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by

Stephen C. Graves and Jeremy F. Shapiro

1. Introduction

Experienced practitioners who use integer programming (IP) and other

combinatorial optimization models have often observed that numerical prob-

lems to be optimized are sensitive, sometimes extremely so, to the specific

problem formulations and data. Unlike linear programming (LP) and nonlinear

programming, however, we have not seen the development of a coherent field

of numerical analysis in IP and combinatorial optimization. By numerical

analysis, we mean techniques for analyzing problem formulations and data

that reveal the stability, or predictability, in optimizing these problems,

and the expected degree of difficulty in doing so. Three apparent reasons

for the lack of development are:

(1) Issues of numerical analysis in IP and combinatorial

optimization are intermingled-with the artistry of model-

ing. Thus, unlike LP and nonlinear programming, these

issues cannot be related mainly to specific numerical

problems that have already been generated by the practi-

tioner.

(2) IP and combinatorial optimization problems possess a wide

range of special structures that can sometimes be exploited

by special purpose algorithmic methods. The relative merits

of general versus special purpose approaches remains an open

question, but the ambiguity has inhibited the development

of general purpose numerical analytic methods.



(3) Many IP and combinatorial optimization problems can be very

difficult to optimize exactly and sometimes even approxi-

mately. Systematic procedures for problem formulation and

numerical analysis need to be related to approximate as well

as exact methods, and the approximate methods are still

under development.

Our purpose in this paper is to present a broad sampling of the issues

in IP and combinatorial optimization problem formulation, and related ques-

tions of numerical analysis. First, primarily through illustrative examples,

we discuss the importance of problem formulation. Second, we present briefly

some formalisms that can facilitate both our understanding of the art of

formulation, .and our ability to perform numerical analysis. Finally, we

suggest some areas of future research. We believe there is considerable

room for the design and implementation of new numerical procedures for the

practical solution of IP and combinatorial optimization problems that would

greatly expand their usefulness.
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2. Problem Formulations

Integer decision variables arise naturally in many applications, such

as airline crew scheduling or investment problems where the items to be

selected are expensive and indivisible. Integer variables are also used

to model logical conditions such as the imposition of fixed charges. Fixed

charge problems are among the most difficult IP problems to optimize, in

large part because of the awkwardness of expressing logical conditions by

inequalities.

Consider, for example, the problem

n K
min Z c.x. + k=

j=lJ 3 k=l f k y k

n
s.t. a..x.j bi for i = l,...,m

j=l 1

(1)

z x. - IJk{Yk < for k = 1,...,K

k

x. = 0 or 1, k = 0 or 1,

where each Jk is an arbitrary subset of {l,...,n} and Jk denotes its size.

The quantity fk is the fixed charge associated with using the set of variables

xj for j Jk. The ordinary LP relaxation of (1) is the problem that results

if we let the x. and the Yk take on any values in the range zero to one.

The fixed charge problem (1), and others similar to it, is difficult

to solve because the LP relaxations tend to be highly fractional. These LP's
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are the primary tool used in branch and bound, or other methods, for solving

(1), hence there is a tendency for the branch and bound searches to be exten-

sive. For example, suppose we let x. denote feasible LP or IP values for

the x. variables. If fk > 0 for all k, then the corresponding k values

for all k are given by

JJk J

Yk = k

which in general are fractional numbers.

A number of researchers have observed that problem (1) is easier to

solve if the fixed charge constraints are rewritten in the equivalent integer

form as

x - 0 for all j Jk'

Note that we will have k = max {x } if fk > 0 implying k = 1 if any x. =1
S In other j Jk

for j Jk In other words, we can expect the ordinary LP relaxation of the

reformulation to be tighter in the sense that it produces solutions with fewer

fractions. The reformulation has the effect of increasing the number of rows

of the problem, but the improved formulation more than justifies the increase.

In one application made by one of the authors, a difficult 80-row fixed charge

problem was reformulated as indicated as a 200-row problem for which an opti-

mal solution was easily computed. H. P. Williams (1974, 1978) has made a

thorough study of fixed charge problem reformulations arising in a variety of

applications. We will return again to the fixed charge problem in the next



section when we discuss algorithmic methods.

Similar observations on the importance of obtaining tight LP formula-

tions have been made for plant location problems by Spielberg (1969) and

Davis and Roy (1969), for a distribution system design problem by Geoffrion

and Graves (1974) and for a production allocation and distribution problem

by Mairs, Wakefield, et al (1978). In all cases, the tightness of the LP

relaxation was improved by the careful choice of model representation of

the logical relationships.

Another class of IP reformulation "tricks" that has proven successful

are procedures for reducing coefficients. For example, consider the

inequality

114x1 + 127x2 + 184x3 < 196

to be satisfied by integer values for the variables. The difficulty with

this inequality arises again from the nature of LP relaxations to the IP

problem with this constraint. If the constraint is binding, then we will

surely have a fractional LP solution since no combination of the numbers

114, 127 and 184 will equal 196. However, an equivalent integer inequality

is

x1 + + x2 + x3 1.

The inequality with smaller coefficients is less likely to produce fractional

solutions in the LP relaxations.

In general, we will not be able to achieve an equivalent representa-

tion of an inequality in integer variables with coefficients reduced to the

extreme degree of the above example. Gorry, Shapiro and Wolsey (1972) give

the following general rule: Any non-negative solution satisfying
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n
Z a..x. < b. (2)

j=l J - i

will also satisfy

n a b.

[ ]x. < -] (3)
j=l 1i 

where .i is any positive number and [a] denotes the largest integer smaller

than a. In other words, the inequality (3) is a relaxation of the inequality

(2). This is a useful property because a relaxed IP problem that is easier to

solve can be used to provide lower bounds in a branch and bound scheme for

solving the original IP problem from which the relaxation is derived. Of

course, the critical issue is the strength of the lower bounds produced by

the relaxation. Gorry, Shapiro and Wolsey (1972) report on some computational

experience with relaxations of this type. Bradley, Hammer and Wolsey (1974)

give more powerful coefficient reduction methods, but ones that can require

significant computational effort.

There are a wide variety of other tricks that can be used to restructure

IP problems to make them easier to solve. Some are very simple; for example,

using a budget constraint 8x1 + lOx2 + 15x 3 < 29 to deduce that the

integer variables xl, x2, x3 have upper bounds of 3, 2 and 1, respectively.

Tight upper bounds on integer variables can be very important in reducing

the search time required by branch and bound. Krabek (1979) reports good

experience in solving IP and MIP problems that have been automatically re-

formulated and simplified by tricks such as these. In the following section,

we attempt to demonstrate that there is some underlying theory for under-

standing and integrating many of these tricks.
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A central issue in IP and combinatorial optimization problem formula-

tion is the fact that most combinatorial optimization problems can be

represented as IP problems, but sometimes these formulations do not permit

special structures to be exploited. In this regard, an important class of

problems are those that can be represented, perhaps by suitable transfor-

mations, as pure and generalized network optimization problems. For these

problems, simplex-like network optimization algorithms will produce integer

solutions, often in a very efficient manner.

As an example of this, consider the shift scheduling problem. Suppose

each 24 hour day is broken into six four-hour periods, where the minimum

staffing requirements for the ith period are given as ri, i = 1,...,6. The

problem is to determine the minimum work force to satisfy these requirements

where each worker works a continuous two-period (eight hour) shift. Letting

x. be the number of people whose shift starts at period i, the problem can

be stated as

6
min x.

i=l1

s.t. x1 + x > r1 6 - 1

X1 + X2 > r2

x5 + 6 r 6

Xi > 0, integer

Figure 1 gives a reformulation of this problem as a network flow problem,

where w is the actual staffing level for period i.
1
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x5 x6

Figure 1

Here the arc flows w have a lower bound of r, while the arc flows x. have
1 1 1

a unit cost of -one.

Since many IP and combinatorial optimization problems can be transformed

into network optimization problems if one is willing to greatly expand prob-

lem size, an open empirical question is the extent of the useful class of

such problems. Glover and Mulvey (1975) give details about these transforma-

tions. Additional discussion about the class of applications that can be

formulated and solved as network optimization problems is given by Glover,

Hultz and Klingman (1979).

In addition to imbedded network optimization problems, there are many

other exploitable special structures that can arise in IP and combinatorial

optimization problems. However, it sometimes takes considerable insight to

identify the special structures. A prime example of this is the traveling
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salesman problem and related vehicle routing problems. Held and Karp (1970)

show that a particular IP formulation of the traveling salesman problem can

be recast as a simple graph optimization problem with a small number of side

constraints.- This reformulation led to great improvements in computation

(Held and Karp (1971)). An alternative conceptualization of this problem is

given by Miliotis (1978) who reports good computational experience with an

IP formulation of the problem that is built up iteratively in the manner of

the IP cutting plane method. A third approach is that of Picard and Queyranne

(1978) who formulate the time-dependent traveling salesman problem as a

shortest path problem on a multipartite graph, supplemented by a set of side

constraints.

For the vehicle routing problem, Fisher and Jaikumar (1978) formulate

the problem such that a natural decomposition arises in which a generalized

assignment subproblem with side constraints is solved iteratively with a

series of traveling salesman problems. The generalized assignment problem

divides the cities amongst the vehicles, while each traveling salesman prob-

lem generates a route for a specific vehicle. Gavish and Graves (1978) give

new formulations for the traveling salesman problem and for a variety of

related transportation routing problems. These formulations suggest several

approaches, which exploit the underlying network structure.
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3. Algorithmic Methods and Numerical Analysis

We discussed in the previous section how a great deal of artistry is

required to select efficient IP and combinatorial optimization problem formu-

lations, and to apply the correct tricks to improve these formulations. Although

it may never be possible to develop formalisms to automatically select effi-

cient formulations for all problems, there remains considerable room for

developing further the relevant numerical analytic techniques. We discuss

how current and future research efforts in three important areas should facili-

tate these developments: Lagrangean techniques, elementary number theory,

and approximation methods.

It is not within the intended scope of this paper to give an extensive

survey of Lagrangean techniques applied to IP and combinatorial optimization

problems (see, for example, Shapiro (1979b)). Instead we will review briefly

their application to the family of (primal) IP problems, and relate them to

the formulation issues discussed in the previous section. The family of IP

problems is

v(y) = min cx

s.t. Ax < y P(Y)

X X

where A is an m x n matrix of integers, y is an m x 1 vector of integers, and

X is a discrete set in Rn in which the variables must lie. The function v(y)

is called the integer programming perturbation function. We may be interested

in v defined either for a specific or for a family of right hand sides y. The

partition in P(y) is intended to separate the easy constraints x X from the

difficult ones Ax < y. We will discuss below the partition at greater
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length after we have discussed briefly the Lagrangean methods.

There is an entire family of Lagrangean functions and related dual

problems that can be derived from P(y). The simplest is defined for u > 0

as

L0(u;y) = -uy + min(c+uA)x. (4)
xX

The value L (u;y) is a lower bound on v(y), and the greatest lower bound

is found by solving the dual problem

w(y) = max L (u;y)
D(y)

s.t. u > 0.

In general, w(y) < v(y) and if w(y) < v(y), we say there is a duality gap

between P(y) and D(y). For fixed y = y, the lower bounds L (u;y) can be

used to fathom subproblems in a branch and bound scheme to solve P(y) (see

Shapiro (1979a,b)). Moreover, the Lagrangean sometimes provides optimal

solutions -to subproblems by appeal to the following global optimality con-

ditions. These conditions also provide the rationale for selecting the

m-vector of dual variables.

Global Optimality Conditions (Version One): For a given primal IP problem

P(y), the solutions x X and u > 0 satisfy the global optimality conditions

if

(i) L(u;y) = -uy + (c+uA)x

(ii) u(Ax - y) = 0

(iii) Ax < y
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The following theorem establishes that these conditions provide (globally)

optimal conditions to P(y).

Theorem 1: If x E X, u > 0 satisfy the global optimality conditions for

the primal problem P(y), then x is optimal in P(y) and u is optimal in

the dual problem D(y). Moreover, v(y) = w(y).

Proof: See Shapiro (1979a, b).

The global optimality conditions are sufficient but not necessary for a

given problem P(y) in the sense that there may not be any u > 0 such that

an optimal solution x will be identified as optimal by the conditions.

This is the case when there is a duality gap between P(y) and D(y). We

will discuss below how duality gaps can be resolved, and how the resolution

is related to the formulation of P(y). As we shall see, methods for resolv-

ing duality gaps are derived from representation of the dual problem D(y)

as large scale LP problems. These LP problems are convexified relaxations

of the primal problem P(y), which lead Geoffrion (1974) to refer to the dual

problems as Lagrangean relaxations.

The implicit assumption in our definition and proposed use of 'the

Lagrangean L (u;y) is that it can be easily computed, relative to the com-

putation of an optimal solution to P(y). The nature of the set X determines

whether or not this assumption is valid. In some cases, the implicit

constraints x X contain the logical ones not involving data that may change

or be parametrized; e.g., fixed charge constraints. Moreover, these constraints

need not be stated as inequalities if they can be handled directly as logical

conditions in the Lagrangean calculation. By contrast, the constraints Ax < y
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might refer to scarce resources to be consumed or demand to be satisfied

and-do involve data that may change or be parametrized. In other cases,

the constraints x X may refer to network optimization substructures that

can be solved very efficiently by special algorithms.

Thus, the artistry of IP problem formulation and analysis reduces in

part to the scientific question of how best to partition the constraint set

into easy and difficult subsets. As an illustration, consider the following

formulation of the traveling salesman problem from Gavish and Graves (1978):

n n
min Z = Z Z c ixij

i=l j=l i3

subject to:

(5a)

n
Z x.. = 1

i=l 1j

n
Z x.. = 1

j=l 1J

n n

Yi - Z Y..i = 1
j=l ] j=2 3
jai jai

Yij < (n-l)xij

j = 1,2,...,n

i= 1,2,...,n

i = 1,...,n
j = 2,...,n i j

xij = 0,1, Yij > 
IJ ij ~-

(5b)

(5c)

(5d)

(5e)

(5f)
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Here, x.. denotes the inclusion of the arc connecting node i to j in the

Hamiltonian circuit, while Yij may be thought of as the flow along that

arc. Three possible Lagrangean relaxations are suggested by this formula-

tion. First, by dualizing on the constraint set (5b) or (5c), we obtain

the relaxation given by Held and Karp (1970, 1971), a minimal cost 1-tree

problem. An alternative relaxation is found by dualizing on the constraint

set (5d); here, the resulting Lagrangean can be seen to be an assignment

problem. Finally, by dualizing on the forcing constraints in (5e), the

Lagrangean separates into an assignment problem in the {x. } variables and

a minimum cost network flow in the {Yij } variables. The best Lagrangean

depends upon the particular problem specification.

Returning to the general IP problem P(y), we can see that some formula-

tion tricks can be interpreted as manipulation of the set X to make it easier

to optimize over; e.g., eliminating non-binding logical constraints, tighten-

ing upper bounds on the variables, etc. In addition, the form of L (u;y)

suggests that we may be able to ignore the magnitudes of the coefficients in

the system Ax < y since small round-off errors would tend to cancel and could

be at least partially accounted for by corresponding variations in u. The

validity of this observation is an open research question. As we shall see,

the magnitude and accuracy of the coefficients in Ax < y has an effect,

probably an important one, on whether or'not there is a duality gap between

P(y) and D(y).

Resolution of duality gaps for P(y) is achieved by the application of

elementary number theory to strengthen the Lagrangean. The number theoretic

procedures are usefully formalized by abelian group theory. First, we need
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to reformulate the primal problem as

v(y) = min cx

s.t. Ax + Is = y P(y)

x X, s > 0 and integer.

Let Zm denote the abeli-an group consisting of integer m-vectors under ordi-

nary addition. Let G denote a finite abelian group and let denote a

homomorphism mapping Zm onto G. For the moment, we ignore the rationale

for G and . Methods for their selection will be clear after we show how

they are used.

The homomorphism is used to aggregate the linear system Ax + Is = y

defined over the infinite abelian group Zm to a group equation defined over

the finite abelian group G. The group equation is added to the Lagrangean

L (u;y) = -uy + min {(c+uA)x + us} (6a)

n m

s.t. Z (aj)x. + Z (ei)s = (Y) (6b)
j=l i=l

x X, s > 0 and integer (6c)

where ei
= ith unit vector in Rm , a =jth column of A.

Although P(y) has been converted to an equality problem, the vectors u

are still constrained to be non-negative because L (u;y) = - o for all other

dual vectors. The new dual problem is

w (y) = max L(u;y)
D (y)

s.t. u> 
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We define for all z G the sets

H(a) = {(x,s) I (x,s) satisfy (6b) and (6c)

with group right hand side in (6b)}.

Similarly, we define the function

Z (u;S) = min {(c+uA)x + us}
(7)

s.t. (x,s) H

For any SaEG and any y Zm such that (y) = 8, problem (6) and (7) are

connected by

L (u;y) = -uy + Z (u;a)

Problem (7) is a group optimization problem with side constraints deter-

mined by the set X. The size of G largely determines the relative computational

effort to solve (6). If X simply constrains the x. to be zero-one, or non-

negative integer, then it can be efficiently solved for all c G for groups

of orders up to 5,000 or more (see Glover (1969), Gorry, Northup and Shapiro

I(1973), Shapiro (1979b)). If X contains fixed charge constraints defined over

non-overlapping sets, efficient computation is still possible (Northup and

Sempolinski (1979)). More generally, the effect of various side constraints

in group optimization problems has not yet been fully explored (see also

Denardo and Fox (1979)). Nevertheless, this is a future research direction

of significant importance and promise.
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The first version of global optimality conditions can now be adapted

to the new Lagrangean.

Global Optimality Conditions (Version Two): For a given primal problem

P(y), the solutions (x,s) H and u > 0 satisfy the global optimality

conditions if

(i) L (u;y) = -u + Z (u; (y))

(ii) Ax + Is = y-.

The complementary slackness condition of version one has been omitted because

the inequalities were replaced by equations. As before, (x,s) is optimal in

P(y) and u is optimal in D (y) if the global optimality conditions hold.

With this background, we can make some observations about how the data

of an IP problem affects its optimization. We define the degree of diffi-

culty of the IP problem P(y) as the size of the smallest group G for which

there is a homomorphism mapping Zm onto G such that the globai optimality

conditions hold relative to some u that is optimal in the induced dual problem.

A degree of difficulty equal to one for some P(y) means that the simple

Lagrangean L defined in (4) will yield an optimal solution to P(y) via the

first version of the global optimality conditions. Primal problems with small

degrees of difficulty are not much more difficult to solve. These constructs

permit us to study analytically the sensitivity of an IP problem to the data.

For instance, there can be a great difference between the degree of difficulty

of P(y) and P(y - e). Shapiro (1979c) presents results characterizing the

degree of difficulty concept.

A more flexible approach to IP problem solving is achieved if we view

the constraints Ax < y as somewhat soft, in that we may tolerate some slight
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violations. If this is the case, we may be able to compute much more easily

an optimal solution to P(y) for near y because the degree of difficulty

of P(y) is much less than P(y). Moreover, each solution of the group opti-

mization problem (7) for all e G yields optimal solutions to IGI primal

IP problems. Letting x(u;8) and s(u;3) denote an optimal solution to (7)

with group right hand side , we can easily show by appeal to the second

version of the global optimality conditions that this solution is optimal in

P(Ax(u) + Is(u)). This is the principle of inverse optimization that has

been studied in detail for the capacitated plant location problem by Bitran,

Sempolinski and Shapiro (1979).

For studying the resolution of duality gaps, we find it convenient to

give an LP representation of the dual problem D (y). Letting (x ,st) for

t = 1,...,T denote the solutions in the set H(~(y)), the dual problem D (y)

can be re-expressed as the large scale LP

w(y) = min (cxt )At
t=l

s t.
s.t. Z (Axt + Ist)X = y

t=l

(8)

T
E X. = 1

t=l

>0
t -

The following theorem characterizes when duality gaps occur and provides the

starting point for resolving them.
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Theorem 2: Let Xt > 0 for t = 1,...,K, Xt = 0 for t = K+1,...,T, denote an

optimal solution found by the simplex method to the dual problem D (y) in the

form (8). If K = 1, then the solution (x ,s ) is optimal in P(y). If K > 2;

then the solutions (xt ,st) for t = 1,...,K are infeasible in P(y).

Proof: See Bell and Shapiro (1977).

In the latter case of Theorem 2, the column vectors Ax 1 + Is ,...,Ax + IsK

are used to construct-a super group G' of G and a homomorphism ' mapping Zm

onto G' such that Z (u;(y)) > Z (u;4(y)) for all u > 0. Specifically,

the solutions (xt,st) for t = 1,...,K are infeasible in (7) for the new group

equation. Thus, the new dual problem D (y) is strictly stronger than its

immediate predecessor D (y). The procedure is repeated until a dual problem

is obtained that provides an optimal solution to the primal problem.

Following the construction of Bell and Shapiro (1977), the size of the

group G' depends on the size of G and the magnitude of the coefficients of

the columns Axt + Ist for t = 1,...,K. Clearly, the scale selected for the

constraints Ax < y plays an important role in determining the size of the

group encountered and the degree of difficulty of the IP problems of interest.

It is far better to measure resources yi in tons rather than ounces, depending,

of course, on the nature of the application. Recently Bell (1979) has derived

some new procedures that permit the construction of a supergroup G' satis-

fying in many cases IG'I = 21GI or IG'I = 31G, regardless of the magnitude

of the coefficients. Further theoretical and empirical research is needed

to understand the importance of scaling to IP optimization.
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Heuristics and approximation methods are the third research area that

has an important bearing on understanding and achieving efficient IP problem

formulations. The heuristic methods can be viewed as working backwards

from IP and combinatorial problems with favorable problem structures towards

more complex problems to extend the applicability of efficient solution

methods. For example, Cornuejols, Fisher and Nemhauser (1977) have derived

a "greedy" heuristic similar to an exact algorithm for the spanning tree

problem for a class of uncapacitated location problems. The theoretical

efficiency of the heuristic is evaluated using Lagrangean techniques. This

approach suggests that, when appropriate, IP and combinatorial models should

be selected so that they resemble as much as possible simpler models for

which efficient solution methods are known.

The inverse optimization approach mentioned above is an exact approxi-

mate method providing optimal solutions to some primal problems that hopefully

are in a close neighborhood of a given primal problem. This approach can

be usefully combined with heuristics to modify the optimal solutions for the

approximate problems to make them feasible in the given problem. More

generally, specification by the user of a parametric range of interest for

the problem specification might make analysis easier if it eliminated a

slavish concern for optimizing a specific troublesome problem. A related

point is that the branch and bound approach to IP and combinatorial optimiza-

tion generally allows and even relies upon termination of the search of

feasible solutions with a feasible solution whose objective function value is

written of being optimal, where is a prespecified tolerance level.
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4. Conclusions

We have discussed in this paper how efficient IP and combinatorial

optimization is highly dependent on problem formulations and data. We

also surveyed a number of seemingly unrelated formulations tricks that have

been discovered to help achieve efficient formulations. Finally, we argued

that formalisms based on Lagrangean techniques, elementary number theory

and approximation methods provide a scientific basis for understanding

the tricks. Moreover, the formalisms suggest a new research area devoted

to numerical analysis of IP and combinatorial optimization problems.

The application of principles of efficient problem formulation is best

achieved at the problem generation stage. One example is the cited approach

of Krabek (1979) who developed automatic procedures to tighten up MIP

problem formulations prior to optimization by a commercial code. Northup

and Shapiro (1979) report on a general purpose logistics planning system,

called LOGS, that generates and optimizes large scale MIP problems from

basic decision elements specified by the user. Many of the MIP problem

formulation tricks can be brought to bear on the specific MIP model generated

from the decision elements.
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