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Abstract

Accident statistics have often been used to support the argument that

an abnormally small proportion of drivers account for a large proportion of

the accidents. This paper compares statistics developed from six-year data

for 7, 800 California drivers with results predicted using compound Poisson

models for driver accident involvement that assume specific variations in

accident likelihood among drivers. The results indicate that the fraction of

drivers accounting for various proportions of all accident involvements is

too high to suggest that "chronic" accident repeaters are involved in most

accidents.
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1. 1 Overrepresentation in Accident Statistics

Licensing authorities, State and Federal Legislators and other

officials are often advised that a small fraction of drivers account for the

majority of accidents and that removing them from the road would reduce

the total number of accidents dramatically. This advice is based on a

popular notion concerning the role of chance and causal factors in auto-

mobile crashes that presumes all drivers are either "good" or "bad" and

manifests a belief that for nearly all accidents, one can find at least one

"at fault" driver whose behavior was negligent or culpable, and who was

thereby instrumental in "causing" the accident. Drivers who "cause"

accidents are regarded as accident prone and are thought to be a small,

identifiable group that is guilty of hazardous driving, vastly overrepresented

in accident statistics, and responsible for the "accident problem." The

policy implications of such an attitude are straightforward. If "chance" is

thought to play a small role in accident causation, and if driver accident

experience is regarded as a good indicator of driver risk, then a compensa-

tion system which charges "at fault" drivers for their accident losses is

considered equitable, and programs which retrain hazardous drivers and

remove hazardous drivers from the road are given priority.

The National Safety Council [14 estimates that motorists in the

United States account for fifteen million accidents each year and, as a

result incur direct wage losses and medical expenses of 3. 7 billion dollars

and property damage losses of 3. 8 billion dollars. However, these incurred

losses are distributed most unevenly among the driving population. Accidents
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are rare events for individual drivers--one hundred million motorists are

licensed but, during any one year, only 2. 5% of them are involved in

accidents in which an individual is injured.

The rarity of individual involvement in costly accidents complicates

the evaluation of overrepresentation arguments. Proponents of the over-

representation theory cite statistics such as "the 6% of all families with

several accidents accounted for not less than 45% of all accidents" [17]. At

first glance, such figures are startling. However, the time period included

in the accident data is critical--a single week's data would surely indicate

that less than 1% of all drivers accounted for all accidents recorded that

week. The appropriate basis for comparison of the 6% subgroup of drivers

is not the 45% figure but that percentage of accidents for which the 6% would

be expected to account if all drivers were equally likely to be involved in

accidents, or if specific variations in accident likelihood existed. In this

paper, techniques for making such comparisons are developed and specific

results are reported.

1. 2 Previous Work

The mathematical tools required to make such comparisons are

well known among statisticians and students of probability theory, and the

problems of identifying high risk drivers has been the subject of many

specialized studies. The concept of accident proneness has been investigated

for half a century beginning with a study of industrial accidents by Greenwood

and Woods in 1919 [9]. Probabilistic accident models have been developed and

tested by actuaries and industrial researchers using data indicating the
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number of drivers involved in 0, 1, 2, . accidents during each of one or

more time periods [2, 13, 16 ]. Numerous studies have correlated in-

dividual driver characteristics and exposure data with accident experience

in an effort to predict which drivers are most likely to be involved in

accidents [5, 10].

The deceptiveness of the "6% account for 45%" figures has long been

recognized by statisticians and students of probability theory and cursory

critiques of such figures can be found in the literature. However, traffic

safety analysts studying accident data have infrequently made use of the

mathematical models of the actuaries and biologists and, as a result, the

available mathematical techniques have not been used to make careful

interpretations of such statistics that provide results in a form useful to

policymakers. Also, accident data covering long time periods have not been

available and ambiguities concerning the treatment of multiple-car accidents

have complicated such analyses.

In this paper, a sample of six-year driver accident records is used

to estimate the fraction of drivers involved in accidents during various time

periods. The results are then compared with those that would be expected

(a) if all drivers were equally likely to be involved in accidents and (b) if

specific differences in accident likelihood among drivers existed. Much of

the work reported here was carried out while the author was on the staff

of the U. S. Department of Transportation Federal Auto Insurance Study.

Many of the results and a brief description of the mathematical methods are

also contained in a staff report which this author wrote for the study [ 6]. To

the author's knowledge, the method presented here for examining such "6%

account for 45%" figures is original.
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2. 1 Observations Based on ITTE Data

When estimating the fraction of drivers involved in accidents, one

must be careful to distinguish between accidents and accident involvements.

Approximately 75% of all auto accidents involve two or more drivers [14].

Department of Motor vehicle driver records indicate the number of accidents

in which each individual driver has been involved and, hence, the same

accident will often be recorded in the files of two or more individuals.

Statistics such as "6% of the drivers accounted for 45% of the accidents" are

usually developed from driver record samples. Though the term "45% of

the accidents" is used, the data really indicate involvement and "45% of all

accident involvements" would be more appropriate. In this report, the

percentage of drivers accounting for various portions of all accident involve-

ments is estimated. The sensitivity of the results to this choice will be in

Section 2. 6.

Since the overall average time between individual involvements in

reported accidents is on the order of ten years, accident data covering as

long a time period as possible is desired. However, obtaining large sample

driver accident data covering a period of more than three years is quite

difficult since, until recently, most Motor Vehicle Departments have purged

records of information more than three years old, and insurance company

records have not been kept in a manner suitable for tabulation of accident

data for a controlled sample of drivers.

As a result of the author's association with the Department of

Transportation's Federal Auto Insurance and Compensation Study, six-year
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accident data for a random sample of 7, 842 California licensed drivers were

made available by Dr. Albert Burg of the Institute for Transportation and

Traffic Engineering (ITTE) at U. C. L.A.': This data covered the longest

time period of the available data sources and was developed from records of

the California Department of Motor Vehicle, widely recognized as having

reliable driver accident data that are suitable for research purposes.*

The ITTE data identifies the dates of all state-reported accidents

occurring between November, 1959, and February, 1968 and involving at

least one of the 7, 842 drivers.*-* The only exception is that an accident is

omitted from a driver's record if his car was stopped and he was not at the

wheel at the time of the accident. A total of 3, 877 accidents were recorded;

the number and percentage of drivers involved in a total of 0, 1, 2, 3, . ..

accidents is given in Table 1 (along with other information to be discussed

shortly). The final data list developed from the data for use in this report

specified the number of drivers out of the total driver population described

by each possible six-digit combination (x(l), x(2),... ,x( 6 ) ), where x(i) = the

'For a description of sampling procedures, the reader is referred to the
original reports of Dr. Burg [3,4]. The existence of small biases and
other minor problems in the data are also considered in Section 3. 7 of
another report by the author [8].

-:'For a more complete discussion of the accuracy and availability of driver
accident data see Section 1 of Klein and Waller 12].

'State law required reporting of all accidents involving bodily injury or
property damage in excess of $100. (Since the data were collected the
minimum has been changed to $200).
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number of accident involvements during the i year, i = 1, 2, 3, 4, 5, 6. A

list of 144 such combinations resulted.

For notational convenience, let us define D(X, T) to be the minimum

percentage of ITTE drivers whose individual accident records during the

first T years include X% of all ITTE accident involvements recorded during

that time. For example, D(50, 6) = 10 indicates that half of all accident

involvements recorded during six years were accounted for by the 10% of

the drivers with the worst record during that time. The 144 accident com-

binations developed from the ITTE data were used to obtain D(X, T) values.

The results are plotted in Figure 1 as a function of T for X = 25%, 75%, and

100%. A smooth curve has been drawn through each set of points as an aid

to the reader.

The difference between D(X, T) and X is, in fact, quite large. For

example, 20% or 1,537 of the 7, 842 drivers accounted for all of the 1, 911

accident involvements recorded during the first three years. During the

entire six years, 4% of 311 of the drivers accounted for 25% of the 3, 877

accidents. However, the observed values of D(X, T) depend strongly on T,

>In the form in which it was made available to the author, the ITTE data
specified the date on which each accident occurred. However, the six-year
period for each driver was not fixed but centered around one of two possible
interview dates. An extensive amount of data analysis was required to
appropriately define the number of accidents involving each driver during
his six-year period. This analysis was done on two IBM 360/65 systems
located at the Federal Highway Administration and at the M. I. T. Informa-
tion Processing Center and is described in Section 3. 8 of another report by
the author [8].
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an effect that is expected since T 6 although the over-all average time per

driver between accident involvements was 12 years.

2. 2 An "Equally Likely" Accident Model

The next step is to predict the fraction of drivers that would be ex-

pected to account for various percentages of all accident involvements if all

drivers were equally likely to be involved in accidents. Making such predic-

tions requires explicit consideration of the manner by which individual

motorists would be involved in accidents over time if all drivers were

"equally likely" to be involved in accidents. The simplest such model is to

regard all reported accidents as equivalent, to model individual involvement

in accidents as independent renewal processes and to assume that each driver

is involved in i = 0, 1, 2,... accidents during T years according to a Poisson

probability distribution

i -rT
(rT) eP ( i / T ' r ) = (rT) e i = . , 2,.

characterized in terms of a single parameter r which is the same for all

drivers and may be interpreted as the driver's accident likelihood.-

The Poisson distribution is well known among actuaries, biologists

and industrial safety researchers. It is frequently used to model "pure

chance" phenomena because of its underlying independent increments,

*The term "accident likelihood" is used rather than "accident proneness"
since environmental factors as well as driver skill are included.
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homogeneity, and "one event at a time" assumptions [2]. Accordingly, a driver's

accident likelihood, r, is assumed unchanged from one year to the next, and

the occurrence of an accident at any particular time does not affect the chances

of another accident at any other time. Clearly, if a driver is involved in a

serious accident he is unlikely to be driving soon after. However, the

percentage of reported accidents that involve permanent or fatal injury is

about 0. 8% [11] and the time period of one year is long when compared with

a period of several days during which a driver might be incapacitated as a

result of minor injury.

One might suspect that any accident model that assigns the same

accident likelihood to all drivers is an oversimplication of reality--indeed

we shall find this to be the case. However, it is used in this section to pro-

vide base estimates of D(X, T) values--estimates that would result if all

drivers were equally likely to be involved in accidents. The contention is

that the Poisson accident model provides a plausible description of the

driver accident records that would be observed under such circumstances.

2. 3 Predictions Based on the Poisson Accident Model

For notational convenience, let us define Di(X, T, r) as the expected

minimum percentage of drivers who would account for X% of all accident

involvements reported during T years if accidents were a pure chance

phenomenon and all drivers had the same accident likelihood, r. Values of

D1(X, T, r) may be estimated using the Poisson accident model in terms of

the right-tail cumulative and right-tail expected value functions of the Poisson

distribution, which we denote as Rl(c) and Gl(c) respectively.
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According to the Poisson model, the probability PI(i/T, r) that any

individual driver is involved in i accidents during T years may also be in-

terpreted as the fraction of all drivers expected to have a total of exactly

i accidents during T years. Thus, the percentage of drivers expected to

have at least k accidents each during T years is

o00

100 Rl(k)= E P 1 (i/T,r).

i=k

The total number of accidents involving drivers with k or more accidents

each during T years is simply the right-tail expected value

o00

G l (k) = iP 1 (i/T,r).

i=k

Thus we expect a percentage

D1(X, T, r) = 100 Rl(k)

of all drivers to account for

00

iP(i/T,r)

i=k

oo

i P 1 (i/T, r)

i=o

100 G (k)

0

100 G 1 (k)

rT

per cent of all accident involvements recorded during T years.
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Since Rl(k) and Gl(k) are discrete functions for k = 0, 1, 2,..., a k

does not always exist such that

Gl(k)
Rl(k) =

G (k)
0

For example X might be 50% whereas all drivers with two or more accidents

account for only 45% of all accident involvements and some, but not all, of

the one-accident drivers would have to be included to account for the last 5%.

Mathematically, the equation used to obtain D1(X, T, r) may be adjusted for

this case by setting

D (X, T, r) = 100 R (c) + (rT, (2)
~~1 ~c 1c

where

C min X - A(k)
k=1 , ..

and
100 G 1 (k) 100

G (k) -rT G1 (k)

In order that D (X, T, r) values would be comparable to the results

obtained using the ITTE data, r was set equal to 0. 0822, the observed

average annual accident rate. Since D 1(X, T, r) values were desired for a

whole range of X and T values, they were calculated using a short Fortran

IV G program run on the CP 67/CMS Time Sharing Facility of the M. I. T.

Information Proces sing Center.

Figure 2 compares the actual values of D(X, T) for the ITTE data

with the D (X, T, r) values predicted using the Poisson accident model.
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The shaded area represents the difference between the actual and expected

percentage of drivers and must be explained in terms of some variation in

accident likelihood among drivers. That is, the fraction of drivers accounting

for, say, 75% of the accidents during a five-year period is not expected to

be 75%. In fact, the 20% figure reported for the ITTE data differs by only

3. 5% from the figure that would be expected if all drivers were equally likely

to be involved in accidents.*

At first glance, it is natural to suspect that the equally likely assump-

tion would result in accidents distributed evenly among all drivers. That is,

one naively anticipates that, eventually, all drivers would have at least one

accident, about 50%o of the drivers would be needed to account for 50% of the

accidents, and so on. It is obvious from Figure 2, however, that the time

period that would be needed before such results would occur is much longer

than 10 years.*"' In fact, D (X, T, r) lags behind X even for large T in cases

where X < 100%o. When T = 50 years, for example, D1(50, 50, 0. 0822) = 32%

and D1(75, 50, 0. 0822) = 56%.

'The statistical significance of these results is considered in Appendix A.

**These results are based on an average accident rate of one state-reportable
accident per driver every 12 years. A change in the rate is equivalent to a
change in the horizontal scale (time) of the predictions in Figure 2. The
National Safety Council estimates a rate of one accident every four years
when all accidents, however minor, are counted. The six-year predictions
of Figure 2 would then be equivalent to two-year estimates if all accidents
were considered. Thus 50% of the drivers would still account for all the
accidents occurring during three years. Accidents are still not expected
to be evenly distributed among drivers even if accurate data on all accidents
were available for the usual one to three years--even if no difference among
drivers existed.
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2.4 The Negative Binomial Accident Model

The Poisson accident model assumed all drivers were equally likely

to be involved in accidents and assigned to each the same value for the

accident likelihood r. To allow for differences among drivers, this assump-

tion is relaxed. Individuals are again assumed to be involved in accidents

independently according to the Poisson distribution of (1), however, the

particular value of the parameter r is now permitted to vary among individual

drivers in the population. In particular, the value of r associated with a generic

driver is regarded as a random variable the probability density function of

which is a gamma-i function,*

f ~ kim k k-l c k
f (a) = f(a /k,m) k/m (ak )k- e- , a 0, (3)
r r (k) m m

in terms of two non-negative parameters k and m which may be fitted to

sample driver accident records [ 1] [2 ].* The m parameter of the

gamma-i1 family may be interpreted as the overall average accident rate

*The use of the gamma-1 family for the distribution of accident likelihood is
desirable since it is the natural conjugate family for Poisson sampling and
facilitates the computation of values of P 2 (i[T, k, m) (to be defined
shortly).

**Although this choice of parameters k and m to describe the gamma-i
family differs from those commonly used in the literature, it facilitates
their interpretation and also their estimation since estimates of k and m
are very nearly independent [ 1 ].
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(0. 082 accidents per year in the ITTE sample). The k parameter affects

the shape of the function and results in a simple negative exponential dis-

tribution when k = 1. 0.

This compound Poisson accident model was first suggested by

Greenwood and Woods in 1919 [ 9 in a study of industrial accidents. It is

sometimes referred to as a negative binomial model since the resulting

probability that a randomly selected driver is involved in i accidents during

T years is now a negative binomial distribution

2P(i km) fPi(i/T, r) f (a)da

r(k+i) k m
i !r(k) k+ mT k(+mT4)

where i = 0, 1, 2,...; k ' 0 and m - 0.*

In Table 1, the actual number of drivers in the ITTE sample involved

in a total of 0, 1, 2, 3,... accidents during all six years is compared with

predictions based on the simple Poisson model and on the negative binomial

model. The parameters are fitted using the method of moments. For the

negative binomial model, this method has been shown to be the most efficient

for the observed range of values for k and m [ 1 ].

Several other tests of the accuracy of the negative binomial model

were made. To test the underlying Poisson model for individual accident

involvement, the number of drivers, out of all those with a total of two

*The niodel is also referred to as the "accident proneness" model since it
assumes that a driver's accident likelihood does not change from year to
year and that some drivers have higher accident likelihoods than others.
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Table 1: Theoretical and Actual Accident Distributions

No. of
Accidents

0
1
2
3
4
5
6+

Actual No.

of Drivers

5, 147
1, 849

595
167

54
14

6
7,842

Poisson

P redictions

4, 789
2, 362

582
96
12
1
0

7, 842

Negative
Binomial

Predictions

5, 140
1, 874

586
173

50
14

5
7, 842

2
= 477 4df.

2
= 0.99 4df.

1. ITTE accident data for 7, 842 drivers over six years.

2. Predictions using the Poisson accident model assuming all drivers
have the same accident likelihood r = 0. 0822, the average accident
rate observed in the ITTE sample.

3. Predictions using the negative binomial accident model where the
k and m parameters have been fitted to the ITTE data using the
method of moments; k = 1. 40, m = 0. 0822.
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accidents, whose accidents fell in particular years were totaled and com-

pared with predictions of a multinomial distribution. Variations in the

estimated k and m values were checked using subsets of the entire six-years

of data. The "constant accident likelihood" assumption was tested against

a "contagious" accident model in which driver' s accident likelihood was

assumed to depend upon his accident history. Variations in m were within

the standard error but k varied between 1. 1 and 1. 6. Specific results of

these tests have been reported elsewhere by the author [8]. They indicated:

(1) The times at which accident repeaters in the

ITTE sample were involved in accidents during

the six-year period were dispersed in a manner

consistent with the Poisson model for individual

accident experience.

(2) The compound Poisson hypothesis appeared to be

a more appropriate explanation of accident ex-

perience than did a "contagious" hypothesis that

assumed accident likelihood was a linear function

of past accidents.

(3) Fits of the negative binomial distribution to various

sample data indicated that variations in the estimates

of the k and m parameters were not enough to signifi-

cantly change the shape of the distribution of accident

likelihood.
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2. 5 Predictions Based on the Negative Binomial Model

On the basis of the arguments and test results given in the previous

section, we accept the negative binomial accident model as a plausible

first order approximation and return to the problem of explaining the

difference between the D(X, T) and D (X, T, r) curves of Figure 2. For

notational convenience, we define D (X, T, k, m) to be the expected minimum

percentage of drivers accounting for X% of all accident involvements during

T years based on the negative binomial accident model with parameters k

and m.

The method used to obtain values for Dz(X, T, k, m) is completely

analogous, though computationally more difficult, to that used in calculating

D (X, T, r) for the Poisson accident model. Once again a short Fortran IV G

program was run on the CP 67/CMS Time Sharing Facility of the M. I. T. Infor-

mation Processing Center to calculate D2(X, T, k, m). To make the values of

D 2 (X, T, k, m) comparable to the D(X, T) results obtained from the ITTE data,

the fitted values of the k and m parameters from Table 1 were used (k=1.40 and

m=O. 0822). In Figure 3, these values for D 2 (X, T, 1.40, 0. 0822) were compared

with the observed results D(X, T). Note how well the predicted and actual figures
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agree. The curves no longer diverge as T increases as they did in Figure 2

where the equally likely model was used. Smaller values for k result in even

smaller predicted values for D 2 (X, T, k, 0. 0822), indicating that values of

k did exist such that the predicted results are substantially less than the

observed values--even when m is kept equal to the observed accident rate.*

What distribution of accident likelihood among drivers is suggested

by the fitted gamma-i functions? Figure 4 graphs those distributions implied

by the k and m values used to obtain the D2(X, T, k, m) predictions for the

fitted k and m values and also for the pure exponential case. Substantial

differences in driver accident likelihood are, in fact, predicted; however,

the vast majority of drivers have quite low accident likelihoods. For the

k = 1. 40 case, 93% of all drivers are predicted to have an accident likelihood

r - 0. 20.*: The most common value for r is about 0. 025 (one reportable

accident every 40 years),

The predicted accident distributions of Figure 5 may also be used to

estimate the fraction of all accidents which involve drivers whose accident

likelihood falls in a particular interval. Once again we use the right-tail

cumulative and right-tail expected value functions, this time for the gamma-i

*The standard error of the predictions and a discussion of what constitutes
a significant deviation are given in another report by the author [ 7 ].

0. 2
*-That is, 5 f(a/k, m)da = 0. 93.

0
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distribution f(r/k, m). For notational convenience, we define

R3(c) = f f(a/k, m)da,

and

G 3 (c) = a f(a/k, m)da,

for values c 0.

The predicted fraction of drivers with an accident likelihood r ' d is

R3(c). Similarly, G3(c) when normalized by dividing by m, the expected

number of accidents per driver per unit time, is the fraction of all accident

involvements that are expected to involve drivers whose accident likelihood

r 2 d. By rewriting G 3 (c) as another gamma function and using Pearson's

Tables [ 15], G 3 (c) may be determined for various values of d. In Figure 5,

both R3(c) and G3(c) are plotted as a function of c. We see that only 0. 06%

of the drivers are predicted to have accident likelihoods greater than one

accident every two years and these drivers are expected to account for only

0. 38% of all accidents. Those 7% of the drivers rith-r O21, -2 e accident

every five years) are predicted to account for 22% of all accident involve-

ments. This figure is substantial, although it is less startling than the "6%

cause 45%" claim based on data from short periods. More over, an accident

likelihood r = 0. 20 does not fit one's image of chronic accident repeaters.

The results of Figure 5 may be interpreted as long-term, steady state

estimates of the amount of overrepresentation in accidents observed in accident
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data. That is, one predicts that D(20, T) will approach 7% as T increases.

It is important to note that the "equally likely" model predicts that 10% of

the drivers would account for 20% of all accident involvements occurring

during a fifty-year period. Thus, a driver's lifetime is still sufficiently

short for misrepresentation due to purely chance factors to distort the data

on accident involvement by an amount similar to the "7% account for 22%"

prediction.

2. 6 The Sensitivity of the Results

The calculations in Appendix A suggest that the sample size of

8, 000 is sufficient that the differences between D(X, T) and D (X, T, r) are

significant. However, when T is 1 or 2 years, the distortion of the D(X, T)

results, due to the short length of the time period, is so pronounced that

D(X, T) is not sensitive to one's assumption about differences among drivers.

In such a case, too few drivers are involved in accidents, and almost any

assumption about the distribution of accident likelihood will produce figures

close to D(X, T). This observation gives us some indication of what results

would be obtained if one included only "at fault" accidents in the data used

to obtain D(X, T).

As was noted earlier, the results in this paper are developed from

driver accident data that includes all accident involvements without regard

to fault. If a driver's accident likelihood were highly correlated with his

chance of being "at fault" in any particular accident, then elimination of all

"innocent" involvements from each driver's record would eliminate a
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disproportionate number of accident involvements from the records of

drivers with low accident likelihoods. In such a case, elimination of

"innocent" involvements would result in a smaller observed fraction of

drivers accounting for a particular proportion of accidents. At the same

time, however, the total number of accident involvements would drop and

the time period of the observed data would represent an even smaller

fraction of the average time between accidents. Hence the D (X, T, r)

results predicted using the Poisson model would also drop. The shortness

of the time span of the data would account for an even larger part of the

difference between D(X, T) and X. An even longer time period would have

to be examined before the D(X, T) results would be a meaningful indication

of an accident prone driving population.

A more desirable type of accident data for use in the report would

be data that include cost considerations. Then, one could examine the

fraction of drivers that accounted for various fractions of the total cost.

Such data were not available. What is actually used represents a compromise

insofar as the state-reported (or insurance company-reported) accidents

include only those accidents that involve bodily injury or serious property

damage.

One other comment regarding the scope of this analysis is in order.

The report treats all reported accidents on an equal basis and does not

distinguish between various types of accidents. This choice is made since

it is the sweeping generalizations--a few per cent of all drivers account for

the majority of all accidents--that are of primary concern. Such figures



27.

are most frequently cited and may be grossly misleading. One might suspect

that focusing, for example, on only severe accidents and fatalities might produce

different results. In fact, alcoholics as a group are consistently found to be

involved in a substantial proportion of fatal accidents even though the group

represents only a few per cent of all drivers [19]. Such facts cannot be

overlooked and are of particular value to those concerned with highway

accident prevention. However, as one narrows the type of accidents to be

considered, the total number of yearly incidents drops. An estimated 6%

of all drivers are alcoholic and approximately one-quarter of all fatal

accidents involve alcoholics [18]. But, 6% of all drivers constitutes 6, 000, 000

drivers, whereas 25% of the fatalities represents a yearly total of about

12, 000 accidents involving fatalities. The notion of the same drivers being

involved in the accidents year after year remains a misconception even

when subgroups of accidents are considered.*

'Of course, programs aimed at preventing driving while under the influence
of alcohol remain desirable.
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3. 1 Conclusions

This paper examined in detail arguments used to support the popular

belief that an abnormally small proportion of "high risk" drivers account

for a large proportion of all accidents. Specific claims of particular interest

to policymakers were studied and observations over various time periods

were matched with predictions of analytical models based on explicit

assumptions about differences among drivers. The results produced a

different picture of the accident involvement process and indicated that:

(1) Statistics such as "6% of all drivers account for 45% of the

accidents" are grossly misleading. Examination of even several years of

accident data fails to provide a representative picture of the fraction of

drivers involved in accidents.

(2) Chance plays a major role in determining who is involved in

accidents over time periods of one or two years, and the fraction of drivers

involved in accidents provides little insight into the actual distribution of

accident likelihood among drivers.

(3) When time periods of more than the usual two or three years

were considered, the fraction of drivers involved in accidents is in fact a

reliable indicator of differences among drivers. However, the observed

values were not sufficiently low to require a group of chronic accident re-

peaters of sufficient size to account for more than 1 or 2% of all reported

accidents.

(4) Frequent, misleading references to the D(X, T) values observed

over short tinle periods of one to three years have incorrectly reinforced the

popular notion that a small group of bad drivers account for most of the

"accident problem."
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Appendix A: The Variance of D(X, T)

Before interpreting the differences between D(X, T) and C1(X, T, r)

or D 2 (X, T, k, m), we must comment on the effect of sample fluctuations on

the observed values of D(X, T). The size of these fluctuations, will, of

course, depend upon the actual process by which individuals are involved

in accidents. In this Appendix A, we obtain a rough estimate of the expected

magnitude of the variations by calculating for one special case the standard

deviation of D(X, T) that would result if the Poisson accident model were

valid. In general, the variance of D(X, T) is difficult to determine. For

the case where X = 100%, however, it is straightforward.

When X = 100%, D(X, T) is just the percentage of drivers with at

least one accident during T years. If the population consists of N drivers

and we denote the number of drivers involved in at least one accident during

T years by the random variable v, then

Var [D(100, T) = Var [ 100 v/N

2

[1 Var (v). (A- i)

But v is a binomial random variable since the Poisson model implies that

each driver, independent of all other, is involved in no accidents during

T years with probability

PO = P (O/T, r)

-rT
= e

from (1). Thus, v is simply the number of successes in N trials, and

Var (v) = N P(1-P ).
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Substituting this result into (8) above, yields

Var [D(100, T) [ 100N ]NP(1P

Taking the square root to obtain the standard deviation gives

-rT -rT
s.d. [D(100, T)] = 100 e ( (A-2)

This function achieves a maximum when Po . For N = 7, 842, then,
02

this maximum is 0. 56%. With a standard deviation on the order of 0. 5%,

fluctuations of several standard deviations are easily acceptable without

affecting our interpretation of D(X, T) and the expectations of D 1 (X, T, r)

and D2(X, T, k, m).
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