutions ± to

CP(a) as the parameter a is increased strictly monotonically over a prespecified range and

analyze its algorithmic performance. To achieve a fixed increase in the parametric value, our

algorithm requires O(m(v/7 + k)) iterations, where each iteration involves the solution of an

n x n system of linear equations. We then apply the same methodology to four mathematical

programming problems; namely, the linear programming problem (LP), the linear fractional

programming problem (LFP), the von Neumann model of economic expansion (EEP) and

the generalized linear fractional programming problem (GLFP).

Notation

For any vector s Rk, we let the corresponding upper-case letter S denote the k x k

diagonal matrix with ith diagonal entry equals to si. We write S := diag (s). If Q is a

positive definite matrix, the Q-norm I IIQ is given by

IIVIIQ = v T Qv.

The usual lI-, 12- and 1-norms will be denoted by [[. Il, [[ and I1 Ioo respectively.

Given a matrix M, we let Mi denote the i row of M and MT denote the transpose of Mi.

The usual (Euclidean) matrix norm of M is given by

IIMII = sup IIMxII.

Note that if M is a diagonal matrix, then lIMIt = max,{ImI}. Similarly, the Q-norm of M

is given by

IIMIIQ = sup IIMxlIQ.
II-XI=1

3



The vector of all ones (of appropriate dimension) shall be denoted by e, that is, e :=

(1, 1,.., l)T .

We shall let denote the center of the system Ax < b and let i, denote the center of

the system (A + aB)x < b + ad. With respect to the system (A + aB)x < b + ad, for z

satisfying

, := (b + ad) - (A + asB) > 0,

we let Q,(x) denote the negative of the Hessian of the logarithmic barrier function

m
ff(x) = E ln((b + ad) - (A + aB)xI

i=1

for the center problem CP(a) on the system (A + aB)x < b + ad. We note that the

Karush-Kuhn-Tucker conditions for CP(a), which characterize the center a,, of the system

(A + aB)x < b+ ad, are

,, = b+ ad - (A + aB)i, > ,

(A + aB)TSf e = O.

Given an interior point satisfying s = b - Ax > 0, we let

a = a, := 1/I1S-'(Bt - d)I 1o

and, for each a E [0, ), we let

(1)

(2)

(3)

a := (b + ad) - (A + aB)± > 0

and

Q () := (A + aB)TS, 2 (A + aB)

Assumptions

We shall make the following assumptions in this paper. Let X = {x E RnlAx < b} and

X + = {x E RnIAx < b}.

4

(4)

(5)



Assumption 1. The set X+ is nonempty and bounded.

Assumption 2. For every z E X, we have Bx > d and Bx # d.

Assumption 1 ensures that the center of the system Ax < b exists uniquely, and Assump-

tion 2 ensures that the polyhedral set

X, := {x E X (A + aB)x < b+ ad}, (6)

is shrinking for increasing values of a > 0 i.e. al > a 2 implies that X, is properly contained

in XA2. Therefore, there exists a maximal a such that the system (A + aB)x < b + ad is

feasible. Let a* denote the maximal a such that the system (A+aB)x < b+ad is feasible.

Then under these Assumptions, it is easy to see that 0 < a* < c, and for all a [0, a*),

the interior of the set X, is nonempty and bounded. Finally, note that the Assumptions

imply that the number I of nonzero rows in the matrix B, d] is at least one. [Of course, if

I = 0 then the system does not change when a is varied, and the general parametric center

problem is only as difficult as finding the center of the system Ax < b.]

Remark: The general parametric center problem is closely related to the GLFP problem.

It is easy to see that, under the above Assumptions, a* equals the maximal value of the

following GLFP program.

a* = max, mini { bi-A }xf Bi-di (7)
s.t. Ax < b.

Note that we may express & as

a~~a~ 11S 1 dt 0 . { b,-A,x]
a = ae = 1 3 (Ba - d)lJ l m Bi - d, '

Therefore, & corresponds to the value of the program (7) evaluated at x. Also, a is the

value of a such that the boundary of the polytope Xc, just touches the point a, so that

x E X + := {xI (A+aB)x< b + ad} for all a E [0, &c).

The organization of the rest of this paper is as follows. In Section 2, we state the main

results of this paper and present our algorithm for the general parametric center problem.
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[That is, new is a Newton iterate from t in center problem CP(3).] Then Xnew is again a

S-approximate center of the new system (A + /3B)x _< b + /3d.

Hence, with /3 given by (8), we may repeat the procedure with new replacing , A + B

replacing A and b + 3d replacing b. Note that the increase in a is a fraction of a, the value

of program (7) at . It makes good sense that the fraction depends on, and is inversely

proportional to, the total number of varying linear inequalities through the quantities k and

1.

Next, we have the following result which allows us to extend and generate a piecewise

linear path of approximate centers. In the following theorem, we increase a from a = 0 to

ca = /3, take a step from x to :,, = X + r, where is the Newton step from x for the center

problem CP(3) and then extend the path of approximate centers by linearly interpolating

between ± and nw.

Theorem 2.2 (Path Extension Theorem) .

Under the same conditions and definitions as Theorem 2.1, define tO, for all a i [0, /31, by

+ ()(nu -

Then

I1 ,C - X/,IIQ,(o) < 0.38.

Remark: Note that by Lemma A.3 in the Appendix, Theorem 2.2 implies that ±, is a

6-approximate center of system (A + aB)x < b + ad with 6 = 0.62 for all a E [0, /]. The

proof of Theorems 2.1 and 2.2 are given in Section 4.

2.1 A Parametric Center Algorithm

Based on Theorems 2.1 and 2.2, we propose the following Newton method-based algorithm

for tracing the path of approximate centers of systems (A + aB)x < b + ad as oa varies over

a given range a [0, aP"?]. The input of the algorithm include the m x n matrices A

and B, where we know that k of the rows of B are nonzero, the m-vectors b and d, such

7
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that there are 1 nonzero rows in the matrix [B, d, a scalar aupper > 0, and a 6-approximate

center with 6 = 1/21. Such an approximate center can be obtained by using an algorithm

for the center problem (see Vaidya [26] or Freund [5]). The output includes a sequence of

breakpoints {(2j , a )}, j' = tj, and a piecewise linear path of 6-approximate centers x,

with 6 = 0.62 for a E [0, aupper]. We note that, of course, the algorithm may not terminate

if aupper > a'.

Algorithm PCP

INPUT: A, B, b,

INITIALIZATION:

Set j = 0, a = 0 ,

d, upper k, , ( with 11z0 - I1Q1o(O) < 1/21).

= xz°, A = A andb=b.

ITERATION: Repeat the following steps until Ca > auPPer

Step 1. Set = b- At, and

1
t1 + 3=) 88(V7 +k)'

Step 2. Compute the Newton step ? from : in problem CP(/):

go = (b+ d) - (A + /B)i;

Qo(') = (A + 3B)TS 2(A + 3B);

= Qj'l(:)(A + 3B)TS ' l e.

Step 3. Set ,new = t + 1, aj+l = a J + 1, and for all a E [al, a+l], define

.t = X + ( a) (anew -

8



Step 4. Updatej j-j+1, I 2new, A -A+3B, b-hb+Od, and go to Step 1.

2.2 Complexity Analysis of the Algorithm

Next, we shall analyze the complexity of Algorithm PCP. We shall show that Algorithm

PCP requires O(m(O/7+ k)) iterations to achieve a fixed increase in the parameter value. We

shall first show that the increase ( given by (8)) in the parameter value at each iteration

of Algorithm PCP is a fraction of ((p )) of the maximal value a& of a such that the

system (A +aB)z < b+ ad is feasible. Since the increase in the parameter value is a fraction

of , this will follow if we can obtain an upper bound on a* in terms of a and m.

Now, from a property of the center of the system Ax < b (Corollary A.1 in the Appendix)

and the Assumptions given in Section 1, we obtain an upper bound on a* in terms of a- and

m as follow. Let u and v be the following constants.

u=max max{Bix-di Ax<b} (1 1)

v = min max Bix - di A< b} (12)

[Note that u can be obtained by solving k linear programs, and v can be obtained by solving

one linear program.] Since {zx Ax < b} is compact under Assumption 1, we have

max {Bix-dijAx < b} < oo

for each i = 1, 2, ... , m. Thus, u < oo. By Assumption 2, for each x satisfying 4Ax < b,

there exists an i such that Bix > d, therefore

max{Biz - d > 0.

Since {xl Az b} is compact under Assumption 1, we have v > 0. It is easy to see that for

all satisfying A < b, we have Biz - di < u for all i = 1, 2, ... ,m and

0 < v < max{Bz - di} < u < oo.
!
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Now, define the constant c by
uco :=-. (13)
V

Then we see that 0 < co < oo and we have the following.

Theorem 2.3 Suppose i = io is the center of the system Ax < b. Let & = aj be given by

(3). Then a* < com&, where c is the constant given by (11)-(13).

Proof: ForiE {1, 2, ... , m}andxe {xlAx < b},wehave

0 < b-Aix < mi,

where . = b- A, from Corollary A.1. Therefore,

bi-Aix < m ,i A Bii-di)

Bix -di - di Bix -d i/

Hence,

'= max in Bx- I Ax < b,

< max min i ) Bi -idis A < }
BA- dx < }-

m(ulv)< ^
- 11S-I(Bi - d)11oo
= coma. Q.E.D.

Now, taking 6 = 1/21, let cl be the following constant.

cl '= (1.1)(u) (14)
V'

Note that c = (1.1)co, where co is the constant defined by (13). Also note that if L denotes

that number of bits in a binary encoding of the given data (A, B, b, d), then cO < 22L.

From Theorem 2.3, we have the following.

Corollary 2.1 Suppose : is a 6-approximate center of the system Ax < b with 6 = 1/21.

Let & be given by (3). Then a' < clm&, where cl is the constant defined by (11)-(14).

10



Proof: In Lemma 4.9 of the next section, we show that & of Theorem 2.3 satisfies

- I +)(1~ 

The proof then follows from Theorem 2.3. Q.E.D.

The complexity of Algorithm PCP is thus given in the following.

Theorem 2.4 Suppose is the value of the parameter ca at the start of the th iteration

of Algorithm PCP. Then, for any given e > , we have a *-a < after at most K =

F88cm(v/7 + k)(ln(as -a) -lne)] iterations, where cl is the constant defined by (11)-(14).

Proof: From Theorem 2.1, we have

aj+l _ grj _
af a 88(V7 + k)

and from Corollary 2.1,

* - CtJ < ctm&.

Therefore,

> 88cn

< 
(I-

(1-

[

88clm(v7 + k) (a - a),

88c m(V 7 + k) ( 0 ).

Hence for j > K,

ln(ac -a)

whereby a* - a < e.

< jln (1- 1 ) + n(a - a 0 )
88 c, m (0/ 4 k) ln ( a°

-K< -+ ln(a - a )
88c~m(v'+ k)

* a a0

< - n( ) + ln(a - a ° )

= In,

Q.E.D.

11
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3 Applications

In this section, we show how Algorithm PCP may be applied to four mathematical pro-

gramming problems; namely, the linear programming problem (LP), the linear fractional

programming problem (LFP), the von Neumann model of economic expansion (EEP), and

the generalized linear fractional programming problem (GLFP).

3.1 Linear Programming

Suppose we are interested in solving a linear program in the following format:

LP: z' = max cTx

s.t. Ax <b

where x E R' and A is an m x n matrix. Non-negativity constraints and lower and upper

bounds are not distinguished from other inequalities. We assume that c O, for otherwise

any feasible solution will be optimal.

Then it is easy to see that LP is equivalent to the following program.

LP: z = max a

s.t. Ax <b + d,

where A, b and d are the following 2m x n matrix and 2m-vectors

A b 0

-c r -v -1
A= ·_, b= , d= (15)

-cT -v -1

for some lower bound v < z such that the set {xlAx < b} is nonempty and bounded. It

can be shown that any linear program can be reformulated such that these assumptions are

satisfied (see Renegar [22], for example). We may then assume that we have a 6-approximate

12



center 2 of Ax < b with 6 = 1/21, perhaps after applying a centering algorithm of Vaidya 26]

or Freund [5].

We may apply Algorithm PCP to solve LP in the following way. Note that LP corre-

sponds to a parametric center problem where the total number of linear inequalities is 2m,

the number of varying linear inequalities I = m, and the matrix B = 0 (therefore k = 0 in

Theorem 2.1 for this case). Suppose at the start of iteration j the value of a is a and we

have a 6-approximate center i of the system Ax < b + caid with 6 = 1/21. (Recall that 

is a 6-approximate center of a system Ax < b if Ijj - xilQ0(t) < 6.) We observe that for this

case, a according to (3) is = ci j -_ aj -v. We therefore set 3 = crf z according

to Theorem 2.1. Then we change the right-hand-side to (b + ad) + 3d. Then we take a

Newton iterate from ±' in the problem to find the center of system Ax < b + aj+ld, where
j +t = a + /. Let fj+l be the Newton iterate. Then according to Theorem 2.1, ±'+t is

again a -approximate center of the system Az < b + aJ+ld, and we enter iteration (j + 1)

and repeat the procedure.

Complexity Analysis

Note that
+1~ ~ cT jci+ i_-~ = a- =S ( i-a - ). (16)

On the other hand, using a property of the center (Lemma A.2 in the Appendix), we have

the following upper bounds.

Lemma 3.1 Suppose is the center of Ax < b, where A, b are given by (15). For any z

satisfying Ax < b, we have

0 < cTx - v < 2 (cTi - v).

Proof: Let .S = b- A& and s = b - Ax. Then from Lemma A.2, we have

-- v cT -- T
^ 1 cTS-V it bi - Aia: c -VThe Le mma follows immediately. Q.E.D.v)+ A 

The Lemma follows immediately. Q.E.D.

13
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Corollary 3.1 Suppose is a S-approximate center of Ax < b, with 6 = 1/21. For all z

satisfying Ax < b, we have

0 < cTx - < (2. 2)(cT - v).

Proof: Suppose is the center of Ax < b. From Lemma 4.9 in the following section, we see

that

(0.9)(CTXt- V) < CTi- V < (1.1)(CT - V).

The Corollary then follows immediately from the previous Lemma. Q.E.D.

Therefore (replacing b with b + aid and with x- in the above Corollary),

0< -- - v (2.2)(cT - ). (17)

Combining (16) and (17), we have

c +l - a > 94 /(z - -v). (18)

Rearranging terms, we get

Z -a j -v (- 194V' ( - -v). (19)

Hence, at each iteration, the gap (z - a - v) decreases by at least a factor of (1 - )

Note that, at each iteration j,

O < zZ-crYY <Z*-C?-V0 < -C CT -& - v.

Therefore, we can show as in [22] that, Algorithm PCP can be used to solve LP in O( vmL)

iterations. Summarizing the discussion above, we have the following.

Theorem 3.1 Algorithm PCP, if properly initiated, can be used to solve the LP problem in

O(V/';L) iterations, where m is the number of constraints and L is the number of bts in a

binary encoding of the problem instance.

Remark: Note that this implementation of Algorithm PCP to solve the LP problem struc-

turally duplicates Renegar's algorithm [221.

14



3.2 Linear Fractional Programming

Suppose we are interested in solving a linear fractional program in Rn of the following format

f - TX
LFP: a' = max h

s.t. Ax <,

where x R 4, A is an m x n matrix, b is an m-vector, and d are n-vectors and f and h

are scalars. We assume that

(1) the set := {x4x < b, Jx < f is nonempty and bounded,

(2) jTx - h > 0 for every x X x:= JlAx < b}, and

(3) dTx - h > 0 for every x E X0 := {xJlAx < T, < f}.

Note that under these assumptions, 0 < a* < o, and if d = 0 then LFP is just a linear

program, so we may assume that d ~ 0. (We note that Anstreicher [1] has a similar set of

assumptions.)

It is easy to see that LFP is equivalent to the following program in Rn'+l :

LFP: a' = max a
.,a

s.t. Ax < b

(e+ad)TX < f+ah.

We may then apply Algorithm PCP to solve LFP by tracing the centers of the parametric

family of systems (A + aB)x < b + ad, where a is taken as a parameter and is increased

strictly monotonically, and

A= A, B= [ , b= [], d= .
~ ~ ~f h

Note that in this case the total number of linear inequalities is (m + 1), and since [d, h 0

by our assumptions and the number of nonzero rows in the matrix B is k = 1, the number

of varying linear inequalities is = 1. We can assume that we have an interior point 0

satisfying the starting criterion of Algorithm PCP, that is, ? is a 6-approximate center

15
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of the system Ax < b with = 1/21, perhaps by using an algorithm (of Vaidya [26] or

Freund [5]) for finding the center of Ax < b.

When we apply Algorithm PCP to trace the parametric center of (A + aB)x < b + ad

as a increases strictly monotonically over the range a E [0, a* - e], we have the following.

At the start of iteration j, the value of a is a J and the current iterate is x = ', which is a

6-approximate center of the system (A + a'B)x < b+ aJd with = 1/21. We observe that

a, as defined by (3), is
(f + 'h) -( + ajd)T±

2r~i - h
since the only varying linear inequality is the last one, and in the jth iteration, the last

inequality is

(Z +&d)Tx < f +h.

Therefore, /3 is set, in accordance with Theorem 2.1, to be

1 (f + a) - ( +aJd)r
176 176(dT3j - h)

Next aj+l is set to be aJ+l ai +,/3, and a Newton iterate from xJ is taken (in the program

to find the center of the system (A +a+lB)x < b+a+l1d). The next iterate 'j+l is set to be

the Newton iterate from xi. Then according to Theorem 2.1, ij+l is again a 6-approximate

center of the system (A +a+lB)x < b+ca+ld with 6 = 1/21, and we enter iteration (j + 1).

Note that
(f + h)(C f h ) _ ( + (2d)J - j

ffi'-h __ ' = f IZ . - ct, >(20)

Therefore, a j is a strict lower bound on the objective value of LFP at x.

Complexity Analysis

We shall now analyze the complexity of Algorithm PCP when applied to the LFP prob-

lem. First, we have

+- _ aj = = I a. (21)
176

16



Next, using a property of the center of a linear inequality system [see Lemma A.2 in the

Appendix], we obtain an upper bound on a* in term of & and m as follows. We have [Note

that the total number of inequalities in the system (A + caB)x < b + ad is (m + 1).]

Lemma 3.2 Suppose , is the center of the system (A + aB)x < b + ad.

XE X, := {j (A+c B)x < b + d},

0 < (f + cah) - ( + ad)Tx < (m + 1)[(f + ah) -(a + ad)Tl .

Next, by Lernmma A.3 of the Appendix and the above Lemma, we have

Lemma 3.3 Suppose Z is a 6-approximate center of (A + aB)x < b + ad.

Then, for all

Then, for all

x E X := xl(A + aB)x < b + ad},

0 < (f + oth) - ( + ad)Tx < (1 + 6)(m + )[(f + ah) - ( + ad)T].

Let u' and v' be the following constants.

u' := max {dx - h Ax < b}

v := min {dTx - h A < b, : < f}

Define the constant c2 by

C2 := ( 2

(22)

(23)

(24)
(v

Under the assumptions on LFP, for all x satisfying Ax < b, we have

O < v < dTx - h <u < oo.

Therefore, we see that 0 < c2 < oo. Note that if L is the number of bits in a binary encoding

of the given data (A, b, a, d, f, h), then c2 < 22L. We have the following.

17



Lemma 3.4 Let & be given by (20), and let c2 be the constant defined by (22)-(24). Then

a* - a j < c2(m + 1)>.

Proof: Note that = V is a 6-approximate center of the system (A + acB)x < b + d

with = 1/21. For any x satisfying Ax < b,

f -Tx a= (f + aJh) -(+aJid)Tx
dTx-h dTx - h

< 22 +1) (f + h) - ( + d)T:

=(22 )(mt +-) h) (f + a h) - ( + d) t({y)( +
* f f-Jxdj _ - h f-x - h

< c2(m + .,

where the first inequality follows from Lemma 3.3. Also,

a := max I Ax <b max { h - Ax <b, Cx<f
dTx h J IdTx h 

= max {f ZTx ]Ax < b

Hence, a - a < c2(m + 1)&. Q.E.D.

Lemma 3.4 and (21) implies that

aj 1>(a )(25)
176c2 (m + 1) )( (25)

Rearranging terms, we get

a -aj+ 1 <•(1- 1J (26)
176c2 (m + 1))( ) (26)

Therefore, the gap (a* -a) decreases geometrically with a rate of at least (1 -O( )) =

(1 - O()). Hence, we can show that the algorithm requires O(m) iterations to decrease the

optimality gap (a - ) by a fixed quantity. Summarizing the discussion above, we have the

following.
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Theorem 3.2 Suppose Algorithm PCP is applied to solve LFP. Then it will produce a

feasible solution such that
f - - a

Tr- h -

after at most K = 176c2(m + 1)(ln - lne)1 iterations, where c2 is a constant defined by

(22)-(24).

Proof: The proof, similar to that of Theorem 2.4, follows from (26) and (20). Q.E.D.

3.3 von Neumann Model of Economic Expansion

In 1932, the mathematician John von Neumann developed a linear model of an expanding

economy which was published in 1937, and an English translation was published in 1945

[20]. The model involves n productive processes P 1, P 2 ,..., P producing m economic goods

G 1, G 2 , .. , G,. At unit intensity of operation, each process Pj will consume an amount

ai_ > 0 and produce an amount b > 0 of each good Gi. The non-negative m x n matrices

A = [aij] and B = [bi ] are respectively called the input and output matrices of the model.

(See Gale [9].)

Suppose each process Pj is operated at an intensity x > 0, and let the vector :=

(zX1, X2,... ,xn) T E R denote the intensity vector. Then the components of the vector .4zx

give the amounts of inputs used up in production, and the components of the vector BI give

the amounts of outputs produced, during a unit time period. The model with input matrix

A and output matrix B is referred to symbolically as (A, B).

Given an intensity vector x > 0, let a. be defined by

a := max{a Bx > aAx}

min { B x Aiz >}

where Ai denotes the i-th row of A. Then a, represents the expansion factor of the economy

operating at intensity x. Thus the output of each good Gi is at least a, times as great as its

19
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input. The technological expansion problem (TEP) for an economic model (A, B) is to find

an intensity vector x such that a, is maximal. We may write this as a nonlinear program:

C m a
x := max a

s. t. (B - A)x > 0 (27)

x > 0, x :# 0.

(For an interpretation, see Gale [9].)

Observe that problem (27) is homogeneous, so that if i is optimal then also so is any

positive multiple of . Therefore, (27) may be expressed equivalently as the following.

(Remember that e denotes the vector of all ones of the appropriate dimension.)

c m a := max a

s. t. (B -aA)x > 0 (28)

eTx = 1, x > 0.

It is clear that in order for the model to correspond to economic reality, some conditions

must be imposed on the input and output coefficients. Therefore, the following conditions

are assumed. (See Gale [9], Kemeny et. al. [14].)

Assumption 3.1: For every (good) i, there exists some (process) j such that b > 0.

That is, every good G. is produced by some process Pj.

Assumption 3.2: For every (process) j, there exists some (good) i such that aij > 0.

That is, every productive process Pj consumes some input Gi.

Under these assumptions, the problem becomes very structured. For example, it is easy

to see that the set of feasible intensity vectors with expansion rate a

X {x R I (B - aA)x > 0, eTx = 1, > 0}

is shrinking as the expansion factor a increases. That is, X,1 C X" 2 whenever al > ac2. (See

Gale [9] for a more detailed description of the model.)
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Now, we shall describe a method for solving the von Neumann model using parametric

centers. Suppose we are interested in olving the following technological expansion problem

for an economic model (A, B).

ama := max

S. t.

a

(b - aA)i > 

eTi = 1

i:>0,

where A and B are non-negative m x n matrices, and i R'. Without loss of generality,

we assume that A = [A, A, B = [, B,], where An and Bn are column vectors, and

rT = [XT, in], with A, E R+x(n -1), An, B E R+ andx E Rn-1. Then, by using the

constraint eTi = 1 to eliminate the nth variable in, we see that, for each a, the following

two linear systems are equivalent:

(B - A)i > 0
eTi = 1

i > 0

([Bn - B] + [A-A e T)x < Bn + t(-An)

eTx < 1 (31)

-X < 0

in the sense that there exists E Rn satisfying system (30) if and only if there exists

x E Rn- l satisfying system (31), where the obvious transformations are

(30)

xT = (Zil, 2, .. , n-1)

iT = (I, X2, ... , Xn-, 1-eTx)T.

Now, system (31) may be expressed as (A + aB)x < b + ad, where A,

and b, d E Rm+ ' are given by

neTj- B A- Ae1 Bni 

A = e T , B = 0 b= I d =

-I 0 0

(32)

(33)

B E R ("+n )x (n- 1)

(34)
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Hence, (29) is equivalent to the following problem.

amax := max a
(35)

s. t. (A+aB)x < b + ad.

Observe that the set {xIAx < b} is bounded because of the existence of the constraints

eTx < 1, x > 0. Also, it is straightforward to verify that x = e {xIAx < b}. Therefore,

{xIAx < b} is nonempty and bounded. Next, we see that the system Ax < b under the

transformations (32) and (33), is equivalent to the system

t)i>0, ex=1, i:>0,

and for x satisfying eT: = 1, > 0, the system

A>o, A 0o

is equivalent to the system

Bx > d, Bx d.

Therefore, if the model (A, B) satisfies Assumptions 3.1 and 3.2, then it is straightforward

to verify that the parametric system of linear inequalities (A + aB)x < b + ad, where

(A, B, b, d) are given by (34), satisfies Assumptions 1 and 2 of Section 1.

Hence, we may apply Algorithm PCP to solve problem (35) by tracing the center of

system (A + aB)x < b + ad as a is increased strictly monotonically. Starting from e, wenw

use a center finding algorithm of Vaidya [26] or Freund [5] to get an approximate center :

(satisfying -II1Q0() -< 1/21) for the system Ax < b. Next, we apply Algorithm PCP

with ca'upp = a 'a - e, where is a given error tolerance.

Complexity Analysis

We analyze next the complexity of Algorithm PCP as an algorithm for TEP. Let a be

the value of a and let ij be the iterate in iteration j. Observe that the total number of

constraints in problem (35) is (m + n) and the numbers of non-zero rows in the matrices B
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and [B, d] are both equal to m, whereby we can set k = = m. From Theorem 2.1, since

v/' + m < 2m,

a3+1 8(v= + m) ) a >-
88(v +m) s e- 1a76md'

where (5 is defined by (3), and from Corollary 2.1,

amax _a J < cl(m + n)a,

(36)

(37)

where cl < oo is the constant defined by (11)-(14). Combining (36) and (37),

a ' 176 1 (aw _ aj)
- 176c1(m + n)m

(38)

Rearranging terms, we see that the optimality gap (ma: _ aj) at the jth iteration of Algo-

rithm PCP satisfies the following.

am _ -a+l < (1- 1
176c (m + n)m

)(a ma _ aj) (39)

Therefore, we have the following complexity result.

Theorem 3.3 Suppose Algorithm PCP is applied to solve problem (35). Then it will produce

an intensity vector ' and an expansion factor & such that a " -_< a < amac
" after at most

K = [176c, (m + n)m(ln a m - In e)1 iterations, where cl is a constant defined by (11)-(14).

Proof: The proof follows from (39) as in Theorem 2.4. Q.E.D.

3.4 Generalized Linear Fractional Programming

Suppose we are interested in solving the following GLFP program.

a* = max min
s 

fi -Ci x
Dix - hi

s. t. Ax < ,
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whereA R X , b E R, C, D E Rk Xn and f, h E R, and [D,, h] #0 for

i = 1,2,... ,k. Let A, B R(m+k)xn and b, d Rm+k be the following matrices.

A= [ B= [I b= ] d= (42)
LC JLD JIf, h

Then it is easy to see that (40) is equivalent to the following program.

a' = max a (43)

s. t. (A + aB)x < b + ad, (44)

where (A, B, b, d) are given by (42).

We may then apply Algorithm PCP to solve (43) by tracing the parametric centers of

the family of systems (A + aB)x < b + ad, where (A, B, b, d) are given by (42) while

a, taken as a parameter, is increased strictly monotonically over the range a E [0, a' -el,

where e is the given error tolerance. We note that the total number of inequalities in this

case is (m + k) and the number of inequalities that vary with a is equals to k.

Suppose a j is the value of a at the start of iteration j. From Theorem 2.1 we get

1
+( -& = 88(k + k))a' 43)

where a is defined by (3). Also from Corollary 2.1 we get

a* - a j < cl(m + k)d, (46)

for some constant cl defined by (11)-(14). Therefore, combining (45) and (46), we get

1 ~~~~~~~~~~1
> 1- -a > 88(m + k)k k(a' - 'a), (47)

88c1(m + k)( k + k) 176c,(m + k)k('+)

since vk + k < 2k. Rearranging terms, we get

a a & <( 176( + k)k)(a - a). (48)

Therefore, as in the preceding applications, we can show the following.
Therefore, as in the preceding applications, we can show the following.
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Theorem 3.4 Suppose Algorithm PCP is applied to solve problem (43). Then it will produce

a feasible solution such that

a' -E < min { fi - C } < a
-Dit - hi-

after at most K = [176c (m + k)k(ln -lne)1 iterations, where c is a constant defined by

(1 1)-(14).

4 Proofs of Main Theorems

In this section, we shall prove Theorem 2.1 and Theorem 2.2. Let us begin with some

preliminary lemmas.

Lemma 4.1 Let Q be a (symmetric) positive definite matrix, and d be a given nonzero

n-vector. Suppose x E R ' satisfies h = dr - h > O. Then we have

min { x-.II I dTx = h }= dQ'd.

Proof: Follows directly from the fact that

x= - Qd

is the solution of the minimization program. Q.E.D.

That is, the distance (in the Q-norm) of the point i to the plane {xldTx = h} is inversely

proportional to the Q-l-norm of the vector kd. Under Assumption 2, each (interior) point

of the polytope {xl Ax < b} is at least some positive distance away from each of the planes

{xlBTx = di}, i = 1, 2, ... , m. Therefore, each B. should be bounded in some sense which

we will make precise shortly in the next lemma.

Let ± satisfying § = b- A: > 0 be a given (interior) point. Define & by (3). Let s be

given by (4) and let Q,,(i) be defined by (5).
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Lemma 4.2 Under the Assumptions of Section 1, suppose 0 < a < O, then

(i) I I(-~B)TII=,(,i < 113e-I(B- - d)11oo,(i) I(S'gB)TiIQ=(z) • IS-'(B~ - d)11o,
(ii) gl(S~lB)TIIQ_,(. -t '(B - d) I I.,

(iii) IIBTSglellQ_:(2) _< klS;'(Bi - d)lIoK,

where k is the number of non-zero rows in the matrix B.

i= 1, 2,..., m;

i=1, 2,..., m;

Proof: (i) Let Q, = Q,(,). We first note that Q is positive definite for each a satisfying

0 < a < , so that the norm I Ix is well-defined. Let F,, = { IIx - x IQ < 1} and

let X,,, be given by (6). Then, from Lemma A.9 in the Appendix, Fi,, C X,. Under the

Assumptions, Bix < di implies that z ¢ X,, whereby x ¢ Fi,. Therefore, using Lemma 4.1,

we have
(Bit = - di) 2

B.Q;'B[ = min {X - IQ0oBiS B I
Bx = di} > 1.

Therefore,

(49)

Hence

II(S-B)TIIQ; =
( BiQ;-BT 1/2

g )
(B..-d,)

I IS-'(B. - d) oo.

Part (ii) follows similarly from (49). Using the triangle inequality, part (iii) follows from

part (ii) immediately. Q.E.D.

The next lemma shows the close relationship between the two norms II' Q and I I IQ-1.

Lemma 4.3 Let Q, and Q2 be two (symmetric) positive definite n x n matrices, and let

I 1 IIQ, and II denote the norms defined by Qi and Q- respectively. Suppose there

exists a constant c > 0 such that IvIIQi < IIvIIQ2 for all v E Rn. Then, for any p E R",

we have IIPIIQ71 < IIPIIQi.1
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Proof: Let p E R ' be given. Without loss of generality, we may assume that p $ 0. Then

there exists f E R ' such that pTj = 1. Therefore, using Lemma 4.1 and by the hypothesis,

we have

1/IpIQ-Q7. = (pTQ-lp)-1/2 = min {u - ullQ Pu = O}

< min {u - fulQ I T u = O}
U

= X(PTQ-1p)-1/2 = K/IIpil

Hence, IIPIIQ-1 < CI[p Q7 . Q.E.D.

The next lemma shows that we can bound the norm of a matrix in term of a bound on

the transposes of the rows of the matrix (considered as vectors).

Lemma 4.4 Let Q be a positive definite n x n matrix and let l. IIQ denote the norm defined

by Q. Suppose M is a k x n matrix. Let Mi denotes the transpose of the ith row of M.

Suppose there exists a constant c > 0 such that IIM[llQ < c for all i = 1, 2, ... , k. Then

IIMTIIQ := max IIMTyIIQ < cvT.

Proof: Using the triangle inequality,

k k

IIMTyIQ = li EyiMllQ < E yI IIMTIIQ < 'lIyIlc,
i=l i=1

where the last inequality follows from the fact that

k

E IYil = Ilyll < v'llyII. Q.E.D.
i:1

Remark: It can be easily shown that IIMTIIQ = IIMQMTIIl/ 2, and if MT = [NT, 0], then

|IMTlQ = IINT IIQ.

The following lemma is an immediate corollary of Lernma 4.4 and Lemma 4.2.
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Under the same conditions and definitions as Lemma 4.2, we have

IIBT S-1IIQ1 () < -S1(B - d) |loo = //.

Proof: Follows immediately from Lemma 4.2 and Lemma 4.4. Q.E.D.

Next, we want to show the relationship between the two norms I IIQo(z) and I I IQ.(±),

where IQ.(t) is the norm defined using the Hessian at of the logarithmic barrier function

in CP(a). Before that, we need the following.

Lemma 4.6 Suppose O < a < (a, 0 < o < 1. Then

(i) L$-crII < 1; and

(ii) IIj'l < 1/(1 - ).

Proof: (i) Follows easily from the following

0 < S~sc = e - a-'(Bt -d) < e.

(ii) We have S 's = e + aSO'(B· - d). Therefore,

llSa'll11

< i + aI11<Z'` 11 I-'(Bi - d ) oo

= + (a/a)IS 19. 11.

Rearranging, we get 115I11 _ I< l _ < -i'. Q.E.D.

Now we can show the relationship between the two norms 11 - IIQO() and || - IQo(I).

Lemma 4.7 Under the Assumptions of Section 1, suppose 0 < a < &,

a is given by (). Let Qo,() be defined by (4)-(5). Then, for all v R ,

0 < < 1, where

IIVIIQo(~) < (1 + v)IIVIIQ().
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Proof: (i) Let Qc. = Q,,(-). Using Lemma 4.6, the triangle inequality, the Cauchy-Schwartz

inequality and Lemma 4.5, we have

IIVIIQ = IIS'(A + B)vll

!< 115 S.-'9I-j-'(A +aB)vjI

< I (119-'A 11+ I3S-'Bv11)

< I1 (IvIIQ + aIjB Tg-111Q-1 IIVIIQO)

< I1 ( (1 + cWiVQ)IvIQ,,

< (I ) + -)IIvIIQ,.

(ii) Similarly, we have

IIVIIQo = 11S-'Av lI

< IS-'(A + aB)vll + acI3-'BvI

- IISI-'S 11 IS t(A + aB)vII + aIIBTS'1IIQw1 IVIIQ

< (1 + V'/a~,)llvllQ

Q.E.D.

As an immediate corollary of Lemma 4.7 and Lemma 4.3, we have the next lemma.

Lemma 4.8 Under the same conditions and definitions as Lemma 4.7, for all p R.

(i) IIPI IQ1(r) < ( + Vk)II IQ ();

(ii) I IP IIQ-, " < 1 _ v ) IIPI1Q;1(t)-

Proof: Follows immediately from Lemma 4.3 and Lemma 4.7. Q. E.D.

Finally, suppose i = o is the center of Ax < b and suppose x, satisfying § = b- .4 > 0,

is a 6-approximate center of Ax < b. Let & = ai and a = a be defined by (3). The next

lemma shows the relationship between & and a.
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Lemma 4.9 Suppose = is the center and , satisfying = b - A > 0, is a -

approximate center of the system Ax < b. [i.e. 11i - iIIQo(t) < 6 < 1, where Qo(t) is given

by ()-(5). Let & = a and & = at be defined by (3). Then

( 1~~ + -a_ <a_ <, T.L6 a.

Proof: First we note that IIS-lSII 1 + 6 (from Lemma A.3 in the Appendix), and for

i-1, 2, ... , m,

I[S-'a(~- )]I < II(S-'B)TIIQl-() IIk- 11Qo() < 6 )
where the first inequality is a Cauchy-Schwartz inequality and the last inequality follows

from Lemma 4.2 and Lemma A.3. Therefore

and hence

1/a = IIS-'(B -d)11o

< I15'll (l1-'(B - d)1oc + 1- 1B( - z)11

< (1+6) +(1 +_)

(1+6'\ 1

This proves the first part. The second part is proved in a similar manner. Q.E.D.

We are now finished with the preliminary lemmas. The proofs of Theorems 2.1 and 2.2

will follow from the following. For simplicity, we shall consider increasing the parameter

from a = 0 to some a > 0. In the following, we shall use another measure of closeness to

the center, which we call the r-measure. (See the Appendix.)

Theorem 4.1 Suppose 2 satisfying $ = b- Ai > 0 is near the center of the system Ax < b

in the sense that

r = (i) := eTS-1A[ATS- 2A]-lATSle < e.
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Let &, 9s and Q,(t) be given by ()-(5). Suppose 0 < a < Then - 80(V + k)'
the center of the system (A + aB)x < b + ad in the sense that

,(.):=| II(A + aB)TSel eIIQ1() <el := 81 1
78

Proof: Let Qa = Q.(2). First we note that

ATS-;e - AT-e = ATS-IS-( - )

- rATS 1 S (Bt d).

Therefore, using the triangle inequality, we get

I IA T S- 'ej _' < IA Sle - ATS-leIIQl, + IIATS-Ie Iq,I

= aIIATStS-(Bt - d)ll oQ + 7

< aI s(Bs - d)11 + e

< a(80/79)v / &// + e,

where the second inequality follows from the fact that (since Qo = ATS- 2 A)

IlA T S-'llr1 = IIS-A(A T S-2A)-'A T S-I < 1,

because the matrix is a projection matrix, and the last inequality follows from Lemma 4.6

(with = 1/80) and the fact that if there are non-zero rows in the matrix [B, d] (i.e. the

number of varying constraints is 1), then

IIS1Z(B - d)ll < VIllIS;(Bt - d)IIo.

Hence, by Lemma 4.8 (with ' = ) we have8o(,,q-+k,) ) eh

IIATSleIIQ;1 < 81 (80 v/a!l~$;Xelo - <0 79 d 
81 Via
79 

81
+ 80

On the other hand, we have from Lemma 4.2 and Lemma 4.6

80
IlBT3SeIIQ=, `kS;'(Bt - d)11o 5 k(I)llS-(mm - d)1oo = (79)( )
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Using the triangle inequality again, we get

T-r(:) := II(A + aB)TStellQ < IA ' eTSl eIQ - + c1B TS,-, e l Ql

81 81 80
81 /I(a/d) + + k(a/d)
79 79'
81 81

< 79(v + k)(a/a) + T.6
1 81

- 78 + E80.

As an immediate corollary of the above result, we have the following, which shows that

if the increase in parameter value is not too large, then the two successive centers of the

corresponding systems will be sufficiently near to each other such that Newton's method will

work well (i.e., converge quadratically). First, we fix the notation.

Suppose = o is the center of system Ax < b. That is, we have

= b- A > 0, (50)

ATS-'e = 0. (51)

Define & = a, and Q,(i) by (3)-(5). That is,

a = a: = 1l/11S-(B. - d)loo (52)

and, for 0 < a < &,

, := (b + ad) - (A + aB)i > 0, (53)

Q.(z) = (A + aB)TS-2 (A + aB). (54)

Theorem 4.2 Suppose 0 < a < 80( k) where is given by (52). Then is near the

center of the system (A + aB)x < b + ad, in the sense that

1
rw(i) := IgI(A + aB)yS(ell)Q () < 7-8'

w~here Sa, and Qji) are given by (53)-(54).
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Proof: Since ATS-le = 0, we have = 0 and the result follows immediately from

Theorem 4.1. Q.E.D.

Remark: Note that y- y, := (A + aB)TSL e is the gradient and Qo(i) is the negative of

the Hessian of the logarithmic barrier function for the center problem CP(a),

rn~

f,(x) = E in (b + ad) -(A + caB)x]i,
i=1

evaluated at .

Theorem 4.2 implies (by Lemma A.7 in the Appendix) that is a 6-approximate center

of the system (A + aB)x < b + ad with 6 = 1/12, which we state formally as:

Corollary 4.1 Under the same conditions and definitions as Theorem 4.2, we have

II : - :,IIQo() < 1/12, where i, denotes the center of (A + aB)x < b + ad.

Proof: Follows directly from Lemma A.7 of the Appendix. Q.E.D.

By Corollary 4.1 and Lemma 4.9, we have the following.

Theorem 4.3 Suppose x satisfying g = b- Ai > 0 is a 6-approximate center of the system

Ax < b with 65 = 1/21. [i.e. I-X - xllQO() < 1/21, where Qo(x) is given by (4)-(5).] Let

o be defined by (3). Suppose 0 < a < 88(v k). Then ± is near the center of system
88(vr + k)

(A + aB)x < b + ad in the sense that

IxI - h, I IQo(i) < 0.148,

where Q>(iO,) is defined as in (4)-(5).

Proof: First note that by Lemma 4.9, 0 < a < 8(a implies that
- -88(v/'1+ k)

0 < a < . Therefore, by Corollary 4.1,
8(- - (<k)

IX -X~Ii~) 1/ 12 (53)
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and, by Lemma A.3(iv) (in the Appendix),

I - i IIQ,(-i) < 1/11. (56)

Also, Lemma 4.7 (with = < 8 ) implies that88(,/+k) - )iple ta

< 88 89)|1 - 1||a(± < (878 8 -x|Q 0( ) < 0.049. (57)87~~~~~~~~~~~~~~~~,7

and therefore, by Lemma A.3(vi),

0.049
I1X- IIQ 0(49 < 0.052. (58)

-1-0.049

Now, Lemma A.3(iv), together with (55), implies that

1k - II 12 ~~~~~~~~~~~~(59)x< 12 XIIQ(i) < 0.057. (59)

Hence (using the triangle inequality) we have

I1 - IIQa(io) < 1 - XIIQ.(-) + I1 - 110 (~) < 0.057 + 1/11 < 0.148. Q.E.D.

As a consequence of Theorem 4.3 and Lemma A.10 of the Appendix, we have the following

theorem which states that i, which is a 6-approximate center of system Ax < b, is sufficiently

near to ,, the center of (A + aB)x < b + od, such that we may apply a Newton step to

solve for i, starting from 2, provided that 0 < a < a- - 8s(,A-+ k)'

Theorem 4.4 Suppose x satisfying S = b- A2 > 0 is a 6-approximate center of the system

Ax < b with 6 = 1/21. Let & be defined by (3). Suppose 0 < a < 88( k)Let
88(v'U k)

= Q-'(')(A + acB)TSl,,e, where so and Q,(-) are defined as in (4)-(5) [ be a Newton

step from i in the center problem CP(a)] and let tnew = ; + 11. Then

I1,,ew - /CIIQo(&o) < 0.034.
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Proof: We have, from Theorem 4.3,

Therefore, by Lemma A.10,

Ikt"'new i-jjQ.(i) S
(1 + 0.148)2(0.148)2

1 -0.148
< 0.034 . Q.E.D.

Corollary 4.2 Under the same definitions and conditions as Theorem 4.4,

IIX',e,,- I IQ,(,) < 1/21.

Proof: From Lemma A.3(vi),

II new - | a ( )
0.034

- 1-0.034
1< ' Q.E.D.

Now, we are ready to prove Theorems 2.1 and 2.2.

Proof of Theorem 2.1:

Proof of Theorem 2.2:

Follows immediately from Corollary 4.2. Q.E.D.

Using the triangle inequality, and by Theorem 4.3 and Theo-

rem 4.4,

I1.,nu - IIQ0(,,) < I 1., - I pllQ,(2 ) + I1| - XPIIQe(,j) < 0.034 + 0.148 = 0.182.

Also from Corollary 4.1, I I-olIoIQo(j) < 1/12, which in turn implies [by applying Lemma A.3

of the Appendix to the system (A + aB)x < b + ad]

(61)

(62)

and

12
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:= j- 1- aIQo(io) < 0.148. (60)



Next, using Lemma 4.7 (note that < 1/80), we have

and

Finally, observe that x, - x = (a/fl)(,. - X). Hence, using (61)-(64), we have

I a - Xi IQ.()

< 8 128 (81
1 ll \79J
12 81

• I( 4 ) ( 9
l1 - XIIQo(p)

(81 ) I I I - I

(80) 12) 1a IQz
81

\79J

- II XQ,()
< 0.23.798012 

< 0.23.

Thus,

< I~-Xj 0~)+I~-Z,(a~

< 0.23 + 0.148 < 0.38.
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(63)

(64)

I - XI IQ( )

Q.E.D.

12

12\

I It - I Q.(i.)
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A Appendix

Recall that the center problem on a system of linear inequalities Ax < b is the following

optimization problem.

m

CP: maximize i ln si
i=1

subject to Az + s = b

s>O.

In this Appendix, we present some known results concerning the center problem CP, and

give three measures of closeness to the center which we use in this paper.

A.1 The Analytic Center

Assuming that the set {xJAx < b is nonempty and bounded, the solution of the cen-

ter problem CP exists uniquely, and is called the analytic center of the system Ax < b.

(Sonnevend [23,24].) We shall refer to it simply as the center. Since the objective func-

tion is strictly concave, the center is uniquely characterised by the Karush-Kuhn-Tucker

conditions

= b-A > 0 (65)

ATS-le = 0. (66)

For any x satisfying s = b- Ax > 0, let Q(x) be the negative Hessian of the barrier

function for the center problem CP at x, that is,

Q(x) = ATS- 2A. (67)

Properties of the Analytic Center

One particularly important property of the center is the following.

i



Lemma A.1 ([23,24], [5] Theorem 2.1) Let denote the center of the linear inequality

system Ax < b. Let X := {x E R I Ax < b}, and define the ellipsoids Ei, and Eo0 t by

Ein :=I {x E R | I IIIQ(,,) < M A }m-1 }

Eo,, = { E R" I 11 - II < /m(m - 1) }.

Then Ein C X c Eout.

That is, we can construct contained and containing ellipsoids centered at the center. Note

that Et is an enlargement of Ei,,n with an enlargement factor of (m - 1), i.e., (Eot - ) =

(m - 1)(E, - 1). Next, the following lemma shows that the slacks of all feasible points of

the linear inequality system Ax < b are contained in a simplex. Therefore, as a corollary,

we can bound the slacks of any feasible point E X.

Lemma A.2 ([22] Proposition 3.1, [5] Proposition 2.1) Suppose is the center of the

linear inequality system Ax < b. Let i = b-Ai. For any z satisfying Ax < b, lets = b-Ax.

Then eTS-'s = m, s > O.

Corollary A.1 With the same conditions and definitions as Lemma A.2, 0 < si, < msi for

alli= 1,2,..., m.

A.2 Approximate Centers and Measures of Closeness

There are various ways to measure the closeness of a point i to the center 2 of an inequality

system Ax < b. We shall give three closely related measures in this subsection. A direct

way is to use some norm. In fact, this way of measure was used by many authors of path-

following algorithms (Renegar [22], Gonzaga [10], Kojima et al. [15], Monteiro and Adler

[18,19], Jarre [12], and Mehrotra and Sun [171, among others). The first measure of closeness

to the center is defined in a similar way as follows.
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A.2.1 First Measure of Closeness

For all v E R', define the Q(x)-norm (Hessian norm) of v by

IIVIIQ(x) := vTQ(x)v.

Definition: We say that 2 is a 6-approximate center of the systemAx < b if Ix-xII-IQ() < 6.

We have the following lemma which gives some basic inequalities.

Lemma A.3 ([8] Lemma 3.2) Suppose E R ' is given such that = b- Ai > 0 and let

Q(t) be defined by (67). Then for any i E R" such that 11 - :IIQ(-) < 6 < 1, we have

(i) = b-Ai >0,

(ii) I,_s-s911 < 1/(1 - ),

(iii) 15- •11 ' + a,

(iv) IIVIIQ(S) < 6 IIvIQ(), for all E R',

(V) vIIQ(1q) < (1 + )IIvIIQ(j), for all E R',
6(Vi) -11, - iQ() < ,

where Q(i) is defined by (67).

Proof: Observe that

= 11(i - )T A T S- 2A(: _ ,)111/2

= II(s - )T S-2( _ S)I11/2

= IS-1( - )11 < < 1.

Therefore, for each i = 1, 2, ... ,

IJi gi S- ,i
.i

and hence,

iii

(68)

(1 - ).§ gi I (1 + )s§j-

IP iI I Q(t



Parts (i)-(iii) follow immediately. To prove Part (iv), we observe that

IIv11q(f) = vTAT,-2Av = IISA-Avll.

Therefore, from Part (ii),

IIVIIQ(i) = 1jS'-Avlj < 1S-'SIt 1 -'Avll < 1 IIQ(t).

The proof of Part (v) is the same as Part (iv) but uses Part (iii), and Part (vi) follows from

Part (iv) immediately. Q.E.D.

A.2.2 Second Measure of Closeness

The second measure of closeness to the center is defined as follows. For i E {xjAx < b, let

:= diag(b- Ai) be the diagonal matrix of the slacks at . Define

Q :=(1/m)ATS-2A, (69)

y = y() := (1/m)ATS-le, (70)

and

= -y() := m - I)!,TQ-iY (71)
1 yTQ-y 

Note that Q:= (1/m)Q(2) and yTQ-ly < 1 for x e {xjAx < b}, so that Y(i) ((71)) is well-

defined, and from the Karush-Kuhn-Tucker conditions ((65)-(66)), y(i) = 0 and so -(x) = 0.

In [5], the scalar (i) is used to measure the closeness of x to the center i. We found this

measure to be very convenient because we do not need to know the exact center. To show

the relationship between the two measures of closeness, we have the following lemmas. The

proofs can be found in the Appendix of [8]. First we need to refer to two functions defined

in [5] (equations (6.3) and (6.4) of [5] respectively). Define, for h > 0,

(h) h-n(1 + h) (72)

q(h) := 1 (1 + hp(h) - 1 + (hp(h))2) (73)
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Lemma A.4 ([5] Lemma 8.1, [8] Lemma 3.3) .

Let i denote the center of the system Ax < b. Let h > 0 be a given parameter. Suppose

-= () < q(h), where q(h) is given in (72)-(73). Then

12l. I' < (m_ h 2( + 2)
Q - ;~_1(1 - h) 2'

That is, if (2) is small then i is a 6-approximate center for some small 6. For example, if

-fy() < .0072 (taking h = 0.03), then Ii - XIQ( ) < 1/21.

On the other hand, if i is a 6-approximate center then we have the following lemma

which says that 'y(i) should be small.

Lemma A.5 ([8], Lemma 3.4) Suppose 11 - xijQ(,) < 6 < 1/2. Then '7() < a + ,
62

wher a = 6where a = 2(1 -6)(1 -26)

For example, when 6 = 1/21, then y(i) < 0.0527.

A.2.3 Third Measure of Closeness

Observe that in the definition of y(i) ((71)), yTQ-ly may be expressed as

yT Qly = -eT SlAQ(i)-lATS e

1 IIATS _'el2
-- Q~()- 

We note that ATS-le is the gradient of the logarithmic barrier function in the center problem

CP at . Therefore, when yTQ-ly is sufficiently small, y(i) is almost the same as the size of

the gradient of the logarithmic barrier function measured in the norm of the Hessian inverse.

We therefore define the third measure of closeness as follow.

For any i E R" satisfying = b- Ai > 0, let Q(i) be defined by (67). Define r = r(2)

by

= (2) :=IATSlefk(a.l. I(74)

v



It is easy to see that T(2) < Vr for E {xIAx < b}, and that and r are related as

follow.

Lemma A.6
(m - 1)r 2

(i) 7 rn-I-2
m2

(ii) r 2 = mrrY2
rn-i1+72'

Therefore, the following corollary follows easily.

Corollary A.2 Let 7 = a(i) be defined by (69)-(71) and r = r(i) be defined by (74).

(i)

(ii)

We observe that the

moderate values of m.

Corollary A.2, we have

if r < 1, then 7 < ,

< ;m/(m-1).

factor of / in Corollary A.2 is almost equal to 1,

For example, < 1.05 if m > 10. From Lemma

Lemma A.7 Let r = r(+) be defined by (74). Suppose T < 1/76. Then IX-IIQ(-) < /12.

Proof: From Lemma A.6(i), we have 7 r < 1/76. Thus from Lemma A.4 with h = 1/18,
2h 2(1 + 2 ) 1 2

(1< -h 7 ) ) . Q.E.D .

Lemma A.8 Assume thatm > 10. Let r = r(±) be defined by (74). If li - illQ() 1/21,

then r <0.056.

Proof: From Lemma A.5 we conclude that 7 = 7(z) < a + v/', where

a= 2 ~(1/21):a 2 1(21 )(1 - 2(1/21)) 7- Thus by Lemma A.6(ii), we have
T < m(m- 1)7 < (1.05)(0.053) < 0.056. Q.E.D.
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A.2.4 Property of An Approximate Center

Analogous to Lemma A.1, we have the following property of au approximate center.

Lemma A.9 ([5] Theorem 8.1, [8] Lemma 5.2) .

Let denote the center and suppose 2 is a -approximate center of the linear inequality

system Ax < b with 6 < 1. Define the ellipsoids Fin and Fo,,t by

Fin = { E R": I11- jlIQ() < I },
Fout :- { E R" Ix -1 1IIQ(i,) < (1 + 6) /( - ) + 6 }.

Then Fin C X c Ft.

That is, we can construct contained and containing ellipsoids centered at a 6-approximate

center. Note that Fo,,t is a enlargement of Fin with an enlargement factor of O(m). The

elliptical bounds of Lemma A.9 are used in the derivation of complexity bounds.

A.3 Newton's Method for the Center Problem

The following important useful result, giving a region and rate of convergence of Newton's

method for the center problem CP, is due to Renegar [221.

Lemma A.10 ([22] Theorem 3.2) Let denotes the center of the system Ax < b and

suppose t satisfies J = b- A > 0 and E := li - IIQ(&) < 1. Let := Q(2)-lATS-le be the

Newton step from 2 in the center problem CP, and let := + i. Then

II - 11,1 < (1 + )22
1 1 - 1--I(.) 

Remarks: The Newton step c is the solution of an unconstrained quadratic approximation

to the center problem CP,

/= argmax {eT-'Ai?- 11TQ(i) 11 E R"},
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where ATSle and Q(i) are the gradient and the negative of the Hessian of the logarithmic -

barrier function E ln(bi - Aix) at t. The solution f can be obtained by solving an n x n 

system of linear equations

Q() = ATSle.

With respect to the third measure of closeness to the center, we see from (74) that

In other words, 2 is close to the center if the Newton step from ± for the center problem CP

is "small", that is, measured in an appropriate norm- the Hessian norm.

-m
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