OPERATIONS RESEARCH CENTER

working paper

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PRIORS: AN INTERACTIVE COMPUTER PROGRAM FOR FORMULATING AND UPDATING PRIOR DISTRIBUTIONS

by
John VandeVate

OR116-82 JUNE 1982

Prepared under Grant No. 80-IJ-CX-0048 from the National Institute of Justice, U.S. Department of Justice. Points of view or opinions stated in this document are those of the author and do not necessarily represent the official position or policies of the U.S. Department of Justice.

Table of Contents

1. Introduction1.1 Why Prior Distributions?1.2 What is a Prior Distribution?
2. Hypothesis Testing
3. Parameter Estimation
3.1 The Bernoulli Process
3.2 The Poisson Process
3.3 The Uniform Process
3.4 The Normal Process with Independent Samples
3.5 Normal Regression
4. Posterior Distributions and Updating
5. Additional Features
5.1 Plots of Cumulative Distributions
5.2 Modifying Distributions

1. Introduction

PRIORS is an interactive PL/I program written under National Institute of Justice Grant Number $80-\mathrm{IJ}-\mathrm{CX}-0048$. The program is designed to assist evaluators in formulating, modifying and updating prior distributions.

OPT2 is likewise an interactive PL/1 program written under this grant. The products of PRIORS may be useful in formulating Bayesian decision rules with OPT2.

1.1 Why Prior Distributions?

One of the main concerns of evaluations is to collect information. Both the qualitative information of "process evaluators" and the quantitative information of "outcome evaluators" are relevant to evaluations. However, as in many fields, merging these distinct types of information often leads to conflict. We feel that the apparent conflict between "process evaluators" and "outcome evaluators" can in some cases be resolved through Bayesian analysis. The idea is to use the qualitative information of the process evaluator to form a "prior distribution" and the statistical information of the outcome evaluator to update the prior and obtain a "posterior distribution".

More than just a resolution to the conflict between process and outcome evaluators, Bayesian analysis offers the adaptability necessary in the face of such multifaceted and changing problems as crime, drug and alcohol abuse, family counseling, etc. In simple hypothesis tests for example, classical statistics formulates decision rules strongly biased in favor of the null hypothesis.

Bayesian analysis and more specifically conjugate prior distributions offers a tractable, appealing method for overcoming the deficiencies of classical statistics thereby affording a vehicle for resolving the conflict between process and outcome evaluators.

1.2 What is a Prior Distribution?

A prior distribution is as its name suggests, simply a probability distribution for the outcome of some experiment or trial based on information available before the event. Most people for example would set their chances of getting Heads upon tossing a coin at fifty-fifty -- before ever seeing the coin. This simple example captures the essence of prior distributions --
namely prior distributions translate previous and often qualitative knowledge into quantitative information.

Continuing with our coin-tossing example, suppose we wanted to determine whether or not a coin was "fair". First we take the coin and turn it over in our hand, feel its weight and check that one side is Heads and the other Tails. Imagine our chagrin if we had simply begun by tossing the coin a number of times before detecting that both sides were Heads! Then, based on these observations we formulate a prior distribution for the probability that the coin, when tossed, will land Heads. Tossing the coin a number of times we obtain the sequence of observations (0_{i}) with say 0_{1} Heads, 0_{2} Tails, etc. With this quantitative information we update our prior to obtain the posterior distribution. The posterior distribution is simply the conditional distribution of p given the sequence of observations (0_{1}).

One special class of prior distributions, conjugate priors, is mathematically and intuitively appealing in that the prior and posterior distributions come from the same mathematical family. The program PRIORS deals exclusively with these conjugate prior distributions.

2. Hypothesis Testing

Hypothesis testing is no longer simply a laboratory tool. Today it affects the courses of thousands of lives and millions of dollars. FDA regulations are an especially tangible example of the present power of hypothesis testing. Admissions policies to public assistance programs, special education programs, limited medical facilities and psychiatric institutions are, intentionally or not, decision rules for hypothesis tests.

The problems involved in formulating such decision rules, not to mention their consequences, set hypothesis testing in social institutions apart from testing in laboratories. It is neither politically acceptable nor economi-
cally feasible to determine which citizens will receive public assistance according to the same formulas used to determine the effectiveness of malathion against Drosophila.

Consider the problem of formulating requirements for admission to the following public assistance program. The law requires that people be admitted solely on the basis of a single summary measure: their present assets. Since a family's economic situation is complex and multifaceted, it is not likely that any single measure will correctly detect all "truly needy" families or all families who are "not truly needy." Yet, we must construct a reasonable decision framework within the structure of the law.

Our problem then is to determine a decision threshold having the property that applicants whose assets exceed the threshold value will not be admitted. We realize that any given threshold value will have dramatic effects on the lives of thousands of people. If for example we set our decision threshold too high, many deserving applicants will be unjustly turned away. On the other hand if we set out decision threshold too low, undeserving applicants may receive money earmarked for the needier. In order to determine the best decision threshold we undertook an extensive retrospective study to determine how the assets of past applicants aligned themselves. Highly trained case workers reviewed the case of each previous applicant. Based on the case history, they decided whether or not the applicant was "truly needy." We then studied the level of assets at the time of application within each group -- "truly needy" and "not truly needy." We found that half of all applicants were, on the basis of this study, considered "truly needy."

Unfortunately, however, there was no level of assets which could unambiguously distinguish between the two groups. In fact the study found the asset distribution shown in Figure 1.

Figure 1
Asset Distributions of "Truly Needy" and "Not Truly Needy"

It is clear from Figure 1 that regardless of what threshold value we choose we will reject truly needy applicants, accept not truly needy applicants or both. In this situation Classical Statistics would ordinarily prescribe either the .05 alpha-level decision rule or the .05 beta-level decision rule. The . 05 alpha-level decision rule is, roughly speaking, designed to ensure that the chances of turning away a truly needy applicant remain below one in twenty. The .05 beta-level decision rule on the other hand ensures that the chances of accepting a not truly needy applicant remain below the same figure.

Straightforward as these rules may seem their consequences may be intolerable to many planners and decision makers. In our case the . 05 alpha-level decision rule would admit people with-assets not exceeding $\$ 840$. Anyone else would be rejected. It is clear from Figure 2 that some applicants who are not truly needy would be accepted into our program. In fact 75% of this group would be accepted. If each client in the program costs $\$ 1,200.00$ then these people alone will cost our program over four million dollars for every ten thousand applicants.

Figure 2

The .05 beta-level (Figure 3) rule will on the other hand prevent this situation. However the consequence of being so parsimonious is that nearly eighty truly needy applicants will be turned out in the cold for every one hundred applying. The costs of this policy when defined broadly, would no doubt be no less than those of the overly generous .05 alpha-level rule.

Frequency

Figure 3

An obvious difficulty with classical statistical decision rules is that they ignore the cost consequences of the various possible outcomes.

Bayesian analysis allows the formulation of decision rules which incorporate the probabilities and costs of the various outcomes of a decision. The interactive program OPT2 assists evaluators in formulating decision rules for hypothesis tests involving Gaussian (normal) distributions. In order to apply

OPT2 it is necessary to have formulated an a priori probability for the null hypothesis or in this case, the hypothesis that an applicant is truly needy. Since we determined that half of the applicants are truly needy, the a priori probability in this case is 0.5 . This probability need however, not always be so objective. It is often necessary and prudent to incorporate more subjective information such as the opinions of experts or previous experience with related situations into one's estimate of the a priori probability. PRIORS will assist a decision maker in this estimation.

In using PRIORS to estimate an a priori probability, simply indicate as in Exhibit I, that you are testing an hypothesis. PRIORS will ask you for your best estimate of the a priori probability and then inform you about some of the consequences of your estimate. If these consequences seem appropriate, you have validated your estimate. Otherwise you should change it.
are you:

1. TESTING AN HYFOTHESIS?
2. ESTIMATING a parameter? EXHIBTI I
3. UFIATING A FRIOR IIISTRIEUTION?
4. NONE OF the above

PLEASE TYPE THE NUMBER (1 - 4) OF THE APPROPRIATE OFTION.
0
$\stackrel{1}{-1}$

C PLEASE fill in the blank. THE NULL OR NO-EFFECT HYPOTHESIS IS THAT... .an applicant is deserving
C
WHAT IS YOUR BEST ESTIMATE OF THE PROBABILITY THAT:
AN APPLICANT IS DESERVING
C $\quad A N$
.
C this estimate indicates that you feel the probability of not observing THAT: AN APPLICANT IS DESERVING
C. EVEN ONCE IN FIVE TRIALS IS :0.07776

Whereas the probability of observing that:
an applicant is deserving
five consecutive times is:0.01024
would you like to change your estimate of the probability that:
AN APFLICANT IS DESERUING?. yes
0
O WHAT IS YOUR REST ESTIMATE OF THE PROBABILITY THAT:
an applicant is deserving
:
$\because 5$
This estimate indicates that you feel the probability of not observing THAT: AN APPLICANT IS DESERVING EVEN ONCE IN FIVE TRIALS IS:0.03125
WhEREAS THE FROBABILITY OF OBSERVING THAT: •
an applicant is deserving
Five consecutive times is:0.03125
would you like to change your estimate of the probability that:
AN APPLICANT IS DESERVING?: HO ${ }_{i}$:
:-
C
THIS INDICATES THAT THE PRIOR PROBABILITY THAT: an applicant is deserving 15:0.50000

- WOULD YOU LIKE TO CONTINUE (YES OR NO)? . yes

3. Parameter Estimation

Many of the processes studied by evaluators can be accurately represented by underlying probability distributions and described by the parameters characterizing these distributions. Recall for instance the problem of determining the chances of getting Heads upon tossing a certain coin. The outcomes of the tosses can be viewed as a Bernoulli process with p the probability of getting Heads on any toss. Just as the problem of determining the probability of getting Heads on any toss can be reduced to finding the value of p in a Bernoulli process, the problem of describing many processes reduces to determining values for the parameters that describe them. In the following sections (4.1a - 4.1e) we discuss the common distributions addressed by PRIORS, when they arise, their conjugate prior distributions and how to use PRIORS to assess them.

3.1 The Bernoulli Process

A Bernoulli process is one in which there are two possible outcomes for any trial: event \#1 and event \#2. Event 非 occurs on any trial with fixed probability p (generally the quantity of interest), otherwise event \#2 occurs. In addition, the outcome of any trial is unaffected by previous trials.

Tossing a coin is for example a Bernoulli process. If the coin is fair, $p=0.5$ and Heads or Tails is equally likely to occur on any toss.

Bernoulli processes are common in evaluation settings. Opinion polls for example can often be viewed as Bernoulli processes where p is the fraction of people who would respond favorably. Generally, whenever an independently repeated experiment results in a dichotomy the outcomes can be viewed as a Bernoulli process.

As in Exhibit 2, PRIORS helps you assess your prior distribution to a Bernoulli process by first asking for your best estimate of p . Your response should be some number between zero and one, reflecting your estimate

ARE YOU:

1. TESTING AN HYFOTHESIS?
2. ESTIMATING A FAFAMETER?

EXHIBIT
3. UFILATING A FFIOR LISTRIEUTION?
4. NONE OF THE ABOUE

PLEASE TYFE THE NUMBEF (1 - 4) OF THE AFFFOFFIATE OPTION.
$:$
$\therefore 2$

CLASSICAL STATISTICS UIEWS FARAMETERS AS CONSTANTS WITH FIXEI YET UNKNOWN VALUES, WE INTENI TO UIEW THEM AS FANLIOM VAFIIAELES WITH FFREBAEILITY IISTRIEUTIONS. THE FRIOR IIISTFIBUTION FOF THE FARAMETEF SHOULII DEFEND ON THE IISTRIEUTION IT CHAFACTEFIZES.

THE PARAMETER YOU ARE TRYING TO ESTIMATE IS FROM:

1. A BERNOULLI FROCESS
2. A POISSON FFROCESS
3. A UNIFORM FROCESS
4. AN INIEFENIENT NOFMAL FROCESS
5. A NORMAL REGRESSION FROCESS
6. HELP
7. QUIT

PLEASE TYFE THE NUMBER (1 - 7) OF YOUR CHOICE.
.
.1

THE BERNOULLI FROCESS IS ONE IN WHICH THERE ARE TWO FOSSIELE EUENTS: EUENT $\# 1$ AND EUENT $\# 2$. EUENT $\$ 1$ OCCUFS ON ANY TFIAL WITH FIXEI FROBABILITY P (THE FARAMETER WE AFE AFTER) ANII EUENT\#2 OCCURS WITH FFROBABILITY 1-F. TRIALS OCCUR INHEFENIIENTLY. THAT IS THE OUTCOME OF ONE TFIAL DOES NOT EFFECT THE OUTCOME OF OTHER TRIALS.

DOES THIS DESCRIBE YOUR PROCESS (YES OR NO)? . YES
flease fill in the rlank. EVENT*1 IS THE EVENT THAT... an apflicant is deservins

EUENT $\# 1$ IS THE EUENT THAT AN AFPLIICANT IS IIESERUING
WHAT IS YOUR EEST ESTIMATE OF THE FFACTION OF ALL TRIALS FOR WHICH IT IS FOUND THAT AN AF'FLICANT IS LIESERVING ; . .5

IN GENERAL THE MORE TRIALS OF A GERNOULLI FROCESS WE OBSERVE, THE MOFE CONFIIENCE WE CAN HAVE IN OUR ESTIMATE OF THE FAFAMETER F. WE MUST IN IIETERMINING A FFIOF IIISTRIEUTION FOF F', LIECIIIE HOW MUCH CONFIDENCE YOU HAVE IN YOUR EXFERIENCE.
SUFFOSE THAT NONE OF THE NEXT OBSEFVATIONS IS THAT:
AN AFPLICANT IS IESERUING
HOW MANY SUCH OBSERVATIONS WOULL IT TAKE TO CONUINCE YOU TO CHANGE YOUR ESTIMATE BY MORE THAN • 1 ?
: . 50.
.-FHIS-INDICATES THAT YOUR FRIOR IIISTRIEUTION FOR P IS: A EETA DISTRIEUTION WITH FARAMETEFS 100.0000 ANI 100.0000 THE MEAN OF THIS IIISTFIEUTION IS:. 500 THE VARIANCE OF THIS DISTRIEUTION IS: 0.0012 YOUR EQUIUALENT SAMFLE SIZE IS: 200
of the fraction of all trials resulting in Event $⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 𠃋 十 一 口 儿, ~ I f ~ y o u r ~ e s t i m a t e ~ i s ~$ greater（less）than ．5，PRIORS will next ask：

SUPPOSE THAT NONE（ALL）OF THE NEXT TRIALS IS（ARE）THAT：
event 非1
HOW MANY SUCH OBSERVATIONS WOULD IT TAKE TO CONVINCE YOU TO CHANGE YOUR ESTIMATE BY MORE THAN ．1？

Supposing your estimate is greater than ．5．．we hope that with each successive occurrence of event $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 2 you would reduce your estimate of p．PRIORS is asking you to determine how many successive of occurrences of event \＃2 it would require to convince you to reduce your estimate of p by ． 1 ．

PRIORS will then present the prior distribution：

THIS INDICATES THAT YOUR PRIOR DISTRIBUTION FOR P IS：

A BETA DISTRIBUTION WITH PARAMETERS A AND B

THE MEAN OF THIS DISTRIBUTION IS：Mean

THE VARIANCE OF THIS DISTRIBUTION IS：Variance

YOUR EQUIVALENT SAMPLE SIZE IS：Equivalent sample size

The mean of the distribution represents your best estimate of p ，the variance reflects your confidence in that estimate．Your equivalent sample size is a measure of the number of observations you feel your experience is equivalent to．Naturally，the more you know about the process，the larger your equivalent sample size should be．

3．2 The Poisson Process

A Poisson process is an arrival process in which the arrangement and number of arrivals in one time interval do not effect any non－overlapping time interval．Moreover，in a Poisson process arrivals come one at a time and the probability of an arrival in any short interval is proportional to the length of the interval．

Poisson processes arise often in evaluation settings．Crimes，disasters， customer requests，etc．can all be modeled as Poisson processes with the
parameter representing the average rate of "arrivals". Consider for instance the problem of estimating the number of husband-wife disputes in a city each year. Since police records do not generally categorize incidents this way, a process evaluator might first ride with police officers, interview those who have previously called the police because of domestic eruptions and undertake other process-related activities. Then, that evaluator would be interviewed carefully to obtain a (personally derived) distribution for the annual rate of husband-wife disputes that require police intervention.

As in Exhibit 3 PRIORS in formulating a prior distribution to this Poisson process will first ask the evaluator to estimate the scope of his/her experience:

YOU JUDGE YOUR EXPERIENCE WITH THIS PROCESS TO BE EQUIVALENT TO OBSERVING HOW MANY EVENTS OR ARRIVALS?

Obviously the longer and more detailed the process evaluation, the greater the number of observations the evaluators experience will be equivalent to. PRIORS next asks the evaluator for substantive information about the disputes:

WHAT IS YOUR BEST ESTIMATE OF THE AVERAGE TIME BETWEEN ARRIVALS?
It is hoped that during the process evaluation the evaluator developed some insight into the rate at which domestic disputes arise in the city. In answering this question the evaluator should use appropriate units be they minutes, days or years.

After the evaluator has answered all of the appropriate questions
PRIORS will present his/her prior distribution as:
YOUR PRIOR DISTR [BUTION FOR THE ARRIVAL RATE IS A GAMMA
DISTRIBUTION WITH PARAMETER r
THIS DISTRIBUTION HAS BEEN MODIFIED BY THE AMOUNT OF
TIME YOU HAVE OBSERVED THIS PROCESS t
THE MEAN OF THE DISTRIBUTION IS: mean
THE VARIANCE IS: variance
YOUR EQUIVALENT SAMPLE SIZE IS: equivalent sample size
The mean represents the evaluators estimate of the arrival rate λ of domestic disputes in the city and the variance reflects his confidence in this estimate.

ARE YOU:

1. TESTING AN HYFOTHESIS?

EXHIBT 3
2. ESTIMATING A FAFAMETER?
3. UFIATING A FRIOF IISTRIEUTION?
4. NONE OF THE ABDVE

PLEASE TYFE THE NUMBEF (1 - 4) OF THE AFFROPRIATE OFTION.
-
.2

CLASSICAL STATISTICS UIEWS FARAMETEFS AS CONSTANTS WITH FIXEII YET UNKNOWN UALUES. WE INTENI TO UIEW THEM AS FANHOM VAFIABLES WITH FROBAEILITY MISTRIBUTIONS. THE FRIOR IIISTRIEUTION FOR THE FARAMETER SHOULII
IEFENI ON THE IIISTFIBUTION IT CHAFACTERIZES.
THE PARAMETER YOU ARE TRYING TO ESTIMATE IS FROM:

1. A BEFNOULLI FROCESS
2. A POISSON FFROCESS
3. A UNIFORM FROCESS
4. AN INIEFENDENT NOFIMAL FROCESS
5. A NOFMAL REGRESSION FFROCESS
6. HELP
7. RUIT

FLEASE TYPE THE NUMBER (1 - 7) OF YOUR CHOICE,
:
.2

THE FOISSON PROCESS CAN EE UIEWEII AS AN ARFIUAL PROCESS IN WHICH:

1. THE ARRIUALS IN ONE FERIOII OF TIME IO NOT EFFECT THE ARRIUALS IN ANY NON-QUERLAFFING FEFION OF TIME.
2. ARFIUALS COME ONE AT A TIME.
3. THE FRORABILITY OF AN ARRIUAL IN A SHORT INTERVAL IS FROFORTIONAL TO

- THE LENGTH OF THE INTERUAL.

DOES THIS IIESCRIEE YOUR PROCESS (YES OR NO)? Yes

YOU JUDGE YOUR EXFERIENCE WITH THIS FROCESS TO BE EQUIUALENT TO OESERUING HOW MANY EUENTS OR AFREIUALS?
\therefore
.75.

WHAT IS YOUR EEST ESTIMATE OF THE AUERAGE TIME BETWEEN ARRIUALS?
\% :
.5 .0

YOUR FRIOR IIISTRIEUTION FOR THE ARRIUAL RATE IS A GAMMA DISTRIEUTION
WITH FARAMETEF: $\quad 74.000$
TTHIS IISTRIEUTION IS MONIFIEN RY THE AMOUNT OF TIME YOU HAVE OESERVED THIS FROCESS: 375.000
THE MEAN OF THE IISTRIEUTION IS: 0.200000 THE UARIANCE IS: 0.000533 YOUR EQUIUALENT SAMFLE SIZE IS: 75.000

3.3. The Uniform Distribution

A Uniform or Rectangular process is one in which the value obtained on any trial is evenly distributed between a lower limit and an upper limit. We assume that the value of the lower limit is known and that we are trying to determine the value of the upper limit.

Suppose it was suspected that the time among parolees in a special parole program until recidivism is uniformly distributed between say one day after release and some unknown upper limit. Namely, if someone were released today on this parole program it is believed equally likely that he/she will be arrested tomorrow or any other day before the upper limit ie., given the value of the upper limit is U, the conditional probability that a parolee will recidivate at time t after release is uniformly distributed between L and U where L is known to be the earliest any parolee will recidivate.

In formulating a prior distribution to this uniform process PRIORS will
(as in Exhibit 4) ask the evaluator to assess the extent of his/her knowledge:
YOU JUDGE YOUR EXPERIENCE WITH THIS PROCESS TO BE EQUIVALENT TO OBSERVING HOW MANY EVENTS?

In this case it is clear that an event is a recidivation and the more the evaluator knows about the program and parolees in general, the larger his/her answer should be. PRIORS will then ask the evaluator to provide a best lower bound to the upper limit of the uniform process:

TO YOUR KNOWLEDGE THE LARGEST POSSIBLE VALUE OF ANY TRIAL FROM THIS PROCESS IS CERTAINLY NO SMALLER THAN WHAT NUMBER?

After supplying PRIORS with an upper and lower bound to the possible values of trials from the process his/her prior distribution will appear as:

YOUR PRIOR DISTRIBUTION FOR THE UPPER LIMIT OF THIS RECTANGULAR PROCESS IS A HYPERBOLIC DISTRIBUTION WITH PARAMETER n THIS DISTRIBUTION IS DEFINED FOR VALUES GREATER THAN u THE MEAN OF THIS DISTRIBUTION IS: mean THE VARIANCE IS: variance

Here n represents the number of outcomes observed and u the largest among these. The mean reflects the expected value of the upper limit and the variance indicates our confidence in this estimate. Notice that unlike
THE UNIFORM OF RECTANGULAR PROCESS IS ONE IN WHICH THE VALUE OBTAINED ON ANY TRIAL IS EVENLY IISTRIBUTEII BETWEEN A LOWER AND AN OFFER LIMIT. WE ASSUME THAT THE VALUE OF THE LOWER LIMIT IS KNOWN ANE THAT WE ARE TRYING TO IEETEFMINE THE VALUE OF THE UFFEF LIMIT. IF YOUR CASE IS JUST THE OPPOSITE THEN SIMPLY REVERSE THE AXIS AGAINST WHICH YOU ARE MEASURING.
HOES THIS IESCRIEE YOUR FROCESS (YES OR NO)? , YeS
YOU JULIE YOUR EXPERIENCE WITH THIS PROCESS TO BE EQUIVALENT TO OBSERVING HOW MANY EVENTS?
\therefore
.26
TO YOUR KNOWLEDGE THE LARGEST POSSIBLE VALUE OF ANY TRIAL FROM THIS PROCESS IS CERTAINLY NO SMALLER THAN WHAT NUMBER?
.:
10.
C

C
WHAT IS THE SMALLEST VALUE OBSERVATIONS FROM THIS PROCESS CAN EXHIBIT? :
.0 .0
YOUR PRIOR DISTRIBUTION FOR THE UPFER LIMIT OF THIS RECTANGULAR PROCESS IS A HYFEFEOLIC IIISTRIEUTION WITH PARAMETER: 26 THIS DISTRIEUTION IS DEFINER FOR VALUES GREATER THAN: 10.0000 THE MEAN OF THIS IISTFIEUTION IS: 10.4167 THE VARIANCE IS: 0.1887.
other prior distributions the mean is not the evaluators estimate of the upper limit. This is due to the fact that we do not want to over-estimate the upper limit. If our initial estimate is too large, no amount of additional information will correct this. For this reason the evaluator is asked to give a lower bound to the upper limit and not to give an estimate thereof.

3.4 The Norma1 Process With Independent Samples

An independent normal process is one in which the value of each outcome is selected from a normal or Gaussian distribution. We say the process is independent if the value of each outcome has no effect on any other outcome. PRIORS assumes that the evaluator is trying to formulate prior distributions for the mean and the variance of the underlying normal distribution.

The independent normal is in many areas of evaluation the most common process. Many traits are distributed approximately normally in populations. Height, reading ability and foot-size are for example often approximately normally distributed in human populations. The size of errors in many measurements is also often normally distributed. Moreover, it is often found that if a trait is not normally distributed in a population, stratifying the population leads to normal distributions within each stratum. However it is unfortunately tempting to classify processes rashly as normal. Generally for example such traits as age, income, etc., are not normally distributed within heterogeneous populations.

Suppose that an evaluator is studying a reading program and knows that the reading ability among enrolled students is approximately normally distributed. This knowledge alone clearly reflects relevant prior information. Moreover, the evaluator has some knowledge about the enrolled students' backgrounds as well as knowing how similar programs have performed in the past. This fundamental expertise combined with such process-related activities as sitting
in on classes, interviewing students, teachers and administrators, etc. should provide the evaluator with valuable information about the reading ability of students in the program. PRIORS will help assess this prior distribution by first asking the evaluator to estimate the scope of his/her experience: YOU JUDGE YOUR EXPERIENCE EQUIVALENT TO OBSERVING HOW MANY OUTCOMES FROM THIS PROCESS?

In this case it is clear that the evaluator should equate his/her experience with knowing the reading ability of some number of enrolled students. The The more he/she knows about the program, the greater this number should be.

PRIORS will then ask the evaluator to simulate a normal sample:
PLEASE TYPE THE VALUES OF OUTCOMES YOU WOULD EXPECT TO OBSERVE FROM THIS PROCESS ONE PER LINE. THERE SHOULD BE AS MANY VALUES AS YOUR ANSWER TO THE LAST QUESTION. TYPE 'DONE' WHEN YOU ARE THROUGH.

The evaluator's response should reflect not only his/her knowledge about the average reading ability, but also about the variation among students.

Suppose for example the evaluator estimated his/her experience equivalent to five observations. His/her response to the question about expected observations should consist of five values reflecting both the average reading ability and the degree of difference among students. An answer for example like:
.75
.75
.75
.75
.75
'done'
is highly unlikely -- not everyone has the same reading ability.
Something like:
.75
.60
.75
.80
.85
'done'
is more likely. This sample suggests, as exhibit 5 shows, that the evaluator believes the average reading level to be . 75 and the variance to be small --
THE INIEFENDENT NORMAL FROCESS IS ONE IN WHICH THE UALUE OF EACHDUTCOME IS SELECTEII FROM A NOFMAL IISTRIBUTION. THE VALUE OF ONEOUTCOME HAS NO EFFECT ON THE VALUE OF ANY OTHEF OUTCOME THE MEAN ANI EXHIBIT 5VARIANCE ARE THE UNKNOWN FAFAMETERS WE ARE TFYING TO ESTIMATE
DOES THIS DESCRIEE YOUK FROCESS (YES OR NO)? . Yes

4
YOU JUDGE YOUF EXFERIENCE EQUIVALENT TO OBSERUING HOW MANY OUTCOMES
FROM THIS FROCESS?

 \(: 5\)
 :5.
 \(i\)
 PLEASE TYFE THE VALUES OF OUTCOHES YOU WOULII EXFECT TO OBSERUE FORM
 THIS FROCESS, ONE FER LINE.
 HE SURE TO USE IEECIMALS!
 TYFE 'IIONE' WHEN YOU AFE THFIOUGH,
 :
 .0 .75
 :
 .0 .60
 :
 .0 .75
 :
 .0 .80
 :
 .0 .85
 :
 . done
 YOUR MAFGINAL FRIOR IISTRIBUTIOM FOR THE MEAN OF THIS INDEFENIENT
 NORMAL FFROCESS IS A STUIENT'S IISTRIEUTION WITH 4.0000 DEGREES
 OF FREEIIOM.
 THIS IISTFIBUTION HAS BEEN MONIFIED TO HAVE MEAN: 0.7500
 AND VARIANCE: 0.0035
 YOUR MARGINAL FRIOR IISTFIBUTICN FOR THE VARIANCE OF THIS
 INDEFENIENT NORMAL FROCESS IS A GAMMA IIISTFIEUTION WITH FARAMETER:
 1.0000
 THIS IISTRIBUTION HAS BEEN MONIFIED TO HAUE MEAN: 114.2746
 THE VARIANCE IS:6529.3477
 around . 01 . We can expect on the basis of this information that the evaluator knows most of the students perform in the 0.45 to 1.0 range.

PRIORS will present prior distributions for the mean or average and the variance as:

YOUR MARGINAL PRIOR DISTRIBUTION FOR THE MEAN OF THIS INDEPENDENT NORMAL PROCESS IS A STUDENT'S DISTRIBUTION WITH r DEGREES OF FREEDOM. THIS DISTRIBUTION HAS BEEN MODIFIED TO HAVE MEAN: mean AND VARIANCE: variance

YOUR MARGINAL PRIOR DISTRIBUTION FOR THE VARIANCE OF THIS INDEPENDENT NORMAL PROCESS IS A GAMMA DISTRIBUTION WITH PARAMETER p THIS DISTRIBUTION HAS BEEN MODIFIED TO HAVE MEAN: mean THE VARIANCE IS: variance

Again the mean of the student's distribution reflects the evaluators estimate of the average reading level and the variance, his confidence in that estimate. The mean of the gamma distribution represents the inverse of the evaluators estimate of the variance for the underlying normal distribution.

3.5 Normal Regression

In normal regression we are trying to predict or estimate the values of some dependent random variable Y as a function of the variables X.

In this model we assume that the Y-values are normally distributed with unknown variance and mean equal to some linear function of the X's. We are trying to estimate the variance of Y and the function defining its mean.

Normal regression is common in evaluations since determining the value of the mean of a parameter as a function of other parameters tells us how they effect each other. The rate at which substances cause cancer can for example be modeled as a regression problem. Suppose we are trying to determine the relationship between the heights of parents and that of their children. We might suspect that the height of children, Y, is a linear function of the height of their fathers, X, and the height of their mothers, Z, ie that:

$$
Y=A X+B Z+C
$$

We are assuming here that height is normally distributed. The problem now reduces to estimating A, B, C and the variance of Y.

As usual we assume some prior knowledge about the relation among heights. In formulating prior distributions for the vector (A, B, C) and the variance of Y, PRIORS will, as in Exhibit 6, first ask how many components are in the vector:

YOU ARE TRYING TO ESTIMATE THE MEAN OF Y AS A LINEAR FUNCTION OF HOW MANY INDEPENDENT VARIABLES?

In our case this will be three; father's height, mother's height and other factors or (A, B, C). If however we had included say grandparents height this would be correspondingly larger. Next PRIORS asks us to assess the extent of our experience with the relationship:

YOU JUDGE YOUR EXPERIENCE EQUIVALENT TO MAKING HOW MANY OBSERVATIONS?
Clearly the more closely we have studied it the larger our answer should be.
Finally, as in the normal process we must simulate observations:
PLEASE TYPE IN THE VALUES OF OBSERVATIONS YOU WOULD EXPECT FROM THIS PROCESS. FOR THE ITH OBSERVATION THE VALUE OF Y(I) IS THE FIRST ENTRY FOLLOWED BY THE X (I,J)-VALUES. LEAVE A SPACE BETWEEN EACH ENTRY. EACH OBSERVATION SHOULD START A NEW LINE. THERE SHOULD BE AS MANY OBSERVATIONS AS YOUR ANSWER TO THE LAST QUESTION.

Here too a response like:
$Y(J) \quad X(I, J)$
5.76 .05 .51
5.76 .05 .51
5.76 .05 .51
for three observations is highly unlikely -- not everyone is the same height.
Supposed we assessed our experience equal to five observations and responded with the observations:
$Y(I) \quad X(I, J)$
5.76 .05 .51
6.06 .15 .21
5.26 .15 .51
5.95 .85 .41
5.05 .25 .51

This would reflect more accurately our experience in that for example a man
6.1 ft is likely to have a wife 5.2 ft and a son 6.0 ft or a wife 5.5 ft and
a son 5.2 ft . Your answer should reflect your knowledge of the variation
within the populations as well as the relations among them. Should you

```
    THE NORMAL REGRESSION FROCESS ASSUMES WE ARE TRYING TO FREIICT OR
    estimate the values of SOme refeminent fanmom vakiakle, y, as a linear
    FUNCTION OF THE INHEFENIIENT VARIAELES, X(.,J). IN THIS MONEL WE
    asSume that the y(J)-values afe nokmally listFiguteli WITH UNKNOWN
    UaRIANCE aND mEAN EQUAL tO SOmE LINEAR FUNCTION OF THE X(..J)-
    values. WE ARE tFYING to estimate the varifance of y and the SLOFE
    OF THE LINE.
    DOES THIS IESCRIBE YOUR PROCESS (YES OR NO)? ,yes
    YOU ARE TRYING TO ESTIMATE THE MEAN OF Y AS A LINEAR FUNCTION OF HOW.
    MANY INIEFENIIENT UARIAELES?
    :
    .3.
    YOU JUDGE YOUR EXFERIENCE EQUIVALENT TO MAKING HOW MANY OBSERUATIONS?
    : 
    .5.
        plEase type in the values of observations you would exfect from this
        FROCESS.
    Y(I) AS THE FIRST ENTRY IN FOW I FOLLOWEI EY THE X(I,J)-VALUES.
    lEAVE a SFACE bETWEEN EACH ENTRY. BE SURE TO USE HECIMAL FOINTS.
    WAIT FOR THE ':' FROMF'T.
        Y(I) X(I,J)-VALUES
        :
        .5.7 6.0 5.5 1.0
        :
        .6.0.6.1 5.2 1.0
        :
        5.2 6.1 5.5 1.0
        &
        .5.9.5.8 5.4 1.0
        %
        .5.0 5.2 5.5 1.0
        THIS IATA HAS REEN REAI AS:
        Y(I) X(I,J)-VALUES
        5.7000 6.0000 5.5000 1.0000
        6.0000 6.1000 5.2000 1.0000
        5.2000
        5.9000 
        "IS THIS CORRECT? .yes
        C
        YOUR MARGINAL FRIOR DISTRIEUTION FOR THE SLOFE OFTRE LINE
        -IS A 3 IIMENSIONAL STUIENT'S IISTRIEUTION WITH }
        DEGFEES OF FFEEIIOM.
        THE MEAN OF THIS IISTRIRUTION IS:
        0.4224 -1.9804 13.8268
    IT HAS NO PROFER UARIANCE.
        the ChAFACTERISTIC MATRIX OF THIS PRIOR DISTRIEUTION IS:
\begin{tabular}{rrr}
171.1000 & 158.1900 & 29.2000 \\
158.1900 & 146.9500 & 27.1000 \\
29.2000 & 27.1000 & 5.0000
\end{tabular}
    YOUR MARGINAL FRIOR DISTRIBUTION FOR THE VARIANCE OF THE Y'S IS
        A GAMMA IISTEIRUTION WITH FARAMETER: 0.0000
        THE MEAN OF THIS IIISTFIEUTION IS: 7.1612
        THE UARIANCE IS: 51.2835
```

make a mistake here, PRIORS will give you the chance to correct it when you are through.

Given this information PRIORS will present your prior distributions for the vector (A, B, C) and the variance of Y as:

YOUR MARGINAL PRIOR DISTRIBUTION FOR THE COEFFICIENTS OF THE X (I, J)-VALUES IS A n DIMENSIONAL STUDENT'S DISTRIBUTION WITH r DEGREES OF FREEDOM.
THE MEAN OF THIS DISTRIBUTION IS:
mean vector
THE COVARIANCE MATRIX IS:
covariance matrix
THE CHARACTERISTIC MATRIX OF THIS PRIOR DISTRIBUTION IS: characteristic matric

YOUR MARGINAL PRIOR DISTRIBUTION FOR THE VARIANCE OF THE Y's IS GAMMA DISTRIBUTION WITH PARAMETER: p
THE MEAN OF THIS DISTRIBUTION IS: mean
THE VARIANCE IS: variance
The mean vector of the Student's distribution represents the evaluators estimate in this case of the values (A, B, C) and the variance reflects his/her confidence in that estimate. The characteristic matrix is useful for updating the distribution.

The mean of the gamma distribution is the inverse of the evaluator's estimate of the variance of Y.
5. Posterior Distributions and Updating

The beauty of the prior distributions we formulate with PRIORS is that they readily allow the addition of improved information. We call this process of adding information to a prior distribution "updating". The resulting updated distribution is a "posterior distribution". As we mentioned before the prior distributions formulated with PRIORS are conjugates - that is the posterior is from the same family as the prior. In fact should the evaluator choose to add additional new information, he should treat the posterior exactly as a prior.

To update a prior distribution with PRIORS you must have:

1. formulated a prior distribution with PRIORS and have the description of the distribution on hand.
2. obtained further statistical information about the process.

PRIORS will proceed by asking you about your present prior distribution, then about the additional statistical information. Simply answer the questions and PRIORS will supply you with a description of your posterior distribution. In Exhibit 7 our original prior distribution was:
a gamma distribution
with parameter: 74.000.

The distribution has been modified by the amount of time we had observed the process: 375.000
The mean of the distribution was: 0.2000 .
The varience was: 0.000533
Our equivalent sample size was: 75.000

Since formulating our prior distribution we observed 25 arrivals with average interarrival time 4.1. Note that after updating a prior we obtain a posterior distribution however should we wish to update again, this posterior would become our present prior distribution.

ARE YOU:

1. TESTING AN HYFOTHESIS?
(. 2. ESTIMATING A FAFAMETER?
2. UFIATING A FFIOR IISTRIEUTION?

EXHIGT 7
4. NONE OF THE AROVE
(
PLEASE TYFE THE NUMEER (1 - 4) OF THE AFPROPRIATE OPTION.
:
.3
C
$($
(

C
C
THE BEAUTY OF THE FRIOR IISTRIFUTIONS WE FORMULATE WITH THIS FROGRAM
IS THAT THEY FEAIIILY ALLOW THE ALIGITION OF IMFFROVEII INFORMATION. WE
CALL THIS fROCESS OF ALIIING infokimation to an alfeadiy formein frion "UPIIATING'. TO IO THIS WE ASSUME YOU HAUE ALREAIIY FORMULATEII A.PRIOR DISTRIRUTION USING THIS FROGRAM ANI THAT SINCE THAT TIME YOU HAVE MAIE ADIITIONAL ORSERUATIONS OF THE FROCESS. IS THIS THE CASE? . Yes

WE ASSUME FURTHER THAT YOUR FRIOR IISTRIEUTION IS FOR THE PARAMETER(S)
OF ONE OF THE FOLLOWING PROCESSES:

1. A EEFNOULLI FROCESS.
2. A FOISSON FFOCESS.
3. A UNIFOFM FROCESS.
4. AN INIEFENIIENT NOFMAL FROCESS.
5. A NORMAL REGRESSION FROCESS.
6. NONE OF THE AROVE

PLEASE TYPE THE NUMBER (1 - 6) OF YOUR PROCESS.
:
.2
C
WHAT IS THE EQUIUALENT SAMPLE SIZE OF FFESENT PRIOR?
C
.75 .0

C WHAT IS THE MEAN OF YOUR FRESENT FRIOR IISTRIBUTION? :
.0 .2

[^0]O HHAT IS YOUR BEST ESTIMATE OF THE AUEFAGE INTERARRIUAL TIME FOR THESE LAST OESERUATIONS?
: :
C :.4.1.
C. YOUR POSTERIOR HISTRIEUTION FOR THE ARRIUAL RATE IS A GAMMA WITH FARAMETER: 99.000
THIS IISTEIEUTION IS MODIFIEI EY THE AMOUNT OF TIME YOU HAUE
OBSERUED THIS FFROCESS: 477.500
C: THE MEAN OF THE DISTRIEUTION IS: 0.209424
THE VARIANCE IS: 0.000439
YOUR EQUIVALENT SAMFLE SIZE IS: 100.000
$r:$
WOULD YOU LIKE TO SEE A FLOT OF YOUR CUMULATIUE POSTERIOR DISTRIRUTION?.no

WOULD YOU LIKE TO MOUIFY THIS DISTRIBUTION (YES OR NO)? : No
THE POSTERIOR IISTFIEUTIONS YOU HAUE FORMULATEI ARE NOW YOUR FRESENT PRIOR DISTRIEUTIONS! TO UFDATE THESE UISTFIEUTIONS SIMFLY TREAT THEM AS PRIOR DISTEIBUTIONS.

5.1 Plots of Cumulative Distributions

After describing your prior distribution(s), PRIORS will ask if you would like to see a plot of your cumulative prior distribution. Should you respond "yes" (or "y") to this question, PRIORS will produce a point plot of the probability the parameter in question will be less than the independent variable. If you do not wish to see this plot type "no" (or "n").

In Exhibit 8 the independent variable ranges from zero to $\mathrm{XMAX}=1.0$ and each unit is scale unit $=.1$. Whereas the ordinate or y-axis ranges from zero to 1.1 and each unit is .01 . The probability that the parameter is less than 0.5 is about . 02 and the probability it is less than 0.9 is about 1.0 .

Note plots will not be produced for multidimensional distributions.

5.2 Modifying A Distribution

After formulating a prior distribution you may feel it is not exactly what you want. Should this be the case simply respond "yes" (or "y") to the question:

Would you like to modify this distribution (yes or no)?
As in Exhibit 9 PRIORS will ask you whether you would like to change various parameters. Simply answer the questions appropriately and PRIORS will produce a new prior. If you ask to modify a posterior distribution, i.e. if you modify a distribution immediately after updating it, you will be modifying the entire distribution - i.e. not your previous prior nor the additional information, but the updated distribution itself.

$$
\operatorname{ABCISSA}(X-n \times I S)^{2} 0.0 *(10)^{-1} \text {, SCALE (1BTT: }(10)^{-1} \text { EXH|B/T } 8
$$

THE POISSON PROCESS CAN RE VIEWED AS AN AKKIUAL. PROCESS IN WHICH:

1. THE AFFIUALS IN ONE FEFIOI OF TIME HO NOT EFFECT THE AFRIUALS IN ANY NON-OUERLAFFING FEEIOLI OF TIME.
2. ARFIVALS COME ONE AT A TIME.
3. THE FROEAEILITY OF AN ARFIVAL IN A SHORT INTERUAL IS FROPORTIONAL TO the length of the interval.
```
DOES THIS IESCRIEE YOUR FROCESS (YES OR NO)? .Yes
```

YOU JUDGE YOUR EXPERIENCE WITH THIS PROCESS TO HE EQUIVALENT TO OBSERVING HOW MANY EVENTS OR ARRIVALS?
:

- 100.

WHAT IS YOUR BEST ESTIMATE OF THE AVERAGE TIME BETWEEN ARRIVALS? ;.4 .775

YOUR PRIOR IISTRIEUTION FOR THE ARRIVAL RATE IS A GAMMA IISTRIEUTION WITH PARAMETER: 99.000 THIS IISTKIEUTION IS MODIFIED BY THE AMOUNT OF TIME YOU HAVE OBSERVED THIS PROCESS: 477.500
*THE MEAN OF THE IISTRIEUTION IS: 0.209424 THE VARIANCE IS: 0.000439 YOUR EQUIVALENT SAMPLE SIZE IS: 100.000 WOULD YOU LIKE TO SEE A PLOT OF YOUR CUMULATIVE PRIOR HISTRIEUTION?. rio

MOULD YOU LIKE TO MODIFY THIS HISTRIEUTION (YES OR NO)? . YES $\therefore \therefore$

WOULD YOU LIKE TO CHANGE THE NUMBER OF TRIALS YOU HAVE SEER? YES OR NO)? . Yes

HOW MANY ARRIVALS HAVE YOU SEEN?
-:
$\therefore 110$.
C
C°
WOULD YOU LIKE TO CHANGE THE AUERAGE TIME EETWEEN ARRIUALS (YES OR NO)? • YES

WHAT IS THE AVERAGE TIME BETWEEN ARRIVALS?
:
.4 .8

YOUR PRIOR IIISTRIBUTION FOR THE ARRIVAL RATE IS A GAMMA DISTRIBUTION
WITH PARAMETER: 109.000
THIS IISTRIBUTION IS MOLIFIEI BY THE AMOUNT OF TIME YOU HAVE OESERVEI THIS PROCESS: 528.000

- THE MEAN OF THE DISTRIBUTION IS: 0.208333

THE VARIANCE IS: 0.000395
YOUR EQUIVALENT SAMPLE SIZE IS: 110.000
WOULD YOU LIKE TO SEE A PLOT OF YOUR CUMULATIVE PRIOR DISTRIEUTION?, rio

APPENDIX I

The Distributions

The Bernoulli Process

Has distribution：Probability of event \＃1＝p Probability of event 非2＝1－p

Prior distribution：H Beta distribution with parameters a and b

$$
\beta_{a, b}(p)=\frac{(a+b-1)!}{(a-1)!(b-1)!} p^{a-1}(1-p)^{b-1} \text { for } 0 \leq p \leq 1
$$

 was observed
b corresponds to the number of times event 非2 was observed $a+b$ is the equivalent sample size．

Posterior distribution

for $0 \leq p \leq 1$
a＇corresponds to the number of times event 非1 was observed since formulating prior
b＇corresponds to the number of times event ${ }^{\prime} 2$ was observed since formulating prior $a^{\prime}+b^{\prime}$ is actual sample size since formulating prior

Has distribution:

$$
P_{\lambda, T}(k)=\frac{(\lambda T)^{k} e^{-\lambda T}}{k!} \quad \text { for } k=0,1, \ldots
$$

where λ is average arrival rate and T is the elapsed time.

Prior distribution; A Gamma distribution with parameter r modified by t

$$
G_{r, t}(\lambda)=\frac{e^{-\lambda t}(\lambda t)^{r}}{r!}
$$

where r is the number of events observed and t is the length of time observing the process.

Posterior distribution:

$$
G_{r+r^{\prime}, t+t^{\prime}}(\lambda)=\frac{e^{-\lambda\left(t+t^{\prime}\right)}\left(\lambda\left(t+t^{\prime}\right)^{r+r^{\prime}}\right.}{\left(r+r^{\prime}\right)!}
$$

r^{\prime} corresponds to the number of additional observations in t ' additional time units.

The Uniform Process

Has distribution:

$$
P_{U, L}(t)=\frac{1}{U-L} \text { for } L<t<U
$$

where L is lower limit and U is upper limit of process

Prior distribution: A Hyperbolic distribution with parameter n defined for values greater than V

$$
H_{n, \nu, L}(t)=(n-1) \frac{(\nu-L)^{n-1}}{(t-L)^{n}} \text { for } t>v
$$

where n is the number of observations and ν is the largest value observed.

Posterior distribution:

$$
H_{n+n^{\prime}, \nu^{\prime}, L}(t)=\left(n+n^{\prime}-1\right) \frac{\left(\nu^{\prime}-L\right)^{n+n^{\prime}}-1}{(t-L)^{n+n}}
$$

where n^{\prime} is the number of additional observations ν^{\prime} is the largest value observed in $n+n$ trials.

The Normal Process

Has distribution:

$$
\begin{gathered}
P_{u, \sigma^{2}}(t)=\frac{1}{} e^{-\frac{1}{2 \sigma^{2}}(t-u)^{2}} \text { for }-\infty<t<\infty \\
\sqrt{2 \pi 0^{2}}
\end{gathered}
$$

where u is the mean and 0^{2} is the variance

Marginal Prior Distribution for the mean: A Student's distribution with r degrees of freedom.

$$
s_{r}(t)=\frac{\Gamma\left(\frac{n}{2}\right)}{\sqrt{\pi} \Gamma(r / 2)} \underset{r}{\frac{r}{2}}\left(r+\frac{n}{s}(t-u)^{2}\right)^{-\frac{n}{2}} \sqrt{n / 2}
$$

where n is the number of observations $r+1 u$ is their mean and s is their variance.

Posterior distribution:

$$
S_{r+n^{\prime}}(t)=\frac{\Gamma^{\left(\frac{n+n^{\prime}}{2}\right)}}{\sqrt{\pi} \Gamma\left(\frac{r+n^{\prime}}{2}\right)}\left(r+n^{\prime}\right)^{\frac{r+n^{\prime}}{2}}\left(r+n^{\prime}+\frac{n+n^{\prime}}{s^{\prime \prime}}\left(t-u^{\prime \prime}\right)^{2}\right)^{-\frac{n+n^{\prime}}{2-}} \sqrt{\frac{n+n^{\prime}}{2}}
$$

where n^{\prime} is the number of subsequent observations $u^{\prime \prime}=\left(n^{\prime} u^{\prime}+n u\right) / n+n^{\prime}$ and $s^{\prime \prime}=\left[\left(n^{\prime}-1\right) s^{\prime}+n^{\prime} u^{\prime} 2-+r s-n u^{2}-\left(n+n^{\prime}\right) u^{\prime \prime}\right] / r+n^{\prime} u^{\prime}$ is the mean of the subsequent observations and s^{\prime} is their variance.

Marginal Prior Distribution for the variance: A Gamma Distribution with parameter p.

$$
G_{p}(t)=e^{-(p+1) s t} \frac{((p+1) s t)^{p}(p+1) s}{p!}
$$

p is $\frac{\mathrm{n}-3}{2}$ and S is the sample variance

Posterior Distribution

$$
G_{p+\frac{n^{\prime}}{2}}(t)=e^{-\left(p+\frac{n^{\prime}}{2}+1\right) s^{\prime \prime} t}\left(\left(p+\frac{n^{\prime}}{2}+1\right){\frac{\left.s^{\prime \prime} t\right)^{p+\frac{n^{\prime}}{2}}}{\left(p+\frac{n^{\prime}}{2}\right)!}}_{\left(p+\frac{n^{\prime}}{2}+1\right) s^{\prime \prime}}\right.
$$

the mean of the distribution is $\frac{1}{\hat{\sigma}^{2}}$ where $\hat{\sigma}^{2}$ is our estimate of the variance of the normal process.

Normal regression

Has distribution:

$$
P_{x i}\left(t_{i}\right)=\frac{1}{\Gamma} \quad e^{-1 / 2 \sigma^{2}\left(t_{i}-\Sigma B_{j} X_{i j}\right)^{2}}
$$

where $\Sigma B_{u} X_{i j}$ is the expected value of ti
Prior distribution for B: An n dimensional Student's Distribution with r degrees of freedom.

$$
S_{n, r}(t)=\frac{r^{r / 2 \Gamma\left(\frac{r+n}{2}-1\right)}}{\pi / 2 \Gamma\left(\frac{r}{2}-1\right)}\left(r+(t-u)\left(\frac{r-2}{r}\right) c^{-1}(t-u)^{t}\right)^{-\left(\frac{r+n}{2}\right)}\left|\frac{r-2}{r} c^{-1}\right|^{1 / 2}
$$

where u is the mean and c is the co-variance matrix.
Posterior distribution:

$$
\begin{aligned}
& S_{n, r+m^{\prime}}(t)=\frac{\left.\left(r+m^{\prime}\right)^{\frac{r+m^{\prime}}{2}} \Gamma^{\left(\frac{r+m^{\prime}+n}{2}\right.}-1\right)\left(r+m^{\prime}+\left(t-u^{\prime \prime}\right)\left(\frac{r+m^{\prime}-2}{r+m^{\prime}}\right)\right.}{\left.\left.\pi^{\prime \prime 2} \Gamma^{\prime-1}\left(t-u^{\prime \prime}\right)^{t^{\prime}}\right)^{-\left(\frac{r+m^{\prime}+n}{2}\right.}\right)} x \\
& \left|\frac{r+m^{\prime}-2}{r+m^{\prime}} c^{\prime n^{-1}}\right|^{1 / 2}
\end{aligned}
$$

where m^{\prime} is the number of subsequent observations

$$
c^{\prime \prime}-1=\left[c^{\prime} v+c \nu\right]^{-1} / \nu^{\prime \prime}
$$

Marginal Prior Distribution for the variance: A Gamma Distribition with parameter p .

$$
G_{p}(t)=e^{-(p+1) \nu t} \frac{(p+1) \cup t)^{p}}{p!}(p+1) \nu
$$

where p is $1 / 2 \mathrm{r}-1$

Posterior Distribution:

$$
G_{p+\frac{m^{\prime}}{2}}(t)=e^{-\left(p+\frac{m^{\prime}}{2}+1\right) \nu^{\prime \prime} t} \quad\left(\left(p+\frac{m^{\prime}}{2}+1\right) \frac{\left.\nu^{\prime \prime} t\right)^{p}}{\left(p+\frac{m^{\prime}}{2}\right)!}+\frac{m^{\prime}}{2}\left(p+\frac{m^{\prime}}{2}+1\right) \nu^{\prime \prime}\right.
$$

The mean of this distribution is the inverse of our estimate of the variance.

[^0]: SINCE FORMULATING YOUR FRIOR DISTRIBUTION HOW MANY AREIUALS HAVE YOU ORSERVED?
 :
 .25.

