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ABSTRACT

A number of energy planning models have been proposed for combining
econometric submodels which forecast the supply and demand for energy
commodities with a linear programming submodel which optimizes the
processing and transportation of these commodities. We show how convex
analysis can be used to decompose these planning models into their
econometric and linear programming components. Various methods
are given for optimizing the decomposition, or equivalently, for computing
economic equilibria for the planning models.
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1. Introduction

A number of energy planning models have recently been implemented

or proposed which combine (1) econometric submodels for forecasting supply

and demand for energy commodities as functions of the prices on these

commodities with (2) a linear programming submodel for optimizing the

processing and transportation of the commodities. Specific models

include, for example, the FEA Project Independence Evaluation System

(Hogan [11] ), the world oil market model of Kennedy [15] , and a

proposed integration of the Brookhaven Energy System Optimization Model

(Hoffman [10] ), with econometric models developed by Data Resources,

Inc. (Jorgenson [13] ). The models are equilibrium models because

prices, commodities supplied and demanded, and process and transporation

activity levels are all variables to be determined simultaneously in a

generic time period in equilibrium. The equilibrium conditions can be

interpreted as necessary and sufficient Kuhn-Tucker optimality conditions

for a related concave programming problem which has its own interpretation.

The purpose of this paper is to discuss how mathematical programming

methods.can be used to decompose the concave programming

problem, and thereby the equilibrium model, into its linear programming

and econometric parts. The linear programming submodel communicates

with the econometric submodels by passing to them vectors of shadow prices

on the energy commodities. The shadow prices are optimal for the linear

programming ubmodelwith fixed commodity levels. The econometric

submodels compare the shadow prices with the vector of commodity prices

required to produce the fixed commodity levels assumed in the linear

programming solution. If these two price vectors are equal, then an



equilibrium solution has been reached. Equivalently, the equilibrium

conditions establish optimality of the prices, commodity levels and

processing and distribution levels in the implied concave programming

problem.

Although we will focus our attention on the analysis and solution

of mathematical programming/economic equilibrium models arising in energy

planning, the approach is appropriate to similar models in other areas.

Included are agriculture models such as the U.S. agriculture sector model of

Hall et. al. [8] , the world wheat market model of Schmitz and Bawden

[26] , and the water resources planning model of Flinn and Guise [6]

The plan of this paper is the following. Section two contains a

statement of the basic concave programming problem to be analyzed,

plus a discussion of how it has been used in energy modeling. The

following section contains the Kuhn-Tuckeroptimality conditions for the

mathematical programming problem which we interpret as economic equilibrium

conditions. Two of these optimality conditions constitutethe interface

between econometric forecasting of supply and demand for energy commodities

and the optimization of processing and transporting these commodities.

Section four discusses decomposition methods, based on the optimality

conditions, for computing an optimal solution to the concave

programming problem, or equivalently, for computing an economic equilibrium.

The final section, section five, discusses a number of future areas of

research.

Strict equality is not required between the shadow and commodity price
for a commodity at a zero level.
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2. Mathematical Programming/Economic Equilibrium Models

In its mathematical programming form, the basic problem we

wish to analyze and solve is

* = max{f(d) - g(s) - cxl (la)

s.t. A x - s < 0 (lb)

A2x - d > 0 (lc)

s > O, d > 0, x > 0 (ld)

where f and -g are concave differentiable functions. It is assumed that

(1) has an optimal solution. The vector d is the demand for energy

commodities and the vector s is the supply of these commodities. For

reasons that will become clear later, we assume that the inverse functions

Vf1 and Vg exist on the non-negative orthant. According to the in-

verse function theorem (e.g. Apostol, [1]; p. 144), Vf- 1 and Vg- 1 will

exist on the non-negative orthant if Vf and Vg have continuous first

partials and non-vanishing Jacobians on that region. As we shall see

in the following section, the econometric specification of f and g will

actually be given by Vf and Vg . For the moment, the intuitive jus-

tification that f is concave is that the social benefit f(d) due to

satisfied demand d increases monotonically, but at a decreasing rate.

Conversely, the function g is convex because the cost g(s) of delivering

the supply s increases monotonically, but at an increasing rate since

the less expensive quantities are supplied first.

The assumption that Vf and Vg are invertible, and particularly that

Vf 1 and Vg are integrable are reasonable but controversial according

-
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to the economic theory of consumer demand. A great deal of research

has been devoted to this question beginning with Samuelson [24] and con-

tinuing until the present work of Kihlstrom, Mas-Colell and Sonnesctbin [16].

We will not enter into a discussion of this controversy here, but assume

that problem (1) exists from which the equilibrium problem to be stated

below can be derived. The decomposition approach is still valid for the

equilibrium problem which can be solved by some of the methods to be dis-

cussed. We will indicate when this is the case.

The only distinction made between the treatment of supply and de-

mand in problem (1) is that f is concave and g is convex. The lack of

distinction is suitable for the purposes of this paper, but energy sup-

ply models can and probably should be more normative than empirical as

we assume to be the case here. In other words, we assume here that em-

pirical econometric functions Vf and Vg are given rather than deriv-

ing f and g from a normative submodel. Modiano and Shapiro [19] give

some related work on the use of decomposition methods to construct and

analyze normative supply models in which the supplier attempts to maxi-

mize the net present value of his holdings.

The Project Independence Evaluation System Integrating Model (PIES)

of the FEA (Hogan [11]) is a U.S. energy sector model very similar to

problem (1). The supply commodities in that model are coal, oil, gas,

synthetics and imports in different regions of the United States. The

commodities demanded are the same physical commodities for industrial,

commercial and residential use, again in different regions of the United

States. The FEA model also considers, at least implicitly, cross cut

constraints of the form Bx < b involving scarce national resources such as
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steel and capital availability. Hogan [11] gives an ad-hoc decomposition

scheme for solving PIES which we discuss at the end of section 4 and

contrast it with our approach.

The world oil market model of Kennedy [15] is an equilibrium model

derived from a problem of the form (1) where the functions f and g are

quadratic. The commodities in Kennedy's model are crude and refined

petroleum products in different regions of the world and the activities

are the transportation of crude from one region to another and the pro-

duction of refined products from crude in each region. Since f and g

are quadratic, the equilibrium problem is linear and can be solved as

a linear complementarity problem (Cottle and Dantzig [2]). Actually,

Kennedy does not discuss the integrability of his econometric functions

of Vf-1 and Vgl which depends upon whether or not the corresponding

matrices in the linear system are symmetric. In general, the symmetry

of the Hessians of f and g in (1), if they exist, is what is required

for the integrability of Vf and Vgl. Kihlstrom et al [16] in turn

show that this symmetry is closely related to the strong axiom of re-

vealed preference of consumer demand theory.

The Brookhaven Energy System Optimization Model (BESOM) of Hoffman

[10] of the U.S. energy sector assumes supply and demand in problem (1)

are exogeneously set, and the objective is to minimize the cost of pro-

cessing and transportation. The model is essentially a generalized

transportation problem with side constraints for environmental control.

An extension of BESOM to include endogenous supplies of coal, gas and

oil using simple nonlinear supply functions has been solved using one of

the decomposition approaches of section 4 by Shapiro, White and Wood [28].
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Jergenson [13] discusses a project to combine BESOM with the interindustry

economic model developed by Data Resources, Inc.

3. Optimality/Equilibrium Conditions

The interpretation of the Kuhn-Tucker optimality conditions for

a variety of economic models as the embodiment of market equilibrium

conditions has long been recognized (e.g., see Karlin [14], Intrilligator

[12]. These models are generally theoretical and the optimality condi-

tions are used to study existence, uniqueness and stability of the

equilibrium solution. The difference with the energy planning models

discussed in the previous section is that they are empirical models con-

sisting of two distinctly different types of submodels which need to be

hooked together; namely, econometric and linear programming submodels.

In this context, the Kuhn-Tucker optimality conditions provide a practi-

cal mechanism for integrating these diverse models. Moreover, the pur-

pose of an implemented energy model similar to (1) is to provide numeri-

cal answers. The optimality conditions are used in the following section

to derive decomposition solution methods for numerically optimizing

problem (1).

Let p and q be vectors of shadow prices on the constraints (lb)

and (lc), respectively. The optimality conditions are: The solution

s, d, x is optimal in problem (1) if and only if there exist shadow

prices p, q satisfying

Vg(s) - p > 0 with equality if si > 0 (2a)

Vf(d) - q < 0 with equality if dj > 0 (2b)

c + pA1 - qA > O with equality if xk > O (2c)k~~~~~~(c
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p(Alx - s) = 0 (3a)

- 2- -
q(Ax - d) = O (3b)

1- -
A x - s < 0 (4a)

2- -
Ax - d > (4b)

s > 0, d > 0, x > 0, p > 0, q > 0 (4c)

The connection between the econometric forecasting submodels

and the linear programming submodel is effected by the conditions (2a)

and (2b). To see this, let u = Vg(s) and v = Vf(d) denote vectors of

commodity prices on supply and demand, respectively. Then if si > 0,

condition (2a) states that ui = Pi; that is, the commodity price

for supply commodity i equals the shadow price for that commodity and

they are in equilibrium. If si = 0, then we permit ui > Pi because a

further lowering of the supply price on commodity i would not induce the

supply to increase from 0. A similar argument holds for the optimality

condition (2b) on the equilibrium between prices on demand commodities

and the relevant shadow prices. An equilibrium interpretation of the

other optimality conditions is well known and straightforward and is

therefore omitted. Note, however, that this interpretation does not

depend on the sufficiency of the Kuhn-Tucker conditions due to the con-

cavity of f and -g. If for some reason these functions were not concave,

then some solutions to the optimality conditions might not be optimal

for problem (1) although they could still be interpreted as equilibrium

solutions.

Thus far we have not considered the computational and empirical

consequences of trying to establish the optimality conditions. Before
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entering into a discussion about solution methods, it is important to

emphasize that typical econometric submodels are designed to compute s

from u and d from v, rather than the inverse relation as we have stated

it in (2a) and (2b). In other words, the econometric submodels consist

of the functions Vg 1 and Vf-1 which are used to compute s = Vg-l (u) and

d = Vf (v). This implies that in order to hook up the econometric

submodels with the linear programming submodel, we must assume that the

econometric mappings G = Vg and F = Vf - 1 can be inverted at various

points to give us the values of Vg = G and Vf = F 1 at these points

for use in testing the optimality conditions. This might be done

functionally, or by some iterative procedure which exploits the

monotonicity and continuity of Vg and Vf

4. Decomposition Methods

In this section, we discuss how problem (1) can be solved by

decomposing it into econometric and linear programming submodels using

known methods of mathematical programming and decomposition theory.

For s > 0, d > 0, define the function

c(s,d) = f(d) - g(s) + max - cx

s.t. Alx < s

2 (5)
A x > d

x > 0.

It can easily be shown that (s,d) is a concave function. Moreover,

it is continuous, but not everywhere differentiable on the convex

subset of the non-negative orthant where it is finite. By linear
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programming duality (ruling out the case that (s,d) = since (1) is

assumed to have an optimal solution, but permitting (s,d) = -),

4(s,d) = f(d) - g(s) + min ps - qd

1 2
s.t. c + pA - qA > 0 (6)

p > 0, q > 0.

We assume the convex polyhedral set

n ={(p,q)Jc+ pA1 - qA2 > , p > 0, q > 01 (7)

is nonempty. In general, will be unbounded because we expect there

to be s,d combinations in (5) which do not admit feasible linear pro-

gramming solutions. The issue of infeasible s,d combinations could and

probably should be handled directly in our subsequent development by

the generation and use of constraints of the form prs - qrd > 0 for

r r
rays (p ,q ) of the polyhedron . For expositional reasons, however,

we choose to eliminate the possibility that is unbounded by assuming

that we know a value M > 0 such that all p,q. satisfying the optimality

conditions (2), (3), (4) also satisfy

Pi + qj < M (8)
i jj

The addition of the constraint (8) to (7) bounds the dual feasible

region and implies that for all s > 0, d > 0,

O(s,d) = f(d) - g(s) + min p s td (9)

t=l,...,T
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where the (pt,qt) are the dual extreme points. Of course, the addition

of the contraint (8) to (6) is equivalent to the addition of an activity

in (5) that permits a feasible linear programming solution to always be

found, but' possibly at a very high cost.

The original mathematical programming problem (1) is equivalent

to

* = max (s,d)
(10)

s.t. s > O, d > 0,

where (s,d) is given by (9). The solution of (1) by solving (10) is

a decomposition approach which is illustrated schematically in figure 1.

The computation alternates between the linear programming submodel and

the supply and demand submodels. A feasible solution s,d,x, to (1) is

generated each time the LP submodel is solved. As mentioned above, the

manner of computing and y in the supply and demand submodels, re-

pectively, depends upon their structure. If (a, y) does not satisfy

the optimality conditions for problem (1) (equivalent to and derivable

from the optimality conditions (2), (3), (4)), the s and d in the LP

submodel are changed. The nature of this change depends on the decompo-

sition method. This algorithmic approach to decomposing nonlinear pro-

gramming problems is not new. What is new is its application to energy

planning models where f and g are not explicitly given and where the

econometric and linear programming submodels and their realizations as

computer systems are not compatible.

Decomposition methods for nondifferentiable optimization problems

such as (10) use concepts of convex analysis which we briefly review.
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Rockafellar [23] gives a thorough mathematical treatment of convex

analysis. Its relation to decomposition methods is developed in detail

in Shapiro [29]. A subgradient (, y) of 4 at (s, d) is a vector

satisfying

(s,d) < (s,d) + a(s-s) + y(d-d) for all s,d (11)

If there is a unique subgradient of at s,d, then it is the gradient

of . Any subgradient at (s,d) can be tried as a direction of ascent in

maximizing (s,d) because it points into the half space containing all

optimal solutions. The difficulty with this approach is that may not

acutally increase in a subgradient direction from (s,d) although (s,d)

is not optimal and the function does increase in another subgradient

direction.

The difficulty due to multiple subgradients can be overcome by

procedures capable of generating, if necessary, the set a(s,d) of all

subgradients, called the subdifferential. Define the index set

T(s,d) = {tjo(s,d) = f(d) - g(s) + p s - qtd}.

Then it can be shown that 3p(s,d) is a bounded convex polyhedron with

extreme points (ot,yt) = (-Vg(s) + pt , Vf(d) - qt) for some of the

t T(s,d) (see Grinold [7]). The Kuhn-Tucker optimality conditions

(2), (3), (4) can be restated as follows: The solution (s, d) > 0

is optimal in (10) if and only if there exists t', t T(s, d)

(equivalently (, y) e£ (s, d)) satisfying

_ _ ~ ~ ~ ~ ~ ~~~~~~~~~ sI I
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=0 if si > O
- = g(s) + tX

i as. Pi t
1 tET(sd) < 0 if s. = 0

(12)

= 0 if dj > O
af (d)

I 3
dj

< 0 if dj = 0

C_ _ -1
teT(s,d)

At > 0, t T(s,d)

The optimality conditions (12) for problem (10) are the basis for

solution methods including

(a) subgradient optimization

(b) primal-dual ascent algorithm

(c) simplicial approximation.

(d) generalized linear programming

These methods are not mutually exclusive but complementary, and they

could be integrated, at least conceptually, into a hybrid algorithm.

Space does not permit us to give a great deal of detail about the

application of these methods to (10). Reference is given to more

detailed treatments of the methods.

(a) subgradient optimization

This is the simplest to implement but it can require considerable

experimentation with parameter settings and could require knowledge

about (10) which we do not have. It has worked well for nondifferentiable

concave programming problems closely related to the traveling
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salesman problem (Held and Karp [9] ) and machine scheduling

problems (Fisher [5] ).

The idea is to generate a sequence of non-negative solutions

{(s ,d ) =1 to (10) by the rule

Si = max{s i + ai, 01 for all i

(13)

d. = max{d. + yj, 0} for all j

where (a ,y ) is any subgradient and the scalars satisfy a 0E = +x
2,Q~~~~~~ 2.Q~=1

but + 0. Note that no attempt is made to guarantee that the function

O actually increases from point to point. Polyak [21] shows that if

Vg(s ) and Vf(d ) are uniformly bounded, then the (s ,d ) given by (13)

will converge to an optimal solution to (10). Note also that subgradient

optimization in the form above can be applied without knowledge of f and

g. Moreover, the integrability of Vf and Vg is not invoked indicat-

ing that the method might be applicable to the equilibrium problem (2)

in the general case when it is not necessarily derived from (1). This

is an area of future research.

The theoretical and practical rates of convergence of subgradient

optimization as described above may be slow. Thus, Polyak [22] suggests

the rule

9. I (* - (s ,di)) (14)P H(o,y )I 2
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where 0 < 1 < 2 - 2 < 2 which has proven superior. Note that the for-

mula (14) involves knowledge of the maximal value 4*, which we do not

know, and the functional value (s , d ) (i.e., f(d ) and g(s )), which

we do not know explicitly but may be able to compute. Figure 1 is an

accurate description of how subgradient optimization would work on prob-

lem (10) where the change step is an approximate ascent step in the

direction of an optimal solution to (10). |j

(b) primal-dual ascent algorithm

This algorithm is given for the piecewise linear case by Fisher

and Shapiro [4] and Fisher, Northup and Shapiro [5], and in the general

case by Lemarechal [18]. In order to construct a convergent

algorithm, we must settle for an e-optimal solution ( > 0) which is

any (s,d) > 0 such that * < 9(s,d) + c. The algorithm of Lemarechal

(1974) about to be described converges finitely, and e can be successively

reduced if necessary. The algorithm works with E-subgradients of

which are any vectors (a,y) at (s,d) satisfying

~(s,d) < (s,d) + a(s-s) + y(d-d) + c for all s,d.

The set of all c-subgradients is denoted by (s,d) and it is a convex

polyhedron. If we let T (s,d) = {tlf(d) - g(s) + p s - q d < (s,d) + ce,

then the extreme points of EC(s,d) are included among the points

(t,t) = (-Vg(s) + pt, Vf(d) - qt) for t c T(s,d). The conditions

(12) with T(s,d) replaced by T (s,d) are necessary and sufficient

for -optimality.

The idea of the algorithmis to try at each point (s,d) to

establish the e-optimality conditions by solving-a phase one linear
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programming problem. Since the set T (s,d) can be quite large, the

procedure begins with a small subset. If the -optimality conditions

are not established, then a direction of possible ascent is indicated.

If this direction contains a solution (s',d') such that (s',d') >

0(s,d) + , then a step is taken. Otherwise, the subset of T (s,d)

is augmented by an -subgradient and the phase one linear programming

is reoptimized.

The primal-dual ascent algorithm has the advantages over subgradient

optimization that it does not require knowledge of *, and the sequential

values of (s, d) increase by at least at each step. It has the dis-

advantages that it does more work at each point (s, d), requires know-

ledge of the functional values of (s, d) and it is more complex to pro-

gram. In terms of figure 1, if the -subgradient (a, y) does not satisfy

the optimality conditions, then the LP submodel may be resolved, perhaps

several times, before a change step in an ascent direction is taken. I

(c) simplicial approximation

This method has been applied to related types of economic equili-

brium problems by Scarf and Hansen 25]. In effect, the method performs

a very special type of search over a compact set of non-negative (s, d)

known to contain an optimal solution to (10). It does not require know-

ledge of the functional values of (s, d) and it is applicable for solu-

tion of the equilibrium problem (2) in the form (12) without the exis-

tence of problem (1). The idea is to approximate (12) by subgradients

calculated at distinct, but close together points (s, d). Space does

not permit a fuller development of this method. Complete details are

given by Fisher, Northup, and Shapiro [4] for a mathematical programming

_1 �111__·^
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problem that is sufficiently similar to (10) for the approach there to

be applicable here. In terms of figure 1, the simplicial approximation

test for termination is the indicated approximation of the optimality

conditions. If these conditions are not satisfied, then instead of the

ascent step, we have the exchange of one of the current points in the

approximating set for a new point (s, d) for which a subgradient (a, y)

is calculated as shown. The number of commodities which can be efficient-

ly handled by simplicial approximation is not yet known. For the moment,

this number appears to be less than 100, perhaps substantially so. II

(d) generalized linear programming

This well known decomposition method (e.g., see Lasdon [17]), works

with trial solutions s , d , R = 1, ..., L, in a Master linear program-

ming problem which permits all convex combinations of s and d to be

used with convex combinations of the objective function values f(d )

and -g(s ). The Master LP shadow prices are passed to the supply and

demand submodels as indicated in figure 1. If the optimality test fails,

L+ L+
then new vectors s and/or d are generated and passed to the Master

which is resolved. The change steps for this method is actually the

addition of points to improve the approximation of f and -g in the

Master. The method has been applied to some simple extensions of BESOM

with nonlinear supply functions by Shapiro, White and Wood [28]. Con-

vergence to an optimal solution to (10) was quite rapid. Generalized

linear programming has the same disadvantage as the primal-dual ascent

algorithm that it requires explicit knowledge of functional values of

f and g. Moreover, it has proven computationally erratic when applied

to other classes of problems. 1|

___1_11__ 1__ 11____~~~_~_~- ~ ~ ------- 
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The mathematical programming/economic equilibrium model (1) involves

two equivalent sets of variables, the commodity vectors (s, d) and their

price vectors (u, v) linked uniquely by the mappings (Vg , Vf1 )

in one direction and (Vg, Vf) in the other. The decomposition proposed

above searches systematically through commodity space using price infor-

mation to change commodity levels until an optimal solution is obtained.

It appears possible to also construct decomposition schemes which search

systematically over price space using commodity information to change the

prices until optimal prices are obtained to solve the PIES model. The

convergence of such a decomposition method depends on calculating the

subgradients of the function (u, v) analogous to (s, d) given by

8(u, v) = f(d(v)) - g(s(u)) + max - cx

s.t. A x < s(u)

A2x > d(v)

x > 0.

To do this, we must calculate the Jacobians of the partials of s with

respect to u and d with respect to v. The exact nature of the decompo-

sition schemes in this case, and their comparison with the ones above

remains to be investigated.

5. Conclusions and Areas for Future Research

The proposed decomposition scheme for mathematical programming/

economic equilibrium energy planning models is conceptual but fully

implementable. At the M.I.T. Energy Lab, we are currently considering

further integration of the Brookhaven Energy System Optimization Model

_____111__� 1___1_·______·_______YIII��
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with some of the econometric models developed at M.I.T. This integra-

tion should provide the ideas given above with a rigorous test.

On the other hand, there remain a number of conceptual questions

to be studied in greater detail, particularly, the question of the

integrability of the functions Vf- 1 and Vg . A possibly related con-

struct which might provide some insight is the Legendre transform

(Rockafellar [23]) which relates convex properties of a function to the

inverse of its gradient.

An important area of future research is the identification,

analysis and solution of dynamic models derived from (1) whose solu-

tions converge to an optimal solution to (1). The econometric supply

and demand models are naturally dynamic, and dynamic mathematical

programming submodels can also be constructed (see Shapiro [27] for

some ideas about how to do this). In terms of the decomposition approach,

Grinold [7] gives an ascent algorithm for solving dynamic linear

programming problems as they would arise in this context. The idea

would be to fix supply and demand levels over the planning horizon,

solve the dynamic linear programming problem, and then adjust the

supply and demand levels in the same spirit as given above. The

dynamic linear programming energy model of Nordhaus 20] which has

fixed supply and demand levels could be a candidate for this type of

extension.

A final area of future research is the extension of the decomposi-

tion methods to perform sensitivity analyses of the equilibrium solu-

tions. This is important because of the uncertainties in the supply

and demand relationships as well as many technological and cost coef-

_ _ 1_ _ I·C--·I··---·._Y.I
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ficients. The econometric forecasts are statistical rather

than deterministic in nature, but this fact has not been incorporated

into the analysis and use of the equilibrium models.

��111_1·_1_11___ _ pl·�l( _* ___�_ II II�__��_
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