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ABSTRACT

This paper surveys the inventory control problem in pure inventory systems

and the detailed scheduling problem in the job shop and assembly line environ-

ments. Conditions under which inventory control systems may be substituted for

production scheduling systems are briefly reviewed. The paper concludes with a

discussion of the difficulties in integrating (production scheduling) inventory

control systems with detailed scheduling systems.
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Inventory Control

I. Introduction

This paper surveys the inventory control problem for pure inventory systems,

an analogue of the production scheduling problem. The pure inventory system in-

volves no production; instead, goods are purchased from outside suppliers, pos-

sibly repackaged or merchandised, and then sold to the concern's customers. Ty-

pical examples of pure inventory systems are wholesale and retail concerns.

The problem is to determine the order size for every item either in a dis-

crete or continuous time frame. Optimal policies will be developed, for varying

demand conditions,as well as practical solutions. Finally the use of inventory

control systems in production settings will be explored.

II. Cost Structure and Definitions

The multi-stage inventory and distribution system has been ably covered by

Karmarkar [20]. The only addition to this area will be in the production setting

and this will be at the end of the paper. In this section the single location

problem is covered.

In the general case, a single location (as a plant, warehouse, or store)

inventories n separate items or products. These are ordered from m outsider

suppliers (m - n). Each item has a demand distribution (in each time period) and

a lead time distribution.

The ordering cost structure involves a fixed cost and a variable cost de-

pendent on the order quantity. This variable cost is usually concave and/or non-

continuous (Figure 1).
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Figure 1: Total Ordering Cost of Item i

$ Total Cost

order quantity, Q; units

In the simplest case, the variable cost is linear. However, a variety of

quantity discounts are common. Some examples are:

(1) $ c/unit for the first x units ordered

$ d/unit for the next y units ordered

$ e/unit for the next z units ordered

$ t/unit for the next p units ordered

where c d e . t

(2) $ c/unit if the amount ordered q is x

$ d/unit if x <q < y

$ t/unit if s - q < w

where c > d > t; x y ... - s -w

If several items are ordered from the same supplier, there may be a shared

fixed cost as well as a fixed cost per item. Price breaks may also be a function

of the joint order size.

This cost structure is assumed to include both transportation and purchase

costs. (Given the separate cost structures, they may be combined to yield the

joint structure as assumed).

Once an order is received, there are costs associated with its storage and

handling. These are referred to as inventory holding costs, encompassing costs of

I
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obsolescence, insurance, handling, damage, interest on investment, and security

to name the major components. Normally these are assumed directly proportional

to the inventory investment in dollars. As a simplification, this proportion is

usually given as a percentage from 12 to 25%.

The last cost structure is associated with demand satisfaction. If the final

selling price of the item has been fixed, the relevant costs are all associated

with unsatisfied demand. Unfilled orders may be lost, or backordered until stock

is available. Again, there are several cost structures possible: the back order

may involve a fixed cost (due to paperwork) and a variable cost (a loss due to a

delayed cash flow and/or an implicit cost charged for customer impatience with

resulting loss of goodwill and possible reduced demand in future periods). The

variable cost may be per unit backordered and/or per unit time. It may be a con-

cave or convex function.

This completes the relevant costs. In the general case demand for an item

is assumed to be stochastic and' possibly correlated with demand for other items.

Order size may be bounded, either jointly (when storage space, dollar investment,

etc., are constraints) or individually (when suppliers or transporters place lim-

its on order quantities accepted).

III. Models

The literature is replete with solutions to specialized cases of the above

problem; solutions for perishable items, multiple fixed cost structures, low de-

mand items, and on. It would be a lengthy chore to enumerate all the special

cases that have been dealth with, so instead, the most important cases will be

dispatched.



4

A. Deterministic Models

1) Historically, the earliest result is the Wilson (or Harris) lot size for-

mula. Under constant, continuous, deterministic demand, with a deterministic

lead time and delivery rate, and fixed ordering cost with linear variable costs,

the yearly total costs can be written as a function of the lot size alone (see

Table 1). This is a convex function and is minimized with respect to Q, the order

size. This case can be extended to include backorders (assuming a fixed cost

and linear variable cost).

Differentiation of the total cost equation produces the well known square

root formula. This model is not sensitive to errors in its parameters which is a

desirable feature.

With a deterministic lead time, this model can be extended into an inven-

tory control system, regulating order frequency as well as order size. (Referring

to Figure 2 on Table 1). The order point is defined as the inventory level at

which to place an order. For the no-backorder case, given deterministic demand,

the order point is the lowest inventory level at which an order can be placed

without running out of stock before replenishment arrives. This level is thE!

lead time demand (the lead time * the usage rate). If backorders are allowed,

the level of backorders desired is subtracted from the lead time demand to cal-

culate the order point.

Now the following inventory control system exists: when the inventory

level reaches the order point (O.P.), order the order quantity (O.Q.), abbreviated

an (O.P., O.Q) or (Q,r) system. Note that a continuous review of inventory is

implicitly assumed, though not necessary if assuming deterministic demand. Given

the usage rate and the current inventory level, the date of the next order is

predetermined.
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This model is optimal given that the extremely restrictive assumptions are

realistic.

The final complication treated in this section is quantity discounts. These

iare normally quoted as a step function of the order size, not as a continuous

function. This means that our methodology (of differentiating a cost equation)

is not applicable. Instead, direct comparison of total cost is often required.

A method of solution is given in Table 2.

2) Dropping our assumption of constant, and continuous, demand

(while still retaining all others), results in the dynamic lot size problem. This

has been solved by Wagner and Whitin [36] and is discussed in the paper on pro-

duction scheduling by Hax [14] (with extensions as noted).

3) If items are not independent but share a fixed ordering cost, or joint

quantity discount, their EOQ's (economic order quantities) must be calculated

jointly. In the former case, the total cost equation for all items involved in-

cludes a shared fixed cost. The cost expression is then minimized with respect

to the period between orders, assuming all items are ordered jointly. Bomberger

[2], Hanssmann [10], Standard and Gupta [28], and Hodgson [16] have all suggested

improved ordering policies. These reduce the total cost by ordering items with

relatively small demands at integral multiples of a basic review period.

When items are involved in joint quantity discounts, there are so many pos-

sible combinations of order sizes that optimization under general conditions (where

each item has its own demand and cost structure) is not computationally feasible.

Optimization would require dynamic programming with a state space of at least

the number of items. No references on this case have been discovered.

The last joint or multiple item problem occurs when constraints exist on the

use of some total resource. Common examples are constraints on total space,

weight, or dollar investment. The joint constraint again precludes individual
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optimization. This problem can be solved using lagrange multipliers, a stan-

dard method for constrained optimization [29].

4) Stochastic Models

a) (Q, r) systems - fixed order quantity - the Wilson lot size model

is extended to consider stochastic demand. Demand is assumed to be identically

independently distributed in every period. Again, an order point, order quan-

tity system is assumed. The expression for the average annual cost is written

and then minimized with respect to the order point and order quantity. The ex-

act formulation is complicated and usually bypassed in favor of several heuristic

treatments [9]. The difficulty arises from computation of the expected backorder

cost. Unless a convenient demand distribution is assumed, solution is even more

difficult as it requires calculation of the expected amount backordered during

a lead time (similarly for inventory on hand at the end of the lead time). Com-

putation of optimal policies requires an iterative search routine, usually a

computer procedure. As in any search procedure, local minima may be mistaken

for global optima.

This model has two assumptions that must be emphasized. For optimality,

there must be continuous review and demand must be in single units, i.e., the

order point cannot be overshot; there must be an ability to place an order pre-

cisely when the order point is reached. This usually means assuming a poisson

process generating function for demand (so demand occurs in single units). If

order size is also random variable it may not be optimal to order a fixed quan-

tity each time an order is placed. In this case an (S, s) policy is required;

(section II-3), a more general operating policy of which the (Q, r) policy is

a special case.

Normally, two approximate models are used in place of the optimal formula-

tion for computational ease.
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The first heuristic solution assumes that an arriving order always raises

the net inventory level above the reorder point. (The exact treatment allows

for a large number of backorders to accumulate over the lead time; this means

that arrival of outstanding orders might never bring the net inventory back up

to the reorder point, so that another order would never be placed. The exact

treatment defines the order point in terms of inventory position equal to net

inventory (or inventory on hand) plus on order minus backordered, alleviating

this problem.)

Now the expected cost of ordering, inventory holding and shortages can be

calculated easily. This expression is again minimized with respect to an order

quantity and order point. However, they must be solved for concurrently, as they

are functions of each other. Solution is possible using an iterative method

(Table -C) computing a value for Q, using that to compute r, substituting that

value in the correct expression for Q, etc.

The second approximate method used decouples the stochastic consideration

and leaves a deterministic problem. Instead of using a backorder (or stock out

cost), a desired buffer stock, defined as the average stock on hand when an order

arrives, is computed directly from a customer service level.

The customer service level can be specified in several forms, but usually

in one of the following:

1) percent of demand backordered per year

2) percent of orders backordered year

3) probability of a stockout per cycle

4) the fraction of time stocked out

From the designated service level, a safety factor k is calculated such that

k times the variance of the forecast error is the buffer stock. Then the order

point is the mean demand over the lead-time plus the buffer stock, and the order

quantity is the same as in Section I-1, the deterministic case.
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This is appealing both computationally and for implementation purposes. It

is easier for a manager to set a service level than to specify a backorder cost.

His implicit backorder cost, of course, can be calculated from the service level

he sets.

However, the independent determination of Q and r is unsatisfactory for situ-

ations with high implicit stockout costs, high variance in lead time demand

(forecast error) and/or low fixed cost per order. The order size can be traded

off against the size of the buffer stock (to decrease the percent of demand back-

ordered) because the order size determines the number of times per year that

stock-outs are possible. In these cases, the first heuristic is more appropriate.

b) (T, r) models - fixed period - in the previous model, stochastic

demand was absorbed by allowing the time between orders to vary. The alternative

procedure is to fix the time between orders and let the order quantity vary. A

review period system no longer requires a perpetual inventory; this feature ex-

plains its popularity over (Q, r) systems. A continuous review model requires a

computer system with no aggregation of events, a system that may not even be

feasible if cost effective.

In a (T, R) model, the inventory level is reviewed at the beginning of each

period (of length T) and an order is placed to bring inventory up to level R.

Again, we have three levels of models, exact, heuristic and decoupled.

In addition, the review period may be given or can be a parameter to

be optimized. Again, the average annual cost equation is written as a function

of M and r and then jointly solved, using a search procedure.

If we assume that an arriving order is always sufficient to satisfy any

existing backorders, we can solve the heuristic model using an iterative method

(as Newton's method).
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Finally, if we decouple the stochastic consideration, T is usually set equal

to the annual demand divided by the deterministic EOQ (resulting in the same period

as for the model in Section I-1). M is then set to the EOQ plus the mean demand

over the lead time plus a buffer stock as before.

c) Comparison of (Q, r) and T, R) systems: note that for the determin-

istic case, these systems are identical. In the stochastic case, the real differ-

ence in costs between these two systems lies in the system support and in the

buffer stock required for operation. A (Q, r) system requires a more elaborate

control system; however, it has a lower inventory cost.

The (T, R) system has an inherently longer planning interval (a lead time

and review period) than the (Q, r) system (a lead time). Any decision made at

the beginning of a period can not be corrected for until the next decision is

made and that future order received. This longer horizon normally has greater

uncertainty in usage and therefore, a larger buffer stock is required to yield

equivalent service level to a Q, r) system.

d) (S, s) systems - the following system is postulated: inventory is

reviewed at the start of each period; if the inventory on hand is less than s,

an order of size (S - s) is placed, if greater than s, no order is placed. This

system was developed by Scarf [24] building on earlier work by Arrow, Harris,

and Marschak [1]. Both the (Q, r) and (T, R) systems are subsets of this basic

policy; (Q, r) is the (S, s) policy for continuous review; (T, R) is the (S, s)

policy when no set up charge exists (note this implies that a (T, R) policy is

not globally optimal; that there is an inventory policy that is superior. How-

ever, given that a (T, R) policy is chosen for use (while the system is not op-

timal) optimal parameters can still be chosen for T and R).

Under the following conditions, the (S, s) policy is the optimal policy to

follow. Scarf allows a more general cost structure and demand distributions than

_ _ _11_1___ �_ ___
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previously considered in Sections 1 and 2. He considers an ordering cost c(z)

where z is the amount purchased; a holding cost h(-) for excess inventory and a

shortage cost p(.) for backordered demand.

c(z)'= 0 z = 0
k + c-z z> O

L(y) = expected holding and shortage costs in a period given an initial
inventory of y

f h(y- i) ( d + p( - y) () d ;y O

Or Pt 5_ Y) C() dg0
where = demand in the period and ~t) its probability density function.

The problem is to find the ordering decisions for an n period problem to mini-

mize the total expected ordering and inventory costs (holding and shortage), C (x)

where x is the initial inventory.

C) (c(y- x) + L(y) + a fcnl (y - i) (g) dJ

(assuming no delivery lag and a discount factor for further costs). Given the

above cost structure, it can be shown that Cn(x) is K-convex where K convexity is

defined as follows:

f(x) is K convex if K + f(a + x) - f(x) - af'(x) >0 a >0

V x

where K > 0 and f(x) is differentiable. If we further define
0

(a) Gn(y) = cy + L(y) + foCnl(y- ) 4(i) d

it is clear that it is optimal to order from inventory level x if there is some

y > x with Gn(x) > K + Gn(y), i.e., the gain from ordering due to lower costs must

be greater than the fixed charge k.

If we define Sn as the minimizing value of y in equation (a) and sn as

Gn(sn ) = Gn (S ) + K, then the policy designated (S, s n) is optimal. Any cost

function C x) that is k-convex is minimized using an s) policy. For the n

period horizon, there will be n pairs of these numbers.
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This clarifies why the ,R) policy is not an optimal policy unless k = 0.

An order is placed in every period regardless of the inventory level in relation

to s. If k = 0, then sn = Sn and this ordering policy is optimal.

Scarf extends this model to consider delivery lags.

Note that the one period problem is the classic newsboy problem; when k = 0,

L(y) is minimized.

Veinott and Wagner [31] explore the computation of S,s) policies. If demands

are assumed to be identical independently distributed random variables in each

period then sn = s and Sn = S in every period n. This is the starionary (S,s)

policy. Instead of using a dynamic programming formulation, more efficient compu-

tational tools are available (as renewal theory [19] that exploit the policy

property). If demand is not static but dynamic, dynamic programming can be used

to calculate the optimal policy. Naturally, it is recalculated each period as

demand materializes and the inventory position changes. If a computer dynamic

programming routine is available the calculation of finite horizon solutions is

rapid. Infinite horizon solutions are more difficult to calculate, but are more

of theoretical interest than practical use; if a twenty period problem with dis-

counted costs is solved, the effect of the 20th period is negligible on the current

decision; an infinite horizon seems unnecessary. However, for low cost, high vol-

ume, routine items the approximate models of Section 1 and 2 are sufficient. If

10,000 items are to be controlled, the 20 seconds computation time per item to

calculate (S,s) policies may be more costly than the potential savings. This is

especially true when demand is stationary and the period used large enough so that

an order is always placed with either a (T,R) or (S,s) system. This situation is

common in industrial settings and, therefore, the (S,s) policy is replaced by a

(T,R) policy for practical implementations.
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Excellent references for additional material on any of these models are

Scarf's survey of inventory techniques [25], Hadley and Whitin's book on inventory

systems [9], and Veinott's survey of inventory systems [33]. The latter is an

extensive survey that is difficult to surpass in any respect.

Further computational experience and a comparison of (S,s) performance to

approximate model performance is reported .by Wagner, et al. [37]. In particular,

several approximate methods for calculating S and s were explored. These were

found to be computationally efficient and near optimal.

(S,s) policies are no longer optimal when the cost function is not k-convex.

The simplest example of this situation is the case of price breaks; the unit cost

of an item is not constant. S will depend on the current level of inventory and

the price break structure. Given this more general structure for G (x)

Gn(x)

Xl x2 X3 x4 x5
Figure 4

a more general policy may be of the form: if x < x order to S1

x1 - x x2 do not order

x2 < x < X3 order to S2

x3 x < X 4 do not order

etc.

5) Special Cases

The following are examples of the more pathological situations. They are

often based on cases found in industry that did not conform to the usual model

assumptions.

a) The first situation is declining demand; when the item has reached the

end of its life cycle. Moore [23] uses the concept of an all-time requirement.
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As demand is decreasing non-linearly, EOQ concepts are inadequate, resulting in

overstocking. Smoothing forecasts also are inaccurate. Moore has found several

functions that potentially fit the log of demand data when plotted against the

log of the year (numbering the first year of sales decline as year 1).

b) Another unusual condition is the slow moving item [13]. Demand can

no longer be assumed continuous. The solution to the EOQ is to find the value Q

such that
Q(Q 1) - < S Q (Q + ) I

2 A 2 A

where Q -- EOQ; S = annual usage, I = holding cost per year per unit, A = set up

charge.

c) If an unusual measure of performance is desired, the usual optimal policy

may no longer be suitable. Hausman [11] discusses the situation when the measure of

performance used is a backorder cost per line item (independent of the volume of the

order). For the single stage, stochastic demand case, the total cost equation is

calculated under the new cost structure and then optimized with respect to the

order point and order quantity.

d) Demand may also be a partially deterministic and partially stochastic. A

typical case arises when a part is used in assembly operations and ordered by spare

parts dealers. The production schedule is known in advance giving deterministic

demand while demand for spare parts is stochastic. Stockout costs may be different

in each situation. This problem is a subset of work on inventory rationing poli-

cies given several classes of demand occur (Evans [7], Kaplan [18], Topkis [30],

Veinott [32]). Their results show certain critical rationing levels (for each

class of demand) such that demand for lower priority classes is backordered when

inventory falls below those levels. Veinott has shown conditions under which the

optimal rationing policy remains identical in all periods, reducing computation.

However, Evans and Kaplan have demonstrated that simple rules can often capture the

majority of the improvement optimal rationing policies offer with far less compu-

tation.
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Hausman and Thomas [12] indicate a procedure to calculate an optimal policy

for the combined deterministic-stochastic problem. The calculation involves dy-

namic programming, as most of the rationing problems do, at great computational

cost. Instead of calculating optimal policies, they find conditions under which

a (Q,r) policy would be appropriate and those for (T,R) system use.

IV. Application to Production Scheduling

The models discussed are appropriate in any situation where their assumptions

are realistic. The fixed charge may represent an ordering cost or a machine set-

up. Therefore, these same models can be applied to certain restricted production

situations. Instead of an outside supplier, the order will be produced internally.

The models in Sections II and III are single item, single stage models. This

implies that there is only one operation to be performed that transforms the raw

material into the final good. That operation has a setup associated with it

(possibly $0) and the final goods have a greater holding cost than the raw mater-

ials. Note that the raw materials are controlled with our previous models.

Most of the models considered were uncapacitated; there were no limits on the

order size and items were considered independently. In production, this case im-

plies excess capacity (both in facilities and manpower). If demand is nearly con-

stant for each item, use of (O.P., O.Q) control systems to schedule production

is feasible. Manpower planning is only required when demand, costs, or supplies

of raw materials,are not constant. Even if seasonal planning techniques are re-

quired, they may be supported by a modified inventory control system. This ap-

proach is detailed in the survey by Hax [14]. The last consideration involves

multistage production systems.

---11_11�_____
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V. Multi-Stage Production Models

The following is a brief survey of multi-stage production models. Before in-

vestigating specific models, it is necessary to define several multi-stage config-

urations.

a) serial - each stage has at most one immediate predecessor and successor

(Figure i)

raw final
materials good

Figure i. Serial Configuration

b) parallel - each stage is single with no predecessor or successor but

stages may share costs (Figure ii)

-IZ]-

Figure ii. Parallel Configuration

c) assembly - each stage has any number of predecessors but at most one

successor (Figure iii)

, 4;Yp~~

Figure iii. Assembly Configuration



d) arborescent - each stage has a single predecessor but any number of

successors (Figure iv)

Figure iv. Arborescent Configuration

e) acyclic - each stage can have any number of predecessors and successors

but, if stages are numbered, a stage numbered j can only be a predecessor of any

stage p for p>j (Figure v)

Figure v. Acyclic Configuration

f) cyclic or general - no restriction on the relationship between stages

In additional to optimal formulations, there are several practical heuristic

solutions as before. The simplest is to treat each stage independently, i.e.,

each stage might have a (Q, r ) system; when stage j reaches its O.P., it orders

from stage j-l. The order point and order quantity are calculated at a stage as if

the demand it faced were an independent random variable. This approach is an

obvious misuse of an (O.P., O.Q.) system. The demand that stage j faces is not

independent; it is sequentially dependent on the stages preceding it until final

customer demand. In other words, more information exists than is being used.
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A second alternative is to eliminate work in process inventories. Demand on

the final stage n is exploded back through the system to the very first department;

when Department 1 is finished, Department 2 works on the components, etc.

In this approach, production reacts directly to realized demand. All work

in process inventories are eliminated at a cost of an increased number of setups

and a larger buffer stock at the final stage of the finished good (since the

lead time is longer). Finished goods usage dictates production so, in this case,

each department is treated as completely dependent.

A third option avoids many of the disadvantages inherent to these first two.

In a base stock system [22], each stage controls its ordering policy but based on

information of actual customer demand. Instead of each stage reacting to its suc-

cessor's ordering policy, it can produce when its own inventory level minus the

customer demand reaches its order point. In more sophisticated systems, the cus-

tomer demand may be lagged to indicate when that final demand will actually affect

that stage, i.e., when its successor stage will be ordering its EOQ.

Since the system is driven by actual and not generated demand from secondary

stocking points, uncertainty about final product demands is not amplified into

uncertainty over the timing of in-system needs. This latter uncertainty inherent

in the first option results in increasing variability of demand stage by stage,

as the EOQ's successively increase going back toward the first stage.

If a stage faces demands from several successors (several finished good re-

quire a given component), its total demand may be less irregular and an (O.P.,O.Q.)

system may be justified. However, if a finished product has many components, using

an (O.P., O.Q.) system to control each component will result in a very low proba-

bility that all these items will ever be in stock simultaneously. This will in-

crease the lead time and often lead to production congestion; several incomplete

orders will sit on the floor waiting for delivery of a component.
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This next section deals with optimal or near optimal results beginning with

serial structures. Hanssmann[7] solves the specialized problem of one time (stoch-

astic) demand with several classes of balking customers, given by the percent-

age of customers that will wait for the final good to be produced from work in

process inventory at stage i; i = 1 to n. The problem is to determine the op-

timal stocking level at each stage. Given these percentages and the demand dis-

tribution, these are determined by constructing the total cost (profit) function,

taking partial derivatives and solving the resulting set of linear equations.

Zangwill [28] considers production schedules under dynamic deterministic

demand with no backorders, concave production and inventory costs,with no capacity

constraints. He formulates the problem as a network flow, and then uses results

for single (production) source, concave cost networks to characterize an optimal

solution. These solutions are extreme flows, a flow with at most one positive

input to any node. This result suggests a dynamic programming algorithm to find

the optimal schedule. This approach is a further extension of the Wagner-Whitin

model to multi-stage (serial) production.

Many results for more general multi-stage cases can be simplified to the

serial case. The reader-should assume that any specialized case of a more general

situation is also encompassed.

The parallel case has been again treated by Hanssmann[7] . However, his

treatment is relatively uninteresting as he defines the parallel model as one of

independent single stage problems with some constraint on total inputs, outputs or

inventories (i.e., the capacitated case).

Continuing to the assembly case, CrOwston, Wagner and Williams [29] prove

that for deterministic, constant demand, no capacity constraints, instantaneous

production, no backorders, and constant marginal production costs, the ratio of

lot size between stage j-1 and j (where n is the final stage) must be a positive

integer. The optimal lot sizes are then solved for by dynamic programming.

�___
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Crowston and Wagner [5] extended these results to the dynamic demand case;

Solution is by dynamic programming or branch and bound (for the near serial case).

This problem (multi-stage with concave production and linear holding costs) is an

example of a Leontief substitution system, examined by Veinott [31]. His results,

in line with those of Zangwill, show that at least one optimal solution (in the

non-capacitated case only) is an extreme flow; or, production can occur only if

entering inventory is zero. Love [32] proves the added property for the series

model that if stage j produces in period t, stage j-l must also produce and if

stage j does not produce, stage j-l does not produce.

Crowston and Wagner's algorithm's solution time is linear with the number of

stages but exponential in the number of time periods.

For arborescent networks, Kalymon [33] assumes deterministic demand with no

backlogs, and linear holding and production costs (with setups). The "optimal"

schedule at the first stage is then used to generate "optimal sequences" at the

next stage and so on. Results from Veinott [31] are used to justify decomposing

the problem in this fashion. The algorithm is exponential in the number of fol-

lowing echelons (or stages). Each stage is solved by Wagner-Whitin.

It may be that improved branch and bound, best bud growth, and dynamic pro-

gramming techniques, as well as faster computers may aid in the computational speed.

In acylic networks, Zangwill [34], assuming deterministic dynamic demand,

backlogging and no capacity constraints again constructs a Wagner-Whitin type

dominant set that contains the optimal solution. The last stage's requirements

are used to construct the partial dominant set which then become the requirements

for stage n-l and so on. Dynamic programming then is used to solve for the op-

timal solution. Computationally, the series and parallel cases may be solved.

Simpson [35] first deals with the serial base stock situation. Under stoch-

astic demand, deterministic processing times, and for given final service time,

Simpson proves that each stage will either carry no W.I.P. inventory or the full
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base stock (EOQ and buffer). For the acyclic case (any number of predecessors and/or

successors), the demand 'at any stage is the sum of the demands drawing

on it.

The general case has not been dealt with extensively. The only reference is

to Henshaw [36].

In the case of seasonal multi-stage production, Crowston, Hausman and Kampe

[37] assume no capacity constraints, an assembly model,bayesian updating of the

demand distribution each period and no setup costs. The case of end of season

delivery can be solved by dynamic programming but the case of delivery require-

ments each period is not computationally feasible. Instead, several heuristics

are compared; the majority are newsboy type with various modifications of the

average cost in intermediate stages and periods. One interesting aspect covered

is the problem of long lead times in predecessor stages. Production in any stage

is limited by the minimum production in any predecessor stage.

In summary, the multi-stage problem has not been convincingly solved. The

general case is pruned by assumptions until its structure allows solution by a

chosen technique. Capacity constraints are often waived, allowing concave network

solution techniques. Linear costs without setup charges allow linear programming

solutions. Small problems can be attacked with non-linear search techniques, etc.

In the meanwhile, there is a great gap between the optimal formulations and prac-

tical implementation.
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TABLE 1

case (a) no backorders

Q = lot size (in units)
A = annual demand in units.)
S = fixed ordering cost (in $)
r = holding cost per $ of inventory
C = purchase cost per unit (in $)
p = delivery rate (units/period)
u = sales rate (units/period)

T.C. = (Total Cost)= [S] + [rC

setting T.C. 
Q 0; Q =

n rC(l -

Inventory
Level

O.P.

(1 - ) Q ]p 2

U)

l-U)P
Inventory = Q (1 - )

2 p

lead time
Time - e

Figure 2

case (b) backorders [3]; backorder cost structure is linear and proportional to the
length of the backordered period

same as above, except

Imax
Cs

= maximum inventory level

= shortage cost-per unit time

CH = holding cost per unit time

.Imax

Inventory
Level

iQ l X t2,. __2... .

Time

Figure 3

per year

II I %_ _ ~O _ . -I 

�--i---- -------
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TABLE 1 (continued)

T.C. =

S.A + CH Imax + C
Q H 2Q s

as t = Q - Imax ,t = Imax2 A 1 A

. by 'TC and aTC = O
AQ 6Imax

Q = 2SA/CH

x = 2SA/CH

(Q- I )2max
2Q

CH + CSH c s
C

C
'CH + Cs

case (c) stochastic (O.P.O.Q.) [8]

Let L(t) = net inventory at time t
d = lead time

'f(x/d) = conditional for demand given a lead time of d
B = cost of a backorder (cost per unit backordered)
Lc = the order point

p = mean demand over the read time

Net
Inventory

L(t)
L
C

Figure 4

I
Ma
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TABLE 1 (continued)

OD

+rC [2 + L - ] + . f (x - L ) f(x/d) dx

c

6TC AS + rC AB 
Q 2 2 2 2

-Q Q I

6TC

6LC
= rC + ABQ

(x - Lc) f(x/d) dx = 0

[
L [ L (x-L c) f(x/d) dx] 0Sc C

an iterative solution technique is given in Hadley and Whitin [9]

case (d) stochastic (T,R) [8 1 T = period length (fraction of a year)

S AT B
T.C. = + rC [M - - 2 ] +T fM (x - M) f(x/d + T) dx

if T is fixed, then

6 TC rCT
M -> f(x/d + T) dx = r CT

if T can also vary, the iterative procedure of section c is again required
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TABLE 2 [1 3]

FINDING OPTIMAL ORDER QUANTITIES WITH QUANTITY DISCOUNTS

Frequently purchases quantities must be chosen not only with
costs but also with vendor's discount schedules considered.
we have the following price ranges:

Quantity Purchased

ordering and carrying
Suppose, for example,

Unit Price

O Q < uI

12 <- Q < U2

!i Q Ui

Ci > Ci+]
and

C1

C2

Ci

u. = +

The optimum purchase quantity can be determined as follows. First compute the order
quantity., Qi for each price range by means of the expression

1

Q i = i Qi

*\i Uwhere Q is given by:

where Q is given by:

if Qi < ii

if 1i < Qi <

if Qi

ui

ui

* | /2AS
i rCi

Then, proceed as follows:

(1) Choose the highest value of i for which Qi = Qi (there will always be
at least one such Qi); call it Qk'

(2) Test all other discount levels C., Jk, by computing the total inven-
tory costs associated with that evel TC(j) and compare it with TC(k),

TC(j) = CjS + +j A
2 Q_ .2

and

TC(k) = c + rCkk SA
k 2 + . /

(3)

where

(4).

(5)

The optimum discount level j corresponds to that value of j such that TC(k) - TC(j)
is the maximum positive value. If all TC(j) are greater than TC(k), then the level
k is the optimum.

where

l
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1. INTRODUCTION

The detailed scheduling decision involves the assignment of men and machines

to specific operations during a given time interval. The scheduling of a large

system involving hundreds of employees and work centers and thousands of jobs is

incredibly complex, at least to academics. Surprisingly, Pounds [50] was unable

to find anyone in industry who was responsible for detailed scheduling and re-

cognized that he had a scheduling problem. Pounds infers that: "The job-shop

scheduling problem is not recognized by most factory schedulers because for them,

in most cases, no scheduling problem exists." Obviously, there are alternatives

to precise, detailed, optimal scheduling.

The detailed scheduling problem is imbedded in two mutually exclusive envir-

onments, the job shop and the assembly line. Intermediate situations, such as

a flow shop or batch processing on an assembly line will use methodology from

one of these two settings.

In either setting, however, we will assume that there is a job generating

process. This may be an inventory control system, a production scheduling sys-

tem, or just customers walking in off the street,

2. THE JOB SHOP

Our initial section will examine job shop scheduling. The following defi-

nitions are required (Conway et al,[12]) A job is a collection or set of opera-

tions with a precedence ordering on the operations. An operations has three

attributes; it is associated with a job, a machine, and a real number repre-

senting the processing time of the operation on the machine (or possibly a

probability distribution). A machine is simply a time scale with intervals

available for processing. A job shop is the set of all machines. Sequencing

is determining the ordering of operations on a single machine. Scheduling is

--- --- I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~..
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assigning each operation of each job onto the time scale of a machine, within

the precedence relations postulated, with no overlap of operations in an

interval.

There are also several implicit assumptions which will be stated here and

then taken as given. All operations are well defined and known for a job. All

jobs must eventually be performed; the resources and facilities are entirely

specified. The precedence relations are known.

The specific scheduling problem is classified by six attributes: the num-

ber of jobs and number of operations/job to be processed, the number and type of

machines in the shop, the disciplines restricting assignment, the criteria for

schedule evaluation, the arrival process of jobs, and whether operations are

assumed to have deterministic or stochastic processing times.

Some further notation:

ri = release time; for each job i,the time the job is released to
the shop floor

di due date (when the last operation should be completed)

ai = ai - ri = allowance for time in the shop

Each job has a set of gi operations where

mi ,1 pi ·, 1 where
mi 1 l machine number to do the jth
1i : 1 operation of job i

mi', g Pi' gi
pij = the corresponding processing time

Pij = P. is independent of our scheduling decisions and is assumed to include

setup and teardown times. This means that the changeover time is independent

of the sequence chosen (on a machine).

Wij = waiting time before jth operation of job i

C = completion time of job i = ri + p + W.

Fi = flow time of job i = Ci - ri

: lateness = F - a. C. r
(this can be positive or negative)
(this can be positive or negative)
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T. = lateness = maximum (0, L)

Ei = earliness = maximum (0, - Li)

Most theoretical works use simple measures of performance (M.O.P.) to increase

the prospect of finding a solution. These are usually minimize the average or

maximum of completion time, flow time, lateness, or tardiness. More complex cri-

teria consider weighted sums of simple criteria, or involve the variance of these

measures.

The details of a scheduling problem are usually abbreviated in a four para-

meter notation A/B/C/D where A describes the job arrival process, B the number of

machines in the job shop, C the flow pattern in the shop, and D the criterion for

evaluation or measure of performance.

A flow pattern describes the job transfer matrix, the percent of jobs trans-

ferred from machine i to j. A flow shop has positive entries in any row i only

for j>i; a job shop (theoretically) has a completely dense matrix; the general

shop has an arbitrary pattern. These are lettered F, R, and G respectively

(figure 1).

The job arrival process is classified as static or dynamic. In the static

case, all the jobs arrive simultaneously at time = T. This is signified by setting

A to the number of jobs (usually 1, 2 or n, the general case). In the dynamic

case, A identifies the probability distribution for the interarrival times of

jobs.

The job shop may or may not be attached to a larger facility. If it is, or

has regular customers, it often is a closed job shop. This indicates that opera-

tion masters (documents giving the job's routing, material requirements and speci-

fications) already exist. Demand for certain products can be forecast with ac-

curacy. This allows production to final goods inventory. In the open job shop,

each job may be unique. A new operation master is written for each job. Instead

of forecasting final good usage, machine work loads must be estimated.
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Figure 1
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3. JOB SHOP RESEARCH

Job Shop Research separates into analytical solution of "simple" models

and simulation of realistic models.

A. The Sequencing Problem (Giffin, [24]). The problem that has been given

the greatest theoretical attention is the one machine shop. Under varying con-

ditions of job arrival, measures of performance, and assumptions on regular and

overtime costs, this problem has been solved convincingly.

(Note that the rationale for using minimize F, the mean flow time, as a

measure of performance in sequencing research is that it minimizes work-in-process

inventory.)

1) The static, n job, deterministic processing time, minimize mean flow

time (F) problem. This is the classic, and original, sequencing problem. The

total elapsed time to complete the n jobs is sequence-independent, but arranging

jobs in order of shortest processing time (S.P.T.) minimizes F. If each job has

a different $ value, and therefore a different holding cost per unit time, the

jobs should be arranged by weighted S.P.T. to minimize weighted flow time; or

PDI P[2] P[n]
_(1) ___' ' '2 __ where P[i] is the processing time

u[] u[2] U[n]

for the job in the ith position and u[i] is its weight or $ cost/unit time.

If the total processing time is sequence dependent (i.e., as in color changes

in injection molding), we are faced with the traveling salesman problem and SPT

is no longer appropriate. For this version, the usual M.O.P. is total processing

time (Fmax) which is equal to the sum of the processing times and the setup times)

n n
(2) F Fn) S + Z P.

max (n) (i-1)(i) i
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n
Since Pi is fixed, we are minimizing Jl S i l)(i) to min Fmax. This

problem has been solved by Little et al [39] using branch and bound.

2) The sequence-independent problem can be solved for intermittant

arrivals (the dynamic case). More terminology is required. Pre-emption refers

to interrupting a job on the machine to process another. Pre-empt-resume means

that a job has the same total processing time despite being interrupted. Pre-

empt-repeat means that all processing up to the interrupt is lost.

If pre-empt resume is assumed, SPT is still optimal. The partially com-

pleted job is treated as a new job with a processing time equal to its remaining

time. When a new job arrives, the jobs are reordered and the current job pre-

empted if appropriate. Under pre-empt-repeat, no general results exist. Infor-

mation on impending arrivals is necessary for general rules.

3) If we further consider regular time, overtime and work shifts, an

interesting situation arises; weighted SPT is no longer optimal in minimizing

F (Gelders and Kleindorfer [23]). An infinite time horizon is now divided into

periods of regular time, overtime, and down time. Using weighted SPT may mean

that the next job can not be completed before the end of the regular time period,

while a job with a higher weighted SPT could be completed in the remaining period.

n! permutation schedules must be examined to find the optimal schedule.

4) Weighted tardiness as a measure of performance (in the static and

dynamic cases): McNaughton [43], Schild and Fredman [53, 54], Held and Karp [27],

Elmaghraby [19], Emmons [21], Srinivasan [56] and Shwimer [57], as well as

others, have produced scheduling algorithms.

5) Two further model improvements are consideration of stochastic proc-

essing times and job priority classes [24]. In the K-class system, class 1 jobs

have highest priority and are processed ahead of all jobs of a higher class (in

general, jobs in class i are processed before jobs of class j, j>l, independent

of waiting times). These models are amenable to queuing theory analysis, if the
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service time and interarrival time distributions are judiciously chosen. When

Fwith measure of performance (or work in process inventory or mean waiting

time) the optimum priority assignment within a class is

E(tl) E(tz) E(tj)

C1 C2 Cj

where E(ti) is the expected processing time of the job in the ith position and

Ci its delay cost per unit time.

6) A further complication is required precedence among jobs (Conway et al,

[15]). In the most general case, job b is required to precede job c, but b and

c are not required to be adjacent. Conway, Maxwell and Miller have solved this

problem for the static case to minimize mean flow time.

7) The following are examples of current research papers. Merten and

Muller [44] consider minimizing the variance of flow time as a M.O.P. They show

that the schedule that minimizes the variance of flow time is the antithesis of

the schedule that minimizes the variance of waiting time (where a schedule

R = [il i2...in] has an antithesis schedule R1 =[in in 1] where the jobs are re-

versed in sequence).

However, a procedure for finding minimum variance schedules is not

obvious.

Lawler [37] proposes an algorithm to find optimal schedules for a

sequencing problem with arbitrary job precedence constraints. Each job has a

cost function based on its flow time and the sum of costs is to be minimized.

Balut [4] has solved the sequencing problem under stochastic setup

and processing times with an objective of maximizing the number of early jobs.

Surveys of the sequencing problem can be found in [24] and [25].
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B. Parallel Machines [15]. The shop structure is enlarged to m identical

parallel machines. Arrival is static. There are n jobs. Assume a job must be

processed on a single machine. The problem is to partition n jobs into m sub-

sets and determine the sequence for processing within each subset. Not sur-

prisingly, the jobs can be ordered in terms of increasing processing time and

then simply assigned to machines 1 to m in rotation (operationally, as soon as

a machine becomes free, assign it to the job with minimum processing time).

This rule minimizes mean flow time.

C. The Flow Shop [15]. This is the next level of complexity in scheduling.

As from the definition, there can be several paths through the shop. However,

all movement between machines within the shop must be in a uniform direction.

It is worthwhile noting that at this point analytical solution begins to

pale before the combinatorial problems inherent to the multi-machine, multi-job

case. Simulation becomes the major and most useful recourse.

1) The two machine flow shop - (a ubiquitous reference in any scheduling

bibliography). Johnson [34] solves this problem under static arrival to minimize

Fmax of n jobs. Conway, et al [15] suggest that the importance of this work stems

not from the actual algorithm which is intuitive, but first, from using Fmax as

a M.O.P. and, second, from proving optimality. Let A. be the processing time

(including setup) of the first operation of the ith job. Similarly, B for the

second operation. Then Fmax is minimized when job j precedes job j + 1 if

min (Aj, Bj+l)<min (Aj+, Bj). The rationale is to put the smallest Ai first

so the second operations can begin as soon as possible and the smallest Bj last

so the total processing can be completed as soon as possible after the last

operation on machine 1 is finished since

n
Fmax A[i + B[n] andmax i i]n]

Fmax A[1] + iEl B[i]
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2) The same problem when F is used as the criterion becomes very dif-

ficult. Johnson's procedure is not optimal and no constructive algorithm com-

parable to Johnson's is known. Ignall and Schrage [29] have applied branch and

ibound technique to the problem. Unfortunately, their solution method doubles

in computational difficulty each time n is increased by one. However, their

solution also allows solution of the n job 3 machine problem with F max as the

M.O.P.

3) The m machine shop-Analytical work is scarce once beyond the three-

machine flow shop. At this point, complete enumeration, branch and bound and

integer programs are computationally ineffective. A problem with n jobs and m

machines has (nl)m-2 possible schedules For m = n = 6, this is a mere 2.7 x 10ll

schedules. This brings us near the realm of difficulties unleased by the gen-

eral n job m machine job shop problem.

The flow shop assumption reduces the search in that one only need

consider schedules in which the same job order is followed on the first two ma-

chines (Conway et al, [15]). This is proved by contradiction; if not, a schedule

could be improved by attaining this state. If Fmax is the M.O.P., a stronger re-

sult is true; that only schedules with the same job order on machine 1 and 2, and

m-l and m have to be considered. The proof is similar.

Dudek and Smith [17], extending the work of Dudek and Teuton [18],

have proposed an algorithm to minimize Fmax for the n-job m-machine flow shop.

However, only permutation schedules are considered; this is optimal under certain

restrictive assumptions but not in general. (A permutation schedule has n pos-

sible first jobs, n-l second, etc. for n possible schedules.) Their algorithm

begins with a "presequence" of scheduled jobs and then looks to extend the sequence

by dominance tests. If a job passes all tests, it can be added to the sequence;

otherwise, several sequences must be carried for further tests. Comparison be-

tween the number of sequences generated and the number generated in a total



37

enumeration shows the algorithm to be very effective. However, the problem for-

mulation, again, is restrictive.

number of machines number of jobs number of problems algorithm enumeration
m n worked (n)

3 3 15 2.067 6
4 20 5.000 24
5 20 11.100 120
6 20 18.350 720
7 15 15.100 5040
8 4 38.000 40320

5 3 15 2.333 6
4 17 7.882 24
5 18 21.444 120
6 15 54.200 720
7 3 80.670 5040

TABLE I [18]

Campbell, Dudek and Smith [8] have developed a heuristic to generate

approximate solutions to the above (restricted) problem. Their algorithm is not

computer-bound, adding to its desirability. The procedure generates (m-l) n-job

two-machine problems, then solvable by Johnson's procedure, as follows: for

machines 1 through K sum the processing times for each job; do the same for

machines K + 1 to m. Then using Johnson's algorithm, find the best solution for

Fmax. Change K and repeat. Find the lowest Fmax (K) and use that sequence.

This algorithm,again,is effective, giving an average error of 2.54% in

sequence time (compared to optimal sequences) for 340 problems ranging in size

from n = 3 and m = 3 to n = 7 m = 7. For larger problems (n and m20), the algo-

rithm was superior to Palmer's heuristic [49]. Calculation time by hand varied

from a few minutes for the n = 3, m = 3 problem to -32 minutes for the n = 10,

m = 15 problem. For permutation flow shop schedules, this is an effective heur-

istic solution procedure.

The general flow shop problem, however, remains combinatorially locked.
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D. The General Job Shop (Conway et al, [15]). The most general problem is

the scheduling of m jobs on n machines where each job may require processing on

any number of machines in any sequence. A complete enumeration for the 5 machine

5 job problem is (5!)5 schedules.

1) The two machine, two operations per job problem. Jackson [32] has

extended Johnson's results to the general job shop. This is the only analytical

solution in this section. Again, the M.O.P. used is Fmax (for n static jobs).

The jobs are partitioned in four groups; those with only one operation, on ma-

chine 1; those similarly on 2; those with 2 operations and sequence 1, 2; those

similarly on 2, 1. The latter two are each ordered by Johnson's procedure, as

if they were the entire work load. Ordering of jobs within the first two sets

is arbitrary as it won't affect Fmax. The optimal schedule is: on machine 1

run the jobs in [1, 2] before the jobs in [1], before the jobs in [Z, 1]; on

machine 2 [2, 1], [2], [1, 2]. This minimizes idle time on both machines 1 and

2. This is emphasized by imagining that there were no jobs in [2, 1]; the jobs

in [1], [2] and [2] are still optimally ordered.

2) The Integer Programming Formulation of the General Job Shop. The

formulation shown, also applicable to sections A, B and C, is by Manne [41].

Earlier formulations by Bowman [5] and Wagner [61] are more complicated.

Variables and constants:

a) Pik = processing time of job i on machine k

b) rij k = 1: if jth operation of job i requires machine k
O: otherwise

c) Tik = starting time of job i on machine k

d) Yijk = 1: if job i precedes job k on machine k (not necessarily
directly)

O: otherwise
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Constraints:

a) only one,job can be in process on a machine at any instant, i.e.,

either Tij - T ik P or T -T Pik ; so using the Y ijk variables,

(1) [M + Pjk] Yijk + [Tik - Tjk] Pjk

(2) [M + Pik] [- Yijk] + [Tjk - Tik] Pik

where M is a large number such that only one constraint from 1

and 2 will be binding.

b) operational precedents are stated by observing that ~ rij k Tik

is the starting time of the jth operation of job i. Therefore,

for all but the last operation of a job

(3) r [T + Pik .T
(3) k ijk [Tik ik k ri,j+l,k ik

This formulation gives:

nm variables Tik

m(n) (n-1)
2 variables Yijk

(m-l)n equations of type a

2(m)(n)(n-1) equations of type b

therefore,for the four machine, 10 job problem we have 220 vari-

ables, 390 constraints.

Objective functions:

a) minimize F: this is the same as minimizing the sum of the start-

times of the last operation of each job or minimize Z mk T
i k rimk Tik

b) minimize Fma : this requires an additional constraint

Er (T + P) Fk imk ik ik max

and then the objective is to minimize Fx
max
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c) minimize mean tardiness: the equation Ti - Ei = Fi -ai

is addedand the objective is to minimize Ti.

This tool has not been used frequently due to the lack of fast I.P.

codes. The size of the I.P. problem increases so rapidly as n and m increase

that I.P. and branch and bound would not seem to be effective scheduling tools

in the short run. A theoretical survey of the static general job shop problem

(to minimize Fmax) is given by Bakshi and Arora [3].

3) This brings us to the most effective and predominant research method

in job shop scheduling investigations -- simulation. (Refer for the meaning of

acronyms to Table I.)

Since the determination of a complete schedule for the n job general

job shop is seemingly impossible, the problem is partitioned into sequencing prob-

lems at each machine. The sequencing problem involves assigning a priority to

each job in a queue and then processing, in order of priority. These priorities

move the jobs through the shop instead of a schedule. A dispatching rule (or

priority assignment rule, for example, might be SPT. Most of the simulation re-

search has been devoted to evaluating possible dispatching rules.

Jackson [33] has proved that the following are sufficient conditions

to allow such decomposition without loss of optimality:

(1) the arrival of jobs is poisson

(2) the routing of a job depends only on a probability transition matrix

(3) the service time distribution of an operation is exponential

(4) the dispatching rule at a machine is independent of a job's

routing and processing times

Unfortunately, these are slightly restrictive assumptions.

More terminology is required; a local dispatching rule requires infor-

mation available at a single machine, a global rule requires information beyond

that available at a single machine.
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TABLE I

I. Usual Measures of Performance (either the mean, maximum, or variance of:)

a. flow time
b. tardiness
c. number of orders completed
d. percent of machine capacity utilized

(a. and b.'s relative importance may be gauged by a quotation from a job
shop foreman: "I'd get reprimanded for high work-in-process inventory,
but I'd get fired for too many late jobs.")

II. Several Dispatching Rules

a. SPT - shortest processing time
b. FCFS - first come, first served
c. SS - static slack -- the slack remaining when the job arrives at that

machine where slack is defined as the (due date - present date)
d. variations of SS; SS/PT - static slack/remaining processing time;

SS/RO - static slack remainin/number of operations
e. LCFS - last come, first served (first at the queue)
f. DS - dynamic slack - defined as [due date - (expected remaining

processing time + present date)] and variants DS/PT, DS/RO
g. FISFS - first in the system (or shop), first served
h. COVERT - a rule that uses the ratio of delay cost to processing

time, or c/t (c-over-t) to retain the benefits of SPT but reduce
extreme lateness

i. RANDOM - priority assigned at random (used as a control)
j. DDATE - priority assigned on the basis of due date
k. LPT - longest processing time
1. MWKR - most work remaining (as czprocessing time)
m. WINQ - work in the next queue (the first global rule) - priority

assigned on the basis of the sum of the processing times of the jobs
in the queue that each job will next enter

(a more complete list (with rule rationales) is in Conway et al, [15],
Chapter 11)

__
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While simulation permits relaxation of almost all assumptions (as: no transit

times from job to job, unlimited labor, several sequences possible) traditionally

these have not been relaxed. While the labor-limited shop has been explored

by Nelson [44], the majority of research assumes unlimited manpower, or a mach-

ine constrained shop.

Early research [7] was performed by Rowe [51, 52] (1958), Baker and Dziel-

inski [2] (1960), Conway, Maxwell, and Johnson [13] (1960). These initial studies

confirmed the feasibility of using dispatching rules. An interesting note is the

explanation for the simplicity of these initial models [15]. The original simula-

tions were programmed in absolute machine language and then in symbolic assembly

language, "a nontrivial programming task." When specific simulation languages

became available in the early 1960's, larger studies followed. Two of the more

massive were by Conway at RAND [11] and Nanot [46] at UCLA.

Fairly comprehensive results of simulation research are available in [15],

Chapter 11 (the most complete survey up to 1967), and [7], Chapter 14.

To summarize some of these findings (under the assumption of unlimited

labor):

1. SPT: SPT was found to consistently minimize mean flow time. However,

since it discriminates against jobs with operations with long processing times,

it has a high variance of flow time (several jobs wait for long periods).

Several schemes have been advanced to correct this deficiency. Conway and

Maxwell [61] tested three approaches. They alternated the SPT rule with a
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low variance rule (as FCFS) to "clean out the shop." This failed as the dis-

advantage of introducing the alternated rule (in increased flow time) were

judged greater than its advantage (a decrease in variance of flow time).

prop. of timeusinro of time mean flow time variance:flow time

0 (FCFS) 244.5 30,423
.20 230.3 67,375
.40 223.7 60,550
.60 215.8 67,757
.80 211.3 85,072

1.00 (SPT) 205.9 88,695

Results for a pure job shop with 6 machines, a sample size of 2,000 jobs
(20,000 for FCFS). From Conway and Maxwell [61].

TABLE III

The second approach was to truncate the SPT rule by imposing a limit

on the waiting time for an operation (or job). This was moderately success-

ful as seen in Table III.

rule F (mean flow time) variance, flow time

TS, 100 236.1 36,264
TS, 300 229.3 51,417
TS, 220.4 75,984
SPT 218.2 125,461

Results for a pure job shop with 6 machines, a sample size of 2,000 jobs.
From Conway and Maxwell [12]. (TS means truncated SPT; the number is approxi-
mately the maximum waiting time in a queue.)

TABLE IV

Their third attempt (with Oldziey) [59] was to use a composite (global) rule

that considered the job's due date, processing time and the congestion at all other

queues. The result was a large decrease in mean tardiness. However, this rule,

as most global rules, requires a tremendous amount of global information and the

researchers conclude that possible gains may not be worth the computational and

hardware (system) costs necessary to support the use of the rule.
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Carroll [10] also tried to adjust the SPT rule to eliminate oultiers,

extremely late jobs. This rule uses a ratio of tardiness or delay cost to pro-

cessing time. The higher the potential delay cost, the higher the priority. The

shorter the processing time, the higher the priority. This rule was superior

to truncated SPT (T.S.) in reducing mean tardiness, though it increased F over

T.S. results.

2. Global versus local rules: global rules allow consideration of the en-

tire shop status (queues at other machines, the total amount of processing in the

shop for each machine, the number of jobs and their processing times that will be

arriving at each machine, and so on). If the shop is well utilized, global rules

will not decrease machine idle time (as it will be zero or near zero already).

However, under low utilization, these rules may decrease idle time. They can de-

crease congestion at queues by increasing the priority of jobs whose next opera-

tion will go to a shorter queue. While these (and other) benefits exist, global

rules require an information retrieval and processing system (as noted in [12])

that may be more costly than can be justified by all the benefits achievable.

Local rules also imply decentralized control. The foreman or machine

operator chooses the next job to be processed. Global rules mean centralized

priority computation with greater dependency on equipment that can fail (or be

sabotaged) -- usually a CPU and possibly remote data entry stations or terminals.

3. Multiple criteria (Buffa and Taubert [7]). Instead of using a single

criterion, several weighted measures of performance can be totalled to rate a

dispatching rules' performance. LeGrande [38] simulated a labor-limited shop

using actual data (from Hughes Aircraft Co.) to compare six rules on the basis of

10 criteria. When all were equally weighted, SPT was superior, followed by

DS/RO, FCFS, FISFS and then RANDOM.
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DS/RO had the minimum number of orders completed late and the smallest

variance of flow time. SPT lead in the categories of number of orders completed,

average number of orders waiting in the shop (least), average waiting time of

orders (F), percent of labor utilized, percent of machine capacity utilized, and

mean of the distribution of completions. DS/RO was more attractive than SPT if

order completion criteria were most heavily weighted.

4. A cost based composite rule: this multiple criteria rule assigns costs

or cost indices to each measure of performance to allow cost minimization for a

shop. Work in process inventory, tardiness, facilities utilization and mean setup

time are each translated into operational costs (or indices to denote relative

cost structure).

The job priority is then the sum of these costs. The value of the ap-

proach is to change the relative weights into a relative cost framework in mul-

tiple criteria rules.

5. Labor limited shops. Nelson [471 has developed labor assignment rules

and tested them in conjunction with dispatching rules. The three dispatching

rules used were FCFS, FISFS, and SPT. The labor assignment rules were:

(a) random assignment of idle labor to any machine with work in queue

(b) assignment to the machine with the most jobs in queue

(c), (d), (e) assignment according to the labor- and machine-limited

systems counterpart of the (FISFS, FCFS, SPT) queue discipline for

machine-limited systems (i.e., send the labor to the queue with the

highest priority job under the machine-limited rule used)

Labor assignment was controlled by a parameter that varied the frequency

of assignment (from whenever a worker has no jobs remaining at his present mach-

ine, to after completion of each operation at a machine).
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The combination (b) - SOT had minimum mean flow time while (b) - FISFS

has a lower variance and maximum flow time.

The use of full central control (after each operation) decreased mean,

maximum and the variance of flow time over less frequent reassignments.

Fryer [22], in an important extension, has further clarified the impor-

tance of labor assignment rules. Increasing the organization complexity, he in-

vestigated a job shop composed of three divisions, each division consisting of

four work centers. The policy decisions involved transferring men to other divi-

sions as well as intradivisional reassignment among work centers. Two dispatching

rules (SPT, FCFS) were used to sequence jobs. Fryer found that the interdivisional

reassignment policy (flexible versus restricted) had a greater effect on mean

flow time than any other policy choices. Decision rules concerning to which

specific division to reassign an eligible worker had little effect on performance

measures. The intradivisional reassignment policy (flexible versus restrictive)

had a major affect on flow time variance. Again, the decision rules on which par-

ticular work center to assign a worker were relatively unimportant in M.O.P. re-

duction.

This study clarifies the importance of allowing labor reassignment

independent of the specifics of the reassignment rule. The effects of dispatching

rules were consistent with previous research.

In essence, the total job shop scheduling problem should include both

a queue and labor assignment discipline.

Alternatives to Global Scheduling

There are several alternatives to scheduling besides use of dispatching

rules. Prior to use of dispatching rules, Gantt charts were employed. These were

simply time lines for each machine upon which the jobs were laid out, operation

by operation, until a feasible schedule was reached. These schedules suffered

from swift obsolescence.
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Other alternatives are keeping average delivery times long or renegoti-

ating due dates when necessary. This obviates the need for global rules or load-

ing exercises. The shop can also work at low utilization so bottlenecks rarely

occur. Lastly, the job status system can be improved so that expeditors can

push jobs through as necessary.

Most of these alternatives result in either lower utilization of equip-

ment and labor or higher work in process inventory (or both), but full scheduling

is not always possible (due to complexity) or desirable (due to its cost). One

example of both conditions is found in the hospital, where "rational scheduling

rules" are hindered by the uncertainties of patient care, the complexity of the

shop (hospital facilities) and the potential cost of scheduling research and

equipment.

Prerequisites for "Successful"Scheduling

Desirable measure of performance levels depend not only on detailed

scheduling methodology, but on many higher level decisions. In the case of the

closed shop, capacity (or aggregate) planning is required for seasonal items.

Proper release of jobs to the shop by use of the run-out-time list is assumed.

If these two higher levels are ignored or the decisions made in error, the lower

level must suffer accordingly. If jobs "suffocate" the shop, it may be a result

of excessive job releasing or insufficient manpower allocated. The opposite is

also possible.

In the case of the open job shop, loading (to infinite or finite ca-

pacity) is requisite for the planning of job due dates and release times. Aggre-

gate planning is possible (if the shop has a seasonal workload) by using forecasts

of machine loads in hours.
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II. The Assembly Line

1. Definitions: The assembly line is the extreme case of the flow shop;

machines are arranged to manufacture one product or product-type. The line can

then be considered as a single machine, the balance determining its output rate.

This rate can only be changed by rebalancing the line. Machines are often phys-

ically contiguous and capacities of manufacturing stages set to allow near con-

tinuous uniform product flow.

The following definitions will be useful (Kilbridge and Webster [35]:

1) A work station is a location where one or more assigned tasks are

performed by one or more operators.

2) A task is an indivisible work activity; an activity that could not

be split between two operators; each task has a processing time associated with

it (specifying the amount of time required to perform the task).

3) Precedence relationships define the allowable processing sequences

of tasks.

4) Zoning constraints and special constraints restrict groupings of

tasks and limit specified tasks to given work centers respectively.

5) The aggregate production rate gives the required output of the entire

line in units per hour of the product to be manufactured.

6) The natural cycle time is calculated from 5) as the maximum produc-

tion time/per unit that still fulfills the aggregate output rate.

7) The work content of a product is the sum of its tasks' processing

times (similarly for work station job content).

8) The cycle time is the maximum of all the work centers' job contents;

the cycle time sets the production rate of the line; one unit of the product is

finished each cycle time.
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The classical assembly line balancing problem is to partition tasks among

work stations within all precedence relationships, special constraints and zoning

constraints to minimize or maximize some criterion. The maximum potential daily

output of the line must also be greater than or equal to the aggregate production

rate per day.

2. Measures of Performance: The usual criteria are to minimize either idle

time or the number of work stations. Less common criteria are to minimize the

variance of work station job contents or the total labor cost. In published

research, the first criterion, idle time [defined as (the number of work stations)*

(the cycle time) - (the work content of the product)] is often discussed, but

rarely used (Ignall [30]). Instead, the number of work stations is minimized

assuming that the cycle time must be less than or equal to the natural cycle

time. In practice, operators at work stations with smaller job contents than

the cycle time will not actually stand idle; they will work continuously at a

slower pace. The effect, however, in terms of labor cost is the same as if they

were idle part of the time and worked at their normal pace during the remainder

of the cycle time.

The reason all other criteria are shunned by most researchers is quite

practical; as was found in job shop scheduling, the judicious choice of M.O.P.

can measurably improve the prospect of finding a solution. This problem, again,

has a combinatorial nature. If the objective is to minimize the number of work

stations (given a cycle time), rather than to minimize idle time, considerably

less search is necessary (Ignall [30]). To illustrate: if U-)UN are tasks

and A and B two partial balances, where A = U1 U2 U61 U4 U51...

and B = U1 U2 U6 U51 IU4 U31... (-I denotes a work station), than B dominates

A when minimizing the number of work stations. B has one less task to assign to

its remaining work stations; therefore A does not have to be fully evaluated.
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However, if idle time is considered, A must be fully explored. Similarly, when

considering variance of both idle time and work content, there are more possible

balances to evaluate.

To minimize cost, idle time is found for a range of k = 1 to n work stations

(n is bounded by the processing time of the largest task). Normally, a small num-

ber of work stations yields a lower idle time. There are more tasks per station

increasing the chance for an excellent fit. If the cycle time for a balance is

greater than the natural cycle time (N.C.T.), a second shift or overtime is re-

quired. If it is less than the N.C.T., the line must shut down for some fraction

of the day. The costs for these adjustment may be added to the regular time labor

cost for each number of stations and the minimum total is selected.

In practice, the number of work stations is always minimized, also min-

imizing the number of operators required for one shift. If the solution has high

idle time, tasks, precedence relations, or constraints may be redefined. Hel-

gason and Birnie have found that in their experience any balance can be improved

upon by an experienced industrial engineer. This implies that a good starting

balance at low computational cost may be superior to an excellent balance at high

computational cost.

3. Solution Techniques

Solution techniques can be partitioned into five classes. These are:

complete enumeration, integer programming, heuristic procedures, branch and

bound (or best bud) and dynamic prcgramming.

a) Complete enumeration - this procedure is severely limited by the di-

mensions of the problem. If there are N tasks and r precedence relations, there

are approximately N/2r feasible sequences of tasks. This is usually too large

a number to consider (even though further reduced by the fact that interchanging

certain elements within a work station results in the same balance but a different
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feasible sequence). The number of sequences is definitely finite but, so far, no

simpler method for assembly line balancing has been suggested. Jackson [31] con-

structs all feasible first work stations, eliminates those dominated, then for

each remaining first work station constructs all feasible second station combina-

tions, etc. This procedure is optimal but soon bogs downfor problems with 30

to 40 tasks with few precedence relations.

b) Integer Programming - another optimal but computationally infeasible

procedure for large scale problems. Bowman [6] has developed two formulations;

however, a five-task illustrative problem has 20 inequality constraints and 10

variables. The number of variables and constraints unfortunately increases non-

linearly with the number of tasks.

c) Heuristics - as in job shop research, heuristic solutions have proved

effective and numerous. Besides their computational efficiency, they often allow

less restrictive assumptions than optimal techniques. Often optimal techniques

are modified into heuristic solutions (as by Held, Karp and Shareshian [28]).

The following are several of the more famous heuristics:

I. Kilbridge and Webster [35] - their method allows line balancing

without computer assistance. The precedence relationships are translated into

columns; the first column has all tasks with no precedessor, the second their

immediate follower tasks, and so on. In addition, each task in a column, has

the maximum column number that it could be moved into without changing any pre-

cedence relationships. Any tasks that would also have to be moved are similarly

listed. The heuristic then adds the elements within column I, II and on until

the total task time is as close as possible to the cycle time desired. If there

is a gap, assigned tasks are moved into higher numbered columns and/or more tasks

are added from the present or next column. There are suggested procedures for

moving and selecting tasks. This procedure also allows consideration of zoning

constraints and other "special" conditions. While tedious, it is one of the few
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techniques that is both effective in general situations and does, not rely on

computer availability.

II. Arcus [1] - (COMSOAL - Computer Method of Sequencing Operations

for Assembly Lines). Arcus uses three lists; list A with each task and its number

of immediately preceding tasks, list B (the available list) - a list of all tasks

from A with no immediate precedessors and list C (the fit list), those tasks

from list B whose processing time is less than or equal to the time remaining

at the work station being assigned tasks.

Tasks are selected from list C by a biased sampling procedure, and

lists A and B updated until a balance is obtained. (When C is empty and tasks

remain on B, a new work station is started.)

Balances are generated with little computational effort, allowing

a great number to be generated at low cost. If r% of all balances are good,

then the probability of generating a good one is [1 - (1 -r)n] where n is the

number of trials (assuming a new balance is generated each trial). Obviously,

as n gets very large, the probability approaches 1.

The sampling is biased by certain rules that produce "better"

balances; for example, giving larger tasks and tasks with many successors a

greater probability of being selected from the C list. Arcus's method also per-

mits consideration of more complex problems (as Kilbridge and Webster's method.

III. Tonge [59] - Tonge extends Arcus's method by changing the proba-

bility of choosing a rule to choose tasks for inclusion in a station. Successful

application of a rule increases its probability of future selection and vice versa.

Some of the nine rules are: choose the task with the largest time; the greatest

number of successors; at random. This learning theoretic approach does not seem

superior to Arcus's method, however.

While there are other heuristic techniques, Mastor's study [42]

(of 16 methods under varying problem size (number tasks), number of precedence
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relations, and line length (number of stations)) indicates that for large complex

problems Arcus's method is the most effective.

d) Dynamic Programming - In the same study [42], the technique that proved

most effective for moderate sized problems with more restrictive assumptions was

dynamic programming. Held, Karp, and Sharesian [28] use a dynamic programming

formulation for small problems and a heuristic incorporating dynamic programming

to solve subproblems of larger problems.

In the exact formulation, a subset is defined as a grcup of tasks where

for any task in the subset, all its necessary precedessors are also in that sub-

set. A sequence is an ordered set where the tasks in that subset are ordered

feasibly for execution. There may be several sequences per subset possible. The

optimal balance for each subset can be found and the states increased until the

entire problem is solved.

In the heuristic procedure, tasks are grouped by certain rules and then

these groupings are treated as tasks in the exact solution method. Such heuris-

tics are necessary as the problem size increases; in the most severe case of no

precedence restrictions, the number of alternatives to evaluate for K tasks would

be K 2k-l (the number of pairs([subset S],[subset S with one task deleted])

used in Held's et al recurrence relation - k = k2k-t t(t)
t=l

Another approach in this vein is shortest route techniques. Klein [36]

and Gutjhar and Nemhauser [26] both use this formulation with a solution proce-

dure akin to dynamic programming. And again, computationally, these approaches

are not practical for large balancing problems.

e) Branch and Bound - a variant of this technique,' best bud, has been used

by Nevins [48] to solve large problems. While branch and bound is optimal, com-

putationally, it would be infeasible.. Best bud is not optimal but, in practice,

has proved extremely successful. Its approach is similar to branch and bound,
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partitioning a problem into subproblems. Instead of continuing along a path

(partial balance) until the path is fathomed (rejected as above the upper bound

or completely evaluated and producing a new upper bound), the path with the

best "bud score" is followed when a path's score is reevaluated (after "growing"

a new work station). It is followed if still low score or left incomplete if

an alternate partial path has a better score. A path's score is equal to

(T* - T)/(N* - N) where T* is the total work content; T the sum of assigned tasks

to that path; N the number of work stations already assigned, N* the number of

work stations allowed in our balance. This score represents the average time

that must be assigned to the remaining work stations to obtain a solution.

4. The Real Problem

This completes a short survey of solution techniques to the classical

assembly line balancing problem. However, while this problem is seemingly solved,

it is not the real line balancing problem, just as the static sequencing problem

fell short of solving the real job shop problem. The analogy is appropriate be-

cause the same two elements are absent: consideration of stochastic processing

times and a product mix (instead of a machine mix). Moodie [45] was the first

to consider stochastic processing times; he minimizes (C - E(Sk) + rv(Sk) )

for a k station balance where C is the cycle time, r is a constant chosen as a

safety factor; Sk is the work content of the kth station (Vk its variance and

E(Sk) its mean); task processing times are assumed to be independent normal ran-

dom variables. This reduces the problem into the deterministic framework.

The more pressing problem of several products sharing a line remains;

the single product line is the exception rather than the rule. This problem has

recently received attention in the work of Thomopoulos [57,58] and Macaskill [40].

The method of solution is similar to that for single product lines. However,

work elements are assigned to stations on a daily or shift by shift basis rather
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than on a cycle time basis. Usually individual model task assignments are not

considered; as there are different quantities of each model to be scheduled

that shift, more aggregate "tasks" are considered. A task time becomes the

total task work time (for that quantity of model i to be assembled) for task

i = ti x Nj where Nj = number of units of model j to be completed.

"Tasks" are then assigned to stations within all precedence relation-

ships to minimize the sum of the idle time at each station over all stations.

Idle time at a station is equal to the length of the shift minus the work con-

tent.

Further improvements are possible to smooth the flow of each model along

the line, since the above procedure may lead to very uneven flows of work on any

individual model.

Industrial concerns, particularly those in the appliance and automotive

industries were forerunners in developing computer programs to handle mixed line

balancing. Such companies include International Harvester Corporation (Capretta,

[91), and Whirlpool Corporation (Moodie [45]).

The final difficulties are at a higher level of decision making: when

to use an assembly line instead of a job shop setting; when to redesign products

to take advantage of manufacturing possibilities. These questions are crucial

and much harder to answer. They involve factors which are not easily quantified

(as employee satisfaction) but which must be considered. A further discussion

is beyond the scope of this survey, but the problem has been noted.

Other complications also outside this survey's scope are local regu-

lation of the assembly line speed (for conveyer belt type lines) by workers,un-

equal labor abilities among workers, and redefining tasks or precedence relation-

ships to improve balances.
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INTEGRATING INVENTORY CONTROL WITH DETAILED SCHEDULING
IN THE PRODUCTION ENVIRONMENT

In the section on detailed scheduling, a demand generating process was assumed,

independent of the scheduling algorithm utilized. For the closed job shop and/or

the assembly line, this generating process may be an inventory control system.

Jobs are then released in order of their run-out-time.

Separation of the two decision processes may be suboptimal. Run-out-time re-

leasing ignores the job shop status (farsighted decision process). Job shop

scheduling ignores the inventory status of all "jobs" not yet released (short-

sighted decision process). At what cost can a happy medium be attained?

Von Lanzenauer [35] has formulated a joint model to determine the production

at each stage for each product in each period for a multi-stage production facility

to minimize the cost of set-ups, inventory and shortages. The actual formulation

is similar in spirit to Manne's in the job shop scheduling section. However, the

problem is restricted by dividing a machine's time scale into discrete intervals

or periods. At most one product can be processed in a period on a machine and a

machine must operate for an entire period or not at all. This restriction is only

realistic when periods are short, increasing the number of variables drastically

in an already infeasible computationally integer program.

Work force smoothing is ignored in this formulation; the. machines are the only

constraining resource. Shwimer [26] formulates a more complete integrated model,

including work force smoothing. However, he quickly points out its computational

drawbacks and, instead, concentrates on its structure. The result (further ex-

pounded in Hax [14]) is an iterative model where production scheduling decisions

are input to a detailed scheduling simulation. Tardiness, inventory levels, flow

times, machine utilization and other measures of performance are evaluated for the

released load. These are then used to alter the production scheduling decision.

Iterations continue until some criterion is met.
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In the short run, this approach is more realistic than integrated models.

However, the integrated'models yield structural insights that may be valuable

in deciding partitioning procedures for joint problems, while the heuristics

give benchmark solutions to be bettered by alternate approaches.


