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1. Introduction

PRIORS is an interactive PL/I program written under National Institute
of Justice Grant Number 80-1J-CX-0048. The program is designed to assist
evaluators in formulating, modifying and updating prior distributions.

OPT2 is likewise an interactive PL/1 program written under this grant.
The products of PRIORS may be useful in formulating Bayesian decision rules

with OPT2.
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1.1 Why Prior Distributions?

One of the main concerns of evaluations is to collect information. Both
the qualitative information of "process evaluators' and the quantitative
information of "outcome evaluators' are relevant to evaluations. However, as
in many fields, merging these distinct types of information often leads to
conflict. We feel that the apparent conflict between 'process evaluators"
and "outcome evaluators' can in some cases be resolved through Bayesian
analysis. The idea is to use the qualitative information of the process
evaluator to form a "prior distribution' and the statistical information of
the outcome evaluator to update the prior and obtain a "posterior distribu-
tion".

More than just a resolution to the conflict between process and outcome
evaluators, Bayesian analysis offers the adaptability necessary in the face
of such multifaceted and changing problems as crime, drug and alcohol abuse,
family counseling, etc. In simple hypothesis tests for example, classical
statistics formulates decision rules strongly biased in favor of the null
hypothesis.

Bayesian analysis and more specifically conjugate prior distributions
offers a tractable, appealing method for overcoming the deficiencies of
classical statistics thereby affording a vehicle for resolving the conflict

between process and outcome evaluators.

1.2 What is a Prior Distribution?

A prior distribution is as its name suggests, simply a probability dis-
tribution for the outcome of some experiment or trial based on information
available before the event. Most people for example would set their chances
of getting Heads upon tossing a coin at fifty-fifty -- before ever seeing

the coin. This simple example captures the essence of prior distributions --
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namely prior distributions translate previous and often qualitative knowledge
into quantitative information.

Continuing with our coin-tossing example, suppose we wanted to determine
whether or not a coin was "fair'". First we take the coin and turn it over
in our hand, feel its weight and check that one side is Heads and the other
Tails. Imagine our chagrin if we had simply begun by tossing the coin a
number of times before detecting that both sides were Heads! Then, based
on these observations we formulate a prior distribution for the probability
that the coin, when tossed, will land Heads. Tossing the coin'a number of
times we obtain the sequence of observations (Oi) with say 0l Heads, 02 Tails,
etc. With this quantitative information we update our prior to obtain the
posterior distribution. The posterior distribution is simply the conditional
distribution of p given the sequence of observations (Oi)'

One special class of prior distributions, conjugate priors, is math-
ematically and intuitively appealing in that the prior and posterior distribu-
tions come from the same mathematical family. The program PRIORS deals ex-

clusively with these conjugate prior distributions.

2. Hypothesis Testing

Hypothesis testing is no longer simply a laboratory tool. Today it
affects the courses of thousands of lives and millions of dollars. FDA
regulations are an especially tangible examplé of £hé present pbwer of
hypothesis testing. Admissions policies to public assistance progréms,
special education programs, limited medical facilities and psychiatric-
institutions are, intentionally or not, decision rules for hypothesis tests.

The problems involved in formulating.such decision rules, not to mention
their consequences, set hypothesis testiﬁg in social institutions apart from

testing in laboratories. It is neither politically acceptahle nor economi-
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cally feasible to determine which citizens will receive public assistance
according to the same formulas used to determine the effectiveness of
malathion against Drosophila.

Consider the problem of formulating requirements for admission to the
following public assistance program. The law requires that people be admitted
solely on the basis of a single summary measure: their present assets.

Since a family's economic situation is complex and multifaceted, it is not
likely that any single measure will correctly detect all "truly needy"
families or all families who are "not truly needy." Yet, we must construct
a reasonable decision framework within the structure of the law.

Our problem then is to determine a decision threshold having the property
that applicants whose assets exceed the threshold value will not be admitted.
We realize that any given threshold value will have dramatic effects on the
lives of thousands of people. If for example we set our decision threshold
too high, many deserving applicants will be unjustly turned away. On the
other hand if we set out decision threshold too low, undeserving applicants
may receive money earmarked for the needier. In order to determine the
best decision threshold we undertook an extensive retrospective study to
determine how the assets of past applicants aligned themselves. Highly
trained case workers reviewed the case of each previous applicant. Based
on the case history, they decided whether or not the applicant was "'truly
needy." We then studied the level of assets at the time of application
within each group —-- "truly needy" and ''not truly needy." We found that half
of all aﬁplicants were, on the basis of this study, considered "truly needy."

Unfortunately, however, there was no level of assets which could unambiguously
distinguish between the two groups. In fact the study found the asset

distribution shown in Figure 1.
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Frequency Truly needy Not truly Needy

Mean = 800 Mean = 850

Figure 1
Asset Distributions of "Truly Needy"

and "Not Truly Needy"

It is clear from Figure 1 that regardless of what threshold value we choose
we will reject truly needy applicants, accept not truly needy applicants or
both. In this situation Classical Statistics would ordinarily prescribe

1

either the .05 alpha-level decision rule or the .05 beta-level decision rule.

The .05 alpha-level decision rule is, roughly speaking, designed to ensure that
the chances of turning away a truly needy applicant remain below one in twenty.
The .05 beta-level decision rule on the other hand ensures that the chances of

accepting a not truly needy applicant remain below the same figure.

Straightforward as these rules may seem their consequences may be intolerable
to many planners and decision makers. In our case the .05 alpha-level decision
rule would admit people with-assets not exceeding $840. Anyone else would
be rejected. It is clear from Figure 2 that some applicants who are not
truly needy would be accepted into our program. In fact 75% of this group
would be accepted. If each client in the program costs $1,200.00 then these
people alone will cost our program over four million dollars for every ten

thousand applicants.
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.05 Alpha Level Decision Rulec:
accept applicants with assets
not exceeding $840

Frequency Truly Needy

Not\Truly Needy

Figure 2

The .05 beta-level (Figure 3) rule will on the other hand prevent this
situation. However the consequence of being so parsimonious is that nearly
eighty truly needy applicants will be turned out iﬁ the cold for every omne
hundred applying. The costs of this policy when defined broadly, would no

doubt be no less than those of the overly generous .05 alpha-level rule.

.05 Beta-~level Decision Rule:
accept applicants with assets

Frequency not exceeding $781.

]

Figure 3

An obvious difficulty with classical statistical decision rules is that
they ignore the cost consequences of the various possible outcomes.

Bayesian analysis allows the formulation of decision rules which incorp-
orate the probabilities and costs of the various outcomes of a decision. The

interactive program OPT2 assists evaluators in formulating decision rules for

hypothesis tests involving Gaussian (normal) distributions. In order to apply
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OPT2 it is necessary to have formulated an a priori probability for the null
hypothesis or in this case, the hypothesis that an applicant is truly needy.

Since we determined that half of the applicants are truly needy, the a
priori probability in this case is 0.5. This probability need however, not
always be so objective. It is often necessary and prudent to incorporate
more subjective information such as the opinions of experts or previous
experience with related situations into one's estimate of the a priori probability.
PRIORS will assist a decision maker in this estimation.

"In using PRIORS to estimate an a priori probability, simply indicate as
in Exhibit I, that you are testing an hypothesis. PRIORS will ask you for
your best estimate of the a priori probability and then inform you about
some of the consequences of your estimate. If these consequences seem

appropriate, you have validated your estimate. Otherwise you should change it.



¢ ARE YOU:

4 1., TESTING AN HYPOTHESIS? \
2, ESTIMATING A PARAMETER? v EXHIBIT -
3., UPDATING A PRIOR DISTRIBRUTION?

4, NONE OF THE AROVE ,

'PLEASE TYFE THE NUMBER (1 - 4) OF THE APPROPRIATE OFTION.

]

o1

coo

o

PLEASE FILL IN THE ELANK. _ _
THE NULL OR NO-EFFECT HYPOTHESIS IS THAT... .3n aprprlicant is deserving

o

WHAT IS YOUR RBREST ESTIMATE OF THE FROBARILITY THATo
AN AFPLICANT IS DESERVING

kY

": ved

THIS ESTIMATE INDICATES THAT YOU FEEL THE PROBARILITY OF NOT OERSERVING
~THAT? AN AFPLICANT IS DRESERVING

EVEN ONCE IN FIVE TRIALS IS5:0.07776

WHEREAS THE FROERARILITY OF OERSERVING THAT!

AN AFPFLICANT IS DESERVING

.FIVE CONSECUTIVE TIMES 1S:0. 010~4

“WOULD YOU LIKE TO CHANGE YOUR ESTIMATE OF THE PROBABILITY THAT:
AN APFLICANT IS DESERVING?.ues

WHAT IS YOUR REST ESTIMATE OF THE PROBABILITY THAT?
_AN AFPPLICANT IS DESERVING
|

445

O 0 0 0 o0 ©

@

 THIS ESTIMATE INDICATES THAT YOU FEEL THE FROEBABILITY OF NOT OESERVING
THAT!: AN AFPLICANT IS DESERVING

'EVEN ONCE IN FIVE TRIALS IS:0.03125

WHEREAS THE FROBAEILITY OF OBSERVING THAT:'

_AN AFFLICANT IS DESERVING

_FIVE CONSECUTIVE TIMES IS:0,03125

M
—

O

"WOULD YOU LIKE TO CHANGE YOUR ESTIMATE OF THE FROBARILITY THAT:
.AN_APFLICANT IS DESERVING?.no,.

.-
T -t
P

THIS INDICATES THAT THE PRIOR FROERAEILITY THAT!

AN APPLICANT IS DESERVING
" 1820.50000

o O 0

"WOULD YOU LIKE TO CONTINUE (YES OR NO)? ,ues

e < 3 e e - . e o e

~
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3. Parameter Estimation

Many of the processes studied by evaluators can be accurately repre-
sented by underlying probability distributions and described by the para-
meters characterizing these distributions. Recall for instance the problem
of determining the chances of getting Heads upon tossing a cértain coin.

The outcomes of the tosses can be viewed as a Bernoulli process wiph p the
probability of getting Heads on any toss. Just as the problem of determining
the probability of getting Heads on any toss can be re&uced to.finding the
value of p in a Bernoulli process, the problem of describing many processes
reduces to determining values for the parameters that describe them. In the
following sections (4.1la - 4.le) we discuss the common distributions
addressed by PRIORS, when they arise, their conjugate prior distributions and

how to usé PRIORS to assess them.

3.1 The Bernoulli Process

A Bernoulli process is one in which there are two possible outcomes
for any trial: event #1 and event #2. Event #1 occurs on any trial with

fixed probability p (generally the quantity of interest), otherwise event

_#2 occurs. In addition, the outcome of any trial is unaffected by previous

trials.

Tossing a coin is for example a Bernoﬁlli process. If the coin is
fair, p = 0.5 and Heads or Tails is equally likely to dccur on any toss.

Bernoulli processes are common in evéluation settings. Opinion polls
for example can often be viewed as Bernoulli processes where p is the |
fraction of people who would respond favorably. Generally, whenever an
independently repeated experiment results in a dichotomy the outcomes can
be viewed as a Bernoulli process.

As in Exhibit 2, PRIORS helps you assess your prior diétribution to
a Bernoulli process by first asking for your best estimate of p. Your

response should be some number between zero and one, reflecting your estimate



ARE YOU?
1, TESTING AN HYFOTHESIS?
2. ESTIMATING A FARAMETER? EXHIBIT
3, UPDATING A PRIOR DISTRIRUTION?
\ 4, NONE OF THE AEQVE
: PLEASE TYFE THE NUMEER (1 - 4) OF THE APPROPRIATE OPTION.
L 3

]

L2

CLASSICAL STATISTICS VIEWS FARAMETERS AS CONSTANTS WITH FIXED YET UN-
.KNOUWN VALUES. WE INTEND TO VIEW THEM AS RANDOM VARIABLES WITH FRORABIL-~

JITY DISTRIRUTIONS. THE FRIOR DISTRIRUTION FOR THE FARAMETER SHOULD
.DEPEND ON THE DISTRIEUTION IT CHARACTERIZES.,

?fHE FARAMETER YOU ARE TRYING TO ESTIMATE IS FROM!
1. A BERNOULLI FPROCESS

2., A FOISSON FROCESS
~3+ A UNIFORM FROCESS
. 4, AN INDEFPENDENT NORMAL FROCESS
- 9+ A NORMAL REGRESSION FROCESS
.6+ HELFP
7. QRUIT .
-FLEASE TYPE THE NUMBER (1 - 7) OF YOUR CHOICE.
*

”}1,

THE BERNOULLI FROCESS IS ONE IN WHICH THERE ARE TWO FOSSIELE EVENTS!
SEVENT#1 AND EVENT#2. EVENT#1 OCCURS ON ANY TRIAL WITH FIXED FROBARILITY
P (THE FARAMETER WE ARE AFTER) AND EVENT#2 OCCURS WITH FRORARILITY 1-F.
TRIALS OCCUR INDEFENDENTLY. THAT IS THE OUTCOME OF ONE TRIAL DDES NOT
.EFFECT THE OUTCOME OF OTHER TRIALS.

" DOES THIS DESCRIBE YOUR PROCESS (YES OR NO)? .ues

PLEASE FILL IN THE ELANK. ) )
JEVENT#1 IS THE EVENT THAT... .3n.aprlicant is deserving

EVENT#1 IS THE EVENT THAT AN AFPLICANT IS DESERVING

i :QHAT IS YOUR REST ESTIMATE OF THE FRACTION OF ALL TRIALS FOR WHICH IT
¢ .18 FOUND THAT AN AFFLICANT IS DESERVING
.
i -2
i : L. S

IN GENERAL THE MORE TRIALS OF A RERNOULLI FROCESS WE ORSERVEs THE MORE
_CONFIDENCE WE CAN HAVE IN OUR ESTIMATE OF THE FARAMETER F. WE MUST

) IN DETERMINING A PRIOR DISTRIERUTION FOR Py DECIDE HOW MUCH CONFIDENCE
i ! .YOU HAVE IN YOUR EXFERIENCE.

) "SUFPOSE THAT NONE OF THE NEXT OBSERVATIONS IS THAT!
. AN AFPLICANT IS DESERVING

HOW MANY SUCH ORBSERVATIONS WOULD IT TAKE TO CONVINCE YOU TO CHANGE YOUR
" ESTIMATE BY MORE THAN .1 ?
; | b

050,

~FHIS—INDICATES THAT YOUR FRIOR DISTRIEUTION FOR P IS!
A BETA DISTRIBUTION WITH PARAMETERS 100.0000 ANII 100.0000
THE MEAN OF THIS DISTRIRUTION IS:.S500
THE VARIANCE OF THIS DISTRIEUTION IS¢ 0.0012

;’/{ YOUR EQUIVALENT SAMPLE SIZE IS! 200

e
i
.
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of the fraction of all trials resulting in Event #1. If your estimate is

greater (less) than .5, PRIORS will next ask:

SUPPOSE THAT NONE (ALL) OF THE NEXT TRIALS IS (ARE) THAT:
event #1

HOW MANY SUCH OBSERVATIONS WOULD IT TAKE TO CONVINCE YOU TO CHANGE

YOUR ESTIMATE BY MORE THAN .1?

Supposing your estimate is greater than .5.. we hope that with each
successive occurrence of event #2 you would reduce your estimate of p. PRIORS
is asking you to determine how many successive of occurrences of event #2
it would require to convince you to reduce your estimate of p by .1.

PRIORS will then present the prior distribution:

THIS INDICATES THAT YOUR PRIOR DISTRIBUTION FOR P IS:

A BETA DISTRIBUTION WITH PARAMETERS A AND B

THE MEAN OF THIS DISTRIBUTION IS: Mean

THE VARIANCE OF THIS DISTRIBUTION IS: Variance

YOUR EQUIVALENT SAMPLE SIZE IS: Equivalent sample size

The mean of the distribution represents your best estimate of p, the
variance reflects your confidence in that estimate. Your equivalent sample
size is a measure of the number of observations you feel your experience is
equivalent to. Naturally, the more you know about the process, the larger

your equivalent sample size should be.

3.2 The Poisson Process

A Poisson process is an arrival process in which the arrangement
and number of arrivals in one time interval do not effect any non-overlapping
time interval. Moreover, in a Poisson process arrivals come one at a time
and the probability of an arrival in any short interval is proportional to
the length of the interval.

Poisson processes arise often in evaluation settings. Crimes, disasters,

customer requests, etc. can all be modeled as Poisson processes with the
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parameter representing the average rate of "arrivals'. Consider for instance
the problem of estimating the number of husband-wife disputes in a city each
year. Since police records do not generally categorize incidents this way,
a process evaluator might first ride with police officers, interview those
who have previously called the police because of domestic eruptions and undertake
other process-related activities. Then, that evaluator would be interviewed
carefully to obtain a (éersonally derived) distribution for the annual rate
of husband-wife disputes that require police intervention.

‘As in Exhibit 3 PRIORS in formulating a prior distribution to this
Poisson process will first ask the evaluator to estimate the scope of his/her
experience:

YOU JUDGE YOUR EXPERIENCE WITH THIS PROCESS TO BE EQUIVALENT
TO OBSERVING HOW MANY EVENTS OR ARRIVALS?

Obviously the longer and more detailed the process evaluation, the greater the
number of observations the evaluators experience will be equivalent to. PRIORS
next asks the evaluator for substantive information about the disputes:

WHAT IS YOUR BEST ESTIMATE OF THE AVERAGE TIME BETWEEN ARRIVALS?
It is hoped that during the process evaluation the evaluator developed some
insight into the rate at which domestic disputes arise in the city. In answering
this question the evaluator should use appropriate units be they minutes, days
" or years.

After the evaluator has answered all of the appropriate questions
PRIORS will present his/her prior distribution as:

YOUR PRIOR DISTRISUTION FOR THE ARRIVAL RATE IS A GAMMA

DISTRIBUTION WITH PARAMETER r

THIS DISTRIBUTION HAS BEEN MODIFIED BY THE AMOUNT OF

TIME YOU HAVE OBSERVED THIS PROCESS t

THE MEAN OF THE DISTRIBUTION IS: mean

THE VARIANCE IS: wvariance

YOUR EQUIVALENT SAMPLE SIZE IS: equivalent sample size

The mean represents the evaluators estimate of the arrival rate A of domestic

disputes in the city and the variance reflects his confidence in this estimate.




- ARE YOU! ,
i 1. TESTING AN HYFOTHESIS? EXHIRT
4 2. ESTIMATING A FARAMETER?
. 3. UPDATING A FRIOR DISTRIEUTION?
A .4, NONE OF THE AEOVE
¥ 'PLEASE TYPE THE NUMBER (1 - 4) OF THE AFFROPRIATE OFTION.
H
o2

N CLASSICAL STATISTICS VIEWS PARAMETERS AS CONSTANTS WITH FIXED YET UN-

- KNOWN VALUES. WE INTEND TO VIEW THEM AS RANDOM VARIARLES WITH FROEARIL-
ITY DISTRIBUTIONS. THE PRIOR DRISTRIERUTION FOR THE FARAMETER SHOULD
_DEPEND ON THE DISTRIBRUTION IT CHARACTERIZES.

THE PARAMETER YOU ARE TRYING TO ESTIMATE IS FROM:
- 1. A BERNOULLI FROCESS
4 -2+ A POISSON FROCESS
3+ A UNIFORM FROCESS
_ 4. AN INDEFENDENT NORMAL FROCESS
-3« A NORMAL REGRESSION FROCESS

\J

f 6. HELP
4 o~ _70 QUIT
R FLEASE TYPE THE NUMBER (1 - 7) OF YOUR CHOICE.,
- 4
. ;'_.0
) C . 02
i THE POISSON PROCESS CAN EE VIEWED AS AN ARRIVAL FROCESS IN WHICH!
! C .1+ THE ARRIVALS IN ONE FERIOD OF TIME DO NOT EFFECT THE ARRIVALS IN ANY
. .. NON-OVERLAFPING FERIOD OF TIME.
§ . 2. ARRIVALS COME ONE AT A TIME. .
ﬁ C :3. THE FROBARILITY OF AN ARRIVAL IN A SHORT INTERVAL IS PROFORTIONAL TO
: .. THE LENGTH OF THE INTERVAL.

-~ i3 o
© DOES THIS DESCRIEE YOUR PROCESS (YES OR NO)? .ues
U YOU JUDGE YOUR EXPERIENCE WITH THIS PROCESS TO BE EQUIVALENT TO

LOBSERVING HOW MANY EVENTS OR ARRIVALS?

N Cad . .

© e75.

(R WHAT IS YOUR EEST ESTIMATE OF THE AVERAGE TIME BETWEEN ARRIVALS?

(’ A i;gf_o . '

¢ "YOUR FRIOR DISTRIBUTION FOR THE ARRIVAL RATE IS A GAMMA

DISTRIBUTION

: _WITH PARAMETER: 74,000
e «JHIS DISTRIBUTION IS MODIFIED RY THE AMOUNT OF TIME YOU HAVE
s _OBSERVED THIS FROCESS: 375,000

C “THE MEAN OF THE DISTRIKUTION IS? 0.200000

v THE VARIANCE IS: 0.000533
: YOUR EQUIVALENT SAMFLE SIZE IS 75.000

P B eun——
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3.3. The Uniform Distribution

A Uniform or Rectangular process is one in which the value obtained on
any trial is evenly distributed between a lower limit and an upper limit.
We assume that the value of the lower limit is known and that we are trying
to determine the value of the upper limit.
Suppose it was suspected that the time among parolees in a special
parole program until recidivism is uniformly distributed between say one
day after release and some unknown upper limit. Némely, if someone were
released today on this parole program it is believed equally likely that
he/she will be arrested tomorrow or any other day before the upper-limit
ie., given the value of the upper limit is U, the conditional probability that
a parolee will recidivate at time t after release is uniformly distributed
between L and U where L is known to be the earliest any parolee will recidivate.
In formulating a prior distribution to this uniform process PRIORS will
(as in Exhibit 4) ask the evaluator to assess the extent of his/her knowledge:

YOU JUDGE YOUR EXPERIENCE WITH THIS PROCESS TO BE EQUIVALENT
TO OBSERVING HOW MANY EVENTS?

In this case it is clear thatran event is a recidivation and the more the
evaluator knows about the program and parolees in general, the larger his/her
answer should be. PRIORS will then ask the evaluator to provide a best lower
bound to the upper limit of the uniform process:

TO YOUR KNOWLEDGE THE LARGEST POSSIBLE VALUE OF ANY TRIAL
FROM THIS PROCESS IS CERTAINLY NO SMALLER THAN WHAT NUMBER?

After supplying PRIORS with an upper and lower bound to the possible values of
trials from the process his/her prior distribution will appear as:

YOUR PRIOR DISTRIBUTION FOR THE UPPER LIMIT OF THIS RECTANGULAR

PROCESS IS A HYPERBOLIC DISTRIBUTION WITH PARAMETER n '

THIS DISTRIBUTION IS DEFINED FOR VALUES GREATER THAN u

THE MEAN OF THIS DISTRIBUTION IS: mean

THE VARIANCE IS: variance

Here n represents the number of outcomes observed and u the largest among

these. The mean reflects the expected value of the upper limit and the

variance indicates our confidence in this estimate. Notice that unlike
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THE UNIFORM OR RECTANGULAR PROCESS IS ONE IN WHICH THE VALUE OETAINELD
ON ANY TRIAL IS EVENLY DISTRIBUTED EETWEEN A LOWER ANDN AN UFFER LIMIT,
WE ASSUME THAT THE VALUE OF THE LOWER LIMIT IS KNOWN AND THAT WE ARE
TRYING TO DETERMINE THE VALUE OF THE UFFER LIMIT. IF YOUR CASE IS JUST
THE OPFOSITE THEN SIMFLY REVERSE THE AXIS AGAINST WHICH YOU ARE
MEASURING. )

' DOES THIS DESCRIEE YOUR FROCESS (YES OR NO)? .ues

YOU JUDGE YOUR EXFERIENCE WITH THIS FROCESS TO RE EQUIVALENT TO
ORSERVING HOW MANY EVENTS?

.

s260

«»

TO YOUR KNOWLEDIGE THE LARGEST FOSSIELE VALUE OF ANY TRIAL FROM THIS
PROCESS IS CERTAINLY NO SMALLER THAN WHAT NUMRER?

3

010, .-

AT T — T e e e e

WHAT IS THE SMALLEST VALUE OESERVATIONS FROM THIS PROCESS CAN EXHIEBIT?

]
20,0

YOUR PRIOR DISTRIBUTION FOR THE UPFER LIMIT OF THIS RECTANGULAR
PROCESS IS A HYFEREOLIC DISTRIRUTION WITH FARAMETER? 26
THIS DISTRIRUTION IS DEFINED FOR VALUES GREATER THAN! 10.0000
_THE MEAN OF THIS DISTRIRBUTION IS: 10.4167
THE VARIANCE IS3 0.1887

EXHI s T Lf
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other prior distributioné the mean is not the evaluators estimate of the
upper limit. This is due to the fact that we do not want to over-estimate
the upper limit. If our initial estimate is too large, no amount of
additional information will correct this. For this reason the evaluator
is asked to give a lower bound to the upper limit and not to give an

estimate thereof.

3.4 The Normal Process With Independent Samples

An independent normal process is one in which the value of each outcome
is selected from a normal or Gaussian distribution. We say the process is
independent if the value of each outcome has no effect on any other outcome.
PRIORS assumes that the evaluator is trying to formulate prior distributions
fof the mean and the variance of the underlying normal distribution.

The independent normal is in many areas of evaluation the most common
process. Many traits are distributed approximately normally in populations.
Height, reading ability and foot-size are for example often approximately

normally distributed in human populations. The size of errors in many

measurements is also often normally distributed. Moreover, it is often found

that -if a trait is not normally distributed in a population, stratifying
the population leads to normal distributions within each stratum. However
iﬁ is unfortunately tempting to classify pfocesses rashly as normal.
Generally for example such traits as age, incoﬁe, etc., are not normally
distributed within heterogeneous populations.
Suppose that an evaluator is studying a reading program and knows that
the reading ability among enrolled students is approximately normally distri-
bu;ed. This knowledge alone clearly reflects relevant prior information.
Moreover, the evaluator has some knowledge about the enrolled students' backgrounds

as well as knowing how similar programs have performed in the past. This

fundamental expertise combined with such process-related activities as sitting
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in on classes, interviewing students, teachers and administrators, etc. should
provide the evaluator with valuable information about the reading ability of
students in the program. PRIORS will help assess this prior distribution by
first asking the evaluator to estimate the scope of his/her experience:

YOU JUDGE YOUR EXPERIENCE EQUIVALENT TO OBSERVING HOW MANY
OUTCOMES FROM THIS PROCESS?

In this case it is clear that the evaluator should equate his/her experience
with knowing the reading ability of some number of enrolled students. The
The more he/she knows about the program, the greater this number should be.
PRIORS will then ask the evaluator to simulate a normal sample:
PLEASE TYPE THE VALUES OF OUTCOMES YOU WOULD EXPECT TO OBSERVE
FROM THIS PROCESS ONE PER LINE. THERE SHOULD BE AS MANY VALUES
AS YOUR ANSWER TO THE LAST QUESTION. TYPE 'DONE' WHEN YOU ARE
THROUGH.
The evaluator's response should reflect not only his/her knowledge about
the average reading ability, but also about the variation among students.
Suppose for example the evaluator estimated his/her experience equivalent
to five observations. His/her response to the question about expected
observations should consist of five values reflecting both the average
reading ability and the degree of difference among students. An answer for
- example like:
75
.75
.75
.75
.75
'done’
is highly unlikely -- not everyone has the same reading ability.
Something like:
.75
.60
.75
.80
.85 ‘
'done’

is more likely. This sample suggests, as exhibit 5 shows, that the evaluator

believes the average reading level to be .75 and the variance to be small --
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- THE VARIANCE 1S5:6529.3477
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THE INDEFENDENT NORMAL FROCESS 1S ONE IN WHICH THE VALUE OF EACH
OUTCOME IS SELECTED' FROM A NORMAL DISTRIERUTION. THE VALUE OF ONE _ -
_OUTCOME HAS NO EFFECT ON THE VALUE OF ANY OTHER OUTCOME THE MEAN AND EXH1BI 5
VARIANCE ARE THE UNKNOWN FARAMETERS WE ARE TRYING TO ESTIMATE

'DOES THIS DESCRIBE YOUR FROCESS (YES OR NO)? .ues

L

YOU JUDGE YOUR EXPERIENCE EQUIVALENT TO OESERVING HOW MANY OUTCOMES
FROM THIS FROCESST

Y- T
‘.
" PLEASE TYPE THE VALUES OF OUTCOHES YOU WOULD EXFECT TO OEKSERVE FORM
_THIS FROCESSs ONE PER LINE,
BE SURE TO USE DECIMALS!
TYPE ‘DONE‘ WHEN YOU ARE THROUGH.

3
00,75

:
40460
4

. L]
00,75
K
. 40480 : .

:
40,85

H
~«done

YOUR MARGINAL PRIOR DISTRIRUTICN FOR THE MEAN OF THIS INDEPENDENT
.NORMAL FROCESS IS A STUDENT’S LDISTRIRUTION WITH 4.0000 DEGREES
.OF FREEL'OM.

-THIS DISTRIBUTION HAS REEN MODIFIED TO HAVE MEAN? 0.7500

AND VARIANCE: 0.0035

"YOUR MARGINAL FRIOR DISTRIBUTICN FOR THE VARIANCE OF THIS

INDEFENDENT NORMAL FROCESS IS A GAMMA DISTRIEBUTION WITH PARAMETER:
1.0000 :

THIS DISTRIBUTION HAS REEN MODIFIED TO HAVE MEAN! 114.2746
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around .0l. We can expect on the basis of this information that the
evaluator knows most of the students perform in the 0.45 to 1.0 range.
PRIORS will present prior distributions for the mean or average and
the variance as:
YOUR MARGINAL PRIOR DISTRIBUTION FOR THE MEAN OF THIS INDEPENDENT
NORMAL PROCESS IS A STUDENT'S DISTRIBUTION WITH r DEGREES OF FREEDOM.
THIS DISTRIBUTION HAS BEEN MODIFIED TO HAVE MEAN: mean
AND VARIANCE: wvariance
YOUR MARGINAL PRIOR DISTRIBUTION FOR THE VARIANCE OF THIS INDEPENDENT
NORMAL PROCESS IS A GAMMA DISTRIBUTION WITH PARAMETER p
THIS DISTRIBUTION HAS BEEN MODIFIED TO HAVE MEAN: mean
THE VARIANCE IS: wvariance
Again the mean of the student's distribution reflects the evaluators estimate
of the average reading level and the variance, his confidence in that

estimate. The mean of the gamma distribution represents the inverse of the

evaluators estimate of the variance for the underlying normal distribution.

3.5 Normal Regression

In normal regression we are trying to predict or estimate the values
of some dependent random variable Y as a function of the variables X.
In this model we assume that the Y-values are normally distributed with
unknown variance and mean equal to some linear function of the X's. We
are trying to estimate the variance of Y and the function defining its mean.

Normal regression is common in evaluations since determining the value
of the mean of a parameter as a function of otﬁer parameters tells us how
they effect each other. The rate at which substances cause cancer can for
example be modeled as a regression problem. Suppose we are trying to deter-
mine the relationship between the heights of parents and that of their
children. We might suspect that the height of children, Y, is a linear
function of the height of their fathers, X, and the height of their mothers,
Z, ie that:

Y=AX+ BZ+ C

We are assuming here that height is normally distributed. The problem now

reduces to estimating A,B,C and the variance of Y.
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As usual we assume some prior knowledge about the relation among heights.
In formulating prior distributions for the vector (A,B,C) and the variance
of Y, PRIORS will, as in Exhibit 6, first ask how many components are in
the vector:

YOU ARE TRYING TO ESTIMATE THE MEAN OF Y AS A LINEAR FUNCTION OF
HOW MANY INDEPENDENT VARIABLES?

In our case this will be three; father's height, mother's height and other
factors or (A,B,C). If however we had included say grandparents height this
would be correspondingly larger. Next PRIORS asks us to assess the extent
of our experience with the relationship:

YOU JUDGE YOUR EXPERIENCE EQUIVALENT TO MAKING HOW MANY OBSERVATIONS?
Clearly the more closely we have studied it the larger our answer should be.

Finally, as in the normal process we must simulate observations:

PLEASE TYPE IN THE VALUES OF OBSERVATIONS YOU WOULD EXPECT FROM THIS

PROCESS. FOR THE ITH OBSERVATION THE VALUE OF Y(I) IS THE FIRST

ENTRY FOLLOWED BY THE X(I,J)-VALUES. LEAVE A SPACE BETWEEN EACH

ENTRY. EACH OBSERVATION SHOULD START A NEW LINE. THERE SHOULD BE

AS MANY OBSERVATIONS AS YOUR ANSWER TO THE LAST QUESTION.

Here too a response like:

<

) X(1,n)
5.7 6.
5.7 6
5.7 6

NN
o OO

for three observations is highly unlikely -- not everyone is the same height.
Supposed we assessed our experience equal to five observations and responded
with the observations:

X(1

(I,
5.5
5.2
5.5
5.4
5.5
This would reflect more accurately our experience in that for example a man
6.1 ft is likely to have a wife 5.2 ft and a son 6.0 ft or a wife 5.5 ft and
a son 5.2 ft. Your answer should reflect your knowledge of the variation

within the populations as well as the relations among them. Should you
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THE NORMAL REGRESSION FROCESS ASSUMES WE ARE TRYING TO FREDICT OR
ESTIMATE THE VALUES OF SOME DEFENDENT RANDOM VARIAELE» Y, AS A LINEAR
FUNCTION OF THE INDEFPENDENT VARIAEBLES, X(.rJ). IN THIS MODEL WE
ASSUME THAT THE Y(J)~-VALUES ARE NORMALLY DISTRIRUTED WITH UNKNOUWN

(¢ VARIANCE AND MEAN EQUAL TO SOME LINEAR FUNCTION OF THE X(.»J)-
VALUES. WE ARE TRYING TO ESTIMATE THE VARIANCE OF Y AND THE SLOFE
OF THE LINE.

DOES THIS DESCRIBE YOUR PROCESS (YES OR NO)? .ves

YOU ARE TRYING TO ESTIMATE THE MEAN OF Y AS A LINEAR FUNCTION OF HOW.
MANY INDEFENDENT VARIABLES?

*
o

3

YOU JUDGE YOUR EXFERIENCE EQUIVALENT TO MAKING HOW MANY OBSERVATIONS?
. .3
N :050

PLEASE TYPE IN THE VALUES OF OBSERVATIONS YOU WOULD EXPECT FROM THIS
-PROCESS.

Y(I) AS THE FIRST ENTRY IN ROW I FOLLOWED ERY -THE X(IsJ)-VALUES.

LEAVE A SPACE BETWEEN EACH ENTRY. BE SURE TO USE DECIMAL FOINTS,
JWAIT FOR THE ’$‘ FROMFT.

Y(I) X(I»J)-VALUES

*

T4S5e7 6.0 5.5 1.0

‘—\

L 4
*

6.0 6.1 5.2 1.0

C
Lt
o “+5.2 6.1 5.5 1.0
$
G fs.zs.e 5.4 1.0 /
3
o ¢5.0 5.2 5.5 1.0
o 'THIS DATA HAS BEEN READ AS!
.. YD X{IsJ)-VALUES
T 5,7000 6.0000 5.5000 1.0000
o 6.0000 6.1000 5.2000 1.0000
5.2000 6.1000 5.5000 1.0000
. 5.9000 5.8000 5.,4000 1.,0000
c . 5.0000 5.,2000 5.5000 .1.,0000
- I8 THIS CORRECT? .yes
O

YOUR MARGINAL FRIOR DISTRIBUTION FOR THE SLOFE OFTHE LINE
¢ -I8 A 3 DIMENSIONAL STUDENT’S DISTRIBUTION WITH 2
_DEGREES OF FREEDOM.
THE MEAN OF THIS DISTRIBUTION 1S3
C 0.4224 -1.9804 13.8248
. IT HAS NO PROFPER VARIANCE.
THE CHARACTERISTIC MATRIX OF THIS PRIOR DISTRIBUTION IS

C 171.1000 158.1900 29.2000
158.1900 146.9500 27.1000
29.2000 27,1000 5.0000

¢ "YOUR MARGINAL FRIOR DISTRIBUTION FOR THE VARIANCE OF THE Y’S IS

A GAMMA DISTRIEUTION WITH FARAMETER:  0.0000
. THE MEAN OF THIS DISTRIRUTION IS:  7.1612
Vo THE VARIANCE IS: 51,2835

EXHIBIT &
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make a mistake here, PRIORS will give you the chance to correct it when you

are through.

Given this information PRIORS will present your prior distributions for
the vector (A,B,C) and the variance of Y as:

YOUR MARGINAL PRIOR DISTRIBUTION FOR THE COEFFICIENTS OF THE
X(I,J)-VALUES IS A n DIMENSIONAL STUDENT'S DISTRIBUTION
WITH r DEGREES OF FREEDOM.

THE MEAN OF THIS DISTRIBUTION IS:
mean vector

THE COVARIANCE MATRIX 1IS:
covariance matrix

THE CHARACTERISTIC MATRIX OF THIS PRIOR DISTRIBUTION IS:
characteristic matric

YOUR MARGINAL PRIOR DISTRIBUTION FOR THE VARIANCE OF THE Y's
IS GAMMA DISTRIBUTION WITH PARAMETER: p

THE MEAN OF THIS DISTRIBUTION IS: mean
THE VARIANCE IS: variance

The mean vector of the Student's distribution represents the evaluators
estimate in this case of the values (A,B,C) and the variance reflects his/her
confidence in that estimate. The characteristic matrix is useful for updating

the distribution.

The mean of the gamma distribution is the inverse of the evaluator's

estimate of the variance of Y.
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5. Posterior Distributions and Updating

The beauty of the prior distributions we formulate with PRIORS is
that they readily allow the addition of improved information. We call
this process of adding information to a prior distribution "updating".

The resulting updated distribution is a "posterior distribution". As

we mentioned before the prior distributions formulated with PRIORS are
conjugates — that is the posterior is from the same family as the prior.

In fact should the evaluator choose to add additional new information, he

should treat the posterior exactly as a prior.

To update a prior distribution with PRIORS you must have:

1. formulated a prior distribution with PRIORS and have the description
of the distribution on hand.

2. obtained further statistical information about the process.

PRIORS will proceed by asking you about your‘present prior distribution,
then about the additional statistical information. Simply answer the ques-
tions and PRIORS will supply you with a description of your posterior
distribution. In Exhibit 7 our original prior distribution was:

a gamma distribution
with parameter: 74.000.

The distribution has been modified by the amount of time we had
observed the process: 375.000 .

The mean of the distribution was: 0.2000.

The varience was: 0.000533

Our equivalent sample size was: 75.000

Since formulating our prior distribution we observed 25 arrivals with
average interarrival time 4.1. Note that after updating a prior we obtain
a posterior distribution however should we wish to update again, this posterior

would become our present prior distribution.
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ARE YOU!
1. TESTING AN HYFOTHESIS?

2, ESTIMATING A PARAMETER?
3. UFDATING A PRIOR DISTRIKUTION? ) EXHierm 7]

4, NONE OF THE AROVE

PLEASE TYPE THE NUMBER (1 - 4) OF THE AFPROPRIATE OPTION.
.

*

3

THE BEAUTY OF THE PRIOR DISTRIERUTIONS WE FORMULATE WITH THIS FPROGRAM
IS THAT THEY READILY ALLOW THE ADDITION OF IMFROVED INFORMATION. WE
CALL THIS PROCESS OF ADDING INFORMATION TO AN ALREADY FORMED FRIOR
*UPDATING®. TO [0 THIS WE ASSUME YOU HAVE ALREADY FORMULATED A .FRIOR
DISTRIBUTION USING THIS FROGRAM AND THAT SINCE THAT TIME YOU HAVE MALE
ADDITIONAL ORSERVATIONS OF THE FROCESS. IS THIS THE CASE?T .ves

WE ASSUME FURTHER THAT YOUR PRIOR DISTRIBUTION IS FOR THE PARAMETER(S)
OF ONE OF THE FOLLOWING PROCESSES:

1. A RERNOULLI FROCESS.

2., A FOISSON FROCESS.

3. A UNIFORM FROCESS.

4, AN INDEFENDENT NORMAL FROCESS.

S+ A NORMAL REGRESSION FROCESS.,

é. NONE OF THE AROVE

.PLEASE TYPE THE NUMBER (1 - &) OF YOUR PROCESS.
H

Y-

WHAT IS THE EQUIVALENT SAMFLE SIZE OF FRESENT PRIOR?
. .
-
.. 7500

WHAT IS THE MEAN OF YOUR FRESENT FRIOR DISTRIRUTION?

H
0042

B

-~ -

SINCE FORMULATING YOUR FRIOR DISTRIRUTION HOW MANY ARRIVALS HAVE YOU
ORSERVED? .

H
-0250

WHAT IS YOUR BEST ESTIMATE OF THE AVERAGE INTERARRIUAL TIME FOR THESE
-LAST OESERVATIONS?

:

:94'1: ’ ' . ¢

YOUR POSTERIOR DISTRIBUTION FOR. THE ARRIVAL RATE IS A GAMMA
DISTRIBUTION

WITH PARAMETER: 99.000

.THIS DISTRIRUTION IS MODIFIED RY THE AMOUNT OF TIME YOU HQVE
OBSERVED THIS FROCESS: 477.500

"THE MEAN OF THE DISTRIEUTION IS: 0.209424
THE VARIANCE IS! 0.000439
_YOUR EQUIVALENT SAMFLE SIZE IS! 100.000

WOULD YOU LIKE TO SEE A FLOT OF YOUR CUHULATIUE POSTERIOR
BISTRIRUTION?.no

WOULD YOU LIKE TO MODIFY THIS DISTRIBUTION (YES OR NO)? sho

THE POSTERIOR DISTRIEUTIONS YOU HAVE FORMULATED ARE NOW YOUR PRESENT
PRIOKR DISTRIEBUTIONS! TO UFDATE THESE DISTRIBUTIONS SIMFLY TREAT THEM
‘AS PRIOR DISTRIBUTIUNS.
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5.1 Plots of Cumulative Distributions

After describing your prior distribution(s), PRIORS will ask if you
would like to see a plot of your cumulative prior distribution. Should
you respond "yes" (or "y") to this question, PRIORS will produce a point
plot of the probability the parameter in question will be leés than the
independent variable. If you do not wish to see this plot type "np" (or "n"").
In Exhibit 8 the independent variable ranges from zero to XMAX ; 1.0 an&
each unit is scale unit = .1 . Whereas the ordinate or y-axis-ranges from
zero to 1.1 and each unit is .01. .The probability that the parameter
is less than 0.5 is about .02 and the probability it is less than 0.9

is about 1.0.

Note plots will not be produced for multidimensional distributioms.

5.2 Modifying A Distribution

After formulating a prior distribution you may feel it is not exactly
what you want. Should this be the case simply respond "yes" (or "y") to
the question:

Would you like to modify this distribution (yes or no)?

As in Exhibit 9 PRIORS will ask you whether you would like to change
various parameters. Simply answer the questions appropriately and PRIORS
will produce a new prior. If you ask to modify a éosferior distribution,
i.e. if you modify a distribution immédiately after updating it, yoﬁ will
be modifying the entire distribution - i.e. not your previous prior nor

the additional information, but the updated distribution itself.
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THE POXISSON PROCESS CAN RE VIEWED AS AN ARRIVAL PROCESS IN WHICH: EXHBIT 47
1. THE ARRIVALS IN ONE FERIOD OF TIME DO NOT EFFECT THE ARRIVALS IN ANY
T NON-OVERLAFFING FERIOD OF TIME.
"2, ARRIVALS COME ONE AT A TIME.
"3. THE FROEARILITY OF AN ARKRIVAL IN A SHORT INTERVAL IS FROFORTIONAL TO
THE LENGTH OF THE INTERVAL.

DOES THIS DESCRIRE YOUR FROCESS (YES OR NO)? .ues

YOU JUDGE YOUR EXFERIENCE WITH THIS PROCESS TO KE EQUIVALENT TO
OESERVING HOW MANY EVENTS OR ARRIVALS?
K

4100,

WHAT IS YOUR BEST ESTIMATE OF THE AVERAGE TIME BETWEEN ARRIVALS?
*

. e

N "e4.775

{ " YOUR FRIOR DISTRIEUTION FOR THE ARRIVAL RATE IS A GAMMA
DISTRIEUTION
WITH PARAMETER! 99,000

( _THIS DISTRIEUTION IS MODIFIED BY THE AMOUNT OF TIME YOU HAVE

* _OBSERVED THIS FROCESS: 477.500
¢ ‘%HE MEAN OF THE DISTRIERUTION IS: 0.209424
.THE VARIANCE IS: 0.000439
YOUR EQUIVALENT SAMFLE SIZE IS: 100.000

"WOULD YOU LIKE TO SEE A PLOT OF YOUR CUMULATIVE PRIOR

¢  DISTRIBUTION?.ro
c WOULD YOU LIKE TO MODIFY THIS DISTRIEUTION (YES OR NO)? .ues
) WOULD YOU LIKE TO CHANGE THE NUMBER OF TRIALS YOU HAVE SEEN?
( _ LYES OR NO)? .ves
C HOW MANY ARRIVALS HAVE YOU SEEN?
*
¢
C T?iio”
C WOULD YOU LIKE TO CHANGE THE AVERAGE TIME RETWEEN ARRIVALS (YES OR NO)? .wes
¢ WHAT IS THE AVERAGE TIME BETWEEN ARRIVALS?
* . .
..
_0_408
C
YOUR PRIOR DISTRIRUTION FOR THE ARRIVAL RATE IS A GAMMA
. DISTRIEUTION
( WITH PARAMETER: 109.000

THIS DISTRIBRUTION IS MODIFIED' RY THE AMOUNT OF TIME YOU HAVE
OBSERVED THIS PROCESS: S28.000

“THE MEAN OF THE DISTRIRUTION IS: 0.208333
THE VARIANCE IS: 0.000395
YOUR EQUIVALENT SAMPLE SIZE IS¢ 110.000

WOULD YOU LIKE TO SEE A PLOT OF YOUR CUMULATIVE PRIOR
_DISTRIEBUTION?.no

——— s & . — e ——— - - - . ‘~
et e e it o e e s o e et e e+ ¢ —— ——— !
<



Has distribution:

APPENDIX I

The Distributions

. The Bernoulli Process

Probability of event #1 = p
Probability of event #2 = 1l-p

Prior distribution: H Beta distribution with parameters a and b

B (p)

a,b

_ (atb - D! a

=z

-1 b-1
D' -1 P (1 - p) for 0 £p <1

a corresponds to the number of times event #1
was observed

b corresponds to the number of times event #2
was observed

.a+ b 1is the equivalent sample size.

Posterior distribution

Ba+a '.b+b

for 0 <p

' (P)

<1

_ (ata'+btb' - 1)! ata' =1 4 _ ib¥b' -1
(ata' - 1)i(b+b' - 1)7 P P
a' corresponds to the number of times event #1

was observed since formulating prior
b' corresponds to the number of times event #2
was observed since formulating prior
a'+ b' 1is actual sample size since formulating prior
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The Poisson Process
Has distribution:

(XT)k e—KT
1

PA,T(k) = o for k = 0,1,....

where A is average arrival rate
and T is the elapsed time.

Prior distribution; A Gamma distribution with parameter r modified by t

-\t T
e ()
Gr,t () = r!

where r is the number of events observed
and t is the length of time observing the process.

Posterior distribution:

e AEHE') (g T

G Grr") !

(A =

r+r',t+t

r' corresponds to the number of additional observations in t' additional
time units.

The Uniform Process
Has distribution:

P = f < <
UL (t) or L t <U

U~L
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where L is lower limit and U is upper limit of process

Prior distribution: A Hyperbolic distribution with parameter n defined
for values greater than Vv

n-1
(t) = (o - 1)'-('.2-:--1—"2 for t > v

H
n,v,L (t - L)n

where n is the number of observations and v is the largest value observed.

Posterior distribution:

v - L)n+n' -1
(t) = (o' - 1) ——/
L (t - L)n+n

H
ntn',v',

where n' is the number of additional observations V' is the largest value
observed in ntn' trials.

The Normal Process
Has distribution:

-1
- E— 2
P ) (t) =1 e 2(} (t = u)” for - ®» <t <o

u, g
VZTro2

. 2, .
where u is the mean and 0~ is the variance

Marginal Prior Distribution for the mean: A Student's distribution with
r degrees of freedom.




(4)

-1
T n iy

n Ty
Sr(t) = ' (5) r2(r+s (t- U)z) 2 yn/2
: Jm [“(r/z)

-

where n is the number of observations r+l u is their mean and s is their variance.

Posterior distribution:

- nin'
A ] -
rkn+n') E%E_ ntn' (¢ - u")z) 2 n+n'
= ' 1 "
Sr+n' (t) 2 (r+n') (rin' + s 2
r+n'
VERN R o
where n' is the number of subsequent observations u" = (n'u"+nu) /ntn’
and s" = [(n' - 1)s' + n'u'2 T+ rs - nu2 - (n+n')u"2]/r+n' u' is the
. mean of the subsequent observations and s' is their variance.
) Marginal Prior Distribution for the variance: A Gamma Distribution with
parameter p.
6 (t) = = P st ((p+1)st)®? (p+1)s
P ‘ p!
o ig B=3 .
P 1s = and S is the sample variance
Posterior Distribution
\j
: p+ 5
n'" (p + 2 + s"t)’ 2 n"
¢ o) o+ + st VPTG )S_f:l_r_(p + 5+ Ds"
S Pt ‘ o+

2
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~2

1
2? where 0 is our estimate of the variance

the mean of the distribution is
of the normal process.

-

Normal regression

Has distribution:

- 1/202(t. - ZB.x..)2
e i Jj i3

where ZBuXij is the expected value of ti

Prior distribution for B: An n dimensional Student's Distribution with
r degrees of freedom.

? r+n - rin -11/2
50 S - - FRRLY -
s )y = /2[5 - D x+ (- wEDH T Ewh =50 B2 e
’ n/2 P(£ _ 1)
? T 2
where u is the mean and ¢ is the co-variance matrix.
Posterior distribution:
g 1
L. NP Em'=2 (T EHm'iny
 (ctm') [0 (cm"+(t-u") T’ ) " Le-u T T2
S _. () = 3
n,r+m’ n/2 (r+m 1)
: v [1 2

where m' is the number of subsequent observations

c"—l = [c'v+cv]—l/v"
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Marginal Prior Distribution for the variance: A Gamma Distribition with
parameter p.

_ (p+Dve)P  (p+l)v
Gp(t) - e (p+l)vt !

where p is 1/2 ¥ -1

Posterior Distribution:

- m' " ' ‘ m' .
G m (t) =e PFTF IV (p+2+ v T2 (p + 2 + D)
P+ 2 2 v 2

(p%l—) :

The mean of this distribution is the inverse of our estimate of the variance.




