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Abstract

We analyze several aspects of Vaidya's volumetric cutting plane method for finding
a point in a convex set C C . At each step of the algorithm we have a bounded
polyhedron P that contains the convex set C and an interior point x E P. The
polyhedron P undergoes either constraint additions or constraint deletions as we
iterate through the algorithm with constraints that are added being provided by an
oracle that furnishes a hyperplane that separates the interior point x from C. The
number of constraints are not allowed to grow indefinitely, but are deleted when they
cease to have any significant effect on the system. Following the addition or deletion
of a constraint, the algorithm takes a small number of Newton steps to re-optimize
the volumetric barrier V(.). The algorithm is terminated when either it is discovered
that x E C, or V(.) becomes large enough to demonstrate that the volume of C is
smaller than a minimum allowed value indicating that C is empty.

Our theory follows that of Anstreicher that makes use of a quadratic convergence
result for Newton's method applied to V(.) that gives greater control over the prox-
imity measures as well as allowing us to use the Hessian of the volumetric barrier V(.)
in the Newton steps that we take as opposed to the matrix that Vaidya uses that ap-
proximates the role played by the Hessian. We differ from Anstreicher's approach in
that we seek to set the parameter T that determines the placement of the separating
hyperplane at its maximum value, thus bringing the separating hyperplane as close
as possible to the test point. With this in mind, we arrive at a set of values for the
algorithm's parameters; achieving an increase in the value of r and also reducing the
maximum number of constraints that are carried at the expense of taking additional
Newton steps following both a constraint addition and deletion.

In the practical implementation stage we analyze a black box volumetric center-
ing complexity model where we (i) remove all restrictions placed on , (ii) include a
linesearch and (iii) we study the complexity under the assumption that the number
of Newton steps taken will be 0(1) in order to re-center after a constraint addition
or deletion. Under (i) and (ii) we arrive at promising values for our parameters after
runs of our algorithm on randomly generated instances of the convex set C. This



involves varying the value of T, varying the number of bisections performed in the
linesearch procedure and examining different dimensions of the problem to determine
what combination of these parameters has the greatest influence on the efficiency of
the algorithm.
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Title: Professor of Operations Research
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Chapter 1

Introduction

Let C C Rn be a convex set for which there is an oracle with the following property.

For any z E Rn, if z E C then the oracle returns a 'Yes', otherwise the oracle returns

a 'No' together with a vector c E E'n that acts as a separating hyperplane, ie C C

{x: CTx > CTz}. The feasibility problem that we consider is the problem of finding

a point in the set C given an oracle for C. We start off by making the assumption

that C is contained in a ball of radius 2L centered at the origin and that if C is non-

empty then it contains a ball of radius 2
- L. Using these assumptions the volumetric

cutting plane algorithm ensures that C will always be contained within a bounded

polytope P, represented by the constraint system Ax > b, and that at each step of the

algorithm we will have an interior point x E P that we will call our test point. Before

calling the oracle to provide a separating hyperplane for the test point, it is verified

that the constraints that define the polytope P all have some effect on the system,

i.e., are not too far away from our test point, otherwise the algorithm removes one

of these constraints in a constraint deletion operation. The volume of P is bounded

by a function that decreases as a result of constraint additions and deletions as we

iterate through the algorithm; progress being measured in terms of changes in the

volumetric barrier function. During the course of the algorithm the description of P

can become complicated as a result of many constraint additions; constraint deletions

that will subsequently be performed cause P to be replaced by a simpler region that
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contains it and at the same time maintains the boundedness of the polytope. Such

a replacement trades volume for computational efficiency, with the constraints to be

deleted being those that cease to have any significant effect on the system.

At the heart of the algorithm is the volumetric barrier function ,V(.), defined by

V(x) = ln(det(AT S-2A)) (1.1)

where the matrix S is a diagonal matrix whose diagonal entries are the elements of

the vector s = Ax - b > 0. The volumetric barrier function is originally due to Vaidya

(1989), in which he presented his (nL) iteration cutting plane algorithm for linear

programming.

The test point that is used at each iteration is an approximation of the unique

point w that minimizes the determinant of the Hessian of the logarithmic barrier

for P. Specificaally, the logarithmic barrier is the function -E 1 ln(aTx - bi) and

its Hessian is given by G(x) = ATS- 2 A. Vaidya calls the point w that minimizes

V(x) = ln(det(G(x)) over P the volumetric center. Other algorithms proposed by

Sonnevend (1988), Goffin, Haurie and Vial (1992), and Ye (1992) used the analytic

centers in the cutting plane framework, however the complexity of these algorithms

are substantially inferior to that of Vaidyas's volumetric algorithm.

Owing to computational difficulties inherent in finding the volumetric center of

a constraint system and making use of the strict convexity of the function V(.), fol-

lowing a constraint addition or deletion we proceed to take a series of Newton steps

starting at our test point and ending with a good approximation to the volumetric

center of the new system thus formed. Here we follow the approach taken by Anstre-

icher (1994c) namely using what he refers to as 'true' Newton steps that employ the

actual Hessian of V(.) as opposed to Vaidya's damped 'Newton-like' steps that re-

place the Hessian of V(.) with a matrix with promising properties that approximates

the role played by the Hessian. This, together with a quadratic convergence result,

from Anstreicher (1994b), for . ;vton's method applied to V(.) in a sufficiently close

vicinity of w provides greater control over the iterates proximity to the exact (but un-
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known) minimizer w. Anstreicher also succeeds in getting substantially better bounds

on proximity measures than Vaidya does, and he accomplishes this through explicity

working with infinity norms. Control over the number of planes defining P is main-

tained through constraint deletions in such a way so as to ensure that the number of

defining hyperplanes does not grow beyond 0(n). Finally, the volume of P decreases

by a fixed constant factor (independent of the dimension n) at each iteration on the

average, and the algorithm halts with a point in C or with the volume of the polytope

P dropping below that of a ball of radius 2
-L in Rn with the conclusion that C is

empty, in O(nL) iterations.

From a theoretical perspective the volumetric algorithm has not been fully ana-

lyzed, this being mainly due to it being a novel interior point method particularly

with the notion of the volumetric barrier that is not used elsewhere in the exten-

sive interior point literature. Vaidya suggests an intuitive though crude answer to

the question of why the volumetric center w is a good test point, that lies in the

fact that the Dikin ellipse of the volumetric center has maximum volume among all

Dikin ellipses within P and can be thought of as a local quadratic approximation

to P. Thus, he argues, that a plane through w while dividing its Dikin ellipse into

two parts of equal volume has a good chance of dividing the polytope P into two

parts of equal volume, and so if the process of cutting P through w is iterated the

volume would be expected to decrease at a good rate. The algorithm fares well in

relation to the ellipsoid algorithm because it makes more use of information as the

cutting planes generated by the oracle are maintained for several steps and continue

to directly influence the choice of the test point.

1.1 Overview

We start off with a convex set C that will always be contained within a bounded

polytope P over which the algorithm maintains control through a series of constraint

additions and deletions. The strict convexity of V(.) and the boundedness of P ensures
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Figure 1-1: Underlying geometric representation

that the volumetric center w and the analytic center (denoted by a in Figure 1-1)

will always exit. The various centers and associated Dikin ellipses are depicted in

Figure 1-1 together with the convex set C and the bounding polytope P. Now, for a

symmetric positive definite matrix A, we let E(A, x, r) denote the ellipsoid given by

E(A, x, r) = {y : (y- x)TA(y- x) < r2}

By Proposition A.1.1 (see Appendix) we have that P C EoUT = {x I (x - a)TG(a)(x -

a) < m 2 }, where G(.) is the Hessian of the logarithmic barrier function associated with

P, i.e., on expanding the Dikin ellipse represented by EIN = {x I (x-a)TG(a)(x-a) <

1} C P by a factor of m we manage to contain the polytope P. The point w E P

is unique in that amongst all Dikin ellipses associated with points in P, the Dikin

ellipse associated with w, Ev, has maximum volume. This is easily seen from the

definition of the point w that minimizes det(AT S-2A) over P. Thus, as evidenced in
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Figure 1-2: Adding a constraint and moving closer to the new w

Figure 1-1, we have that,

VolEIN < VolEv < VolP < VolEoUT

Now bounding the volume of the polytope P,

1
Vol EouT = Vol E( - G, a, 1)

1 -1/2
= Sdet [2 G(a)]

< S,.mndet [G(a)]-1 / 2

< Sn.mndet [G(w)]- 1 / 2 < (2m)ne-V(W)

(1.2)

(1.3)

where S is the volume of the unit ball in Rn. It follows from (1.2) and (1.3) that

VolP < (2m)ne-V(w).

The number of planes defining P is not allowed to increase indefinitely, but is kept

in check through the use of a parameter that decreases with constraint additions.

This parameter which is denoted by crmin and is the smallest diagonal element of
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Figure 1-3: Deleting a constraint and moving closer to the new w

the projection matrix P associated with the polytope P (see Appendix A.3 for some

properties of projection matrices). Thus, the criterion employed for dropping a plane

ai is if minl<i<m ui(z) < where z is our test point and is set beforehand. An

important result, im=l ai(x) = n (see A.4.1 in the Appendix), means that the number

of planes that define P never exceed n/e which implies that m = O(n). Thus if our

algorithm can guarantee the long term increase of V(.) we can succeed in driving the

volume of P down to zero and in so doing we can be assured of termination. So our

approach will be to drive the volume of Ev to zero and this directly causes V(.) to

increase indefinitely and in turn will cause the volume of P to fall.

The type of computation performed during an iteration is either one based on a

constraint addition or a constraint deletion depending on the value of

t = min {ai(z)},
l<i<m

where z is the current test point.

If t > then we proceed to add a plane to the polytope P, as shown in Figure 1-2,

14



with the separating hyperplane that the oracle returns being used as the constraint

that is to be added to give the new system. If the convex set C that we use is itself a

polytope, the separating hyperplane can simply be taken to be the first constraint of

this set that our test point violates. This new hyperplane is 'backed off' from the test

point allowing Newton steps to be taken which are complemented by line searches to

move closer towards the new volumetric center.

If t < e then we delete the constraint that corresponds to the minimum ai from

the constraint system that defines P, (see Figure 1-3). Since the volumetric center

w shifts as a result of a plane removal we again take Newton steps complemented by

line searches to move closer towards the new volumetric center.

1.2 Notation, assumptions and preliminaries

If x, s, or a is a vector in Rn then X, S, or E refers to the n x n diagonal matrix with

diagonal entries corresponding to the components of x, s, or a. Let e be the vector of

ones, e = (1,. .. , 1). If E cn then xlp = ixfl p + + ... x n P refers to the p-norm

of x, where 1< p < oc; thus we have,

114X1 = Xill + * * + iX ;

Ix 12 = VJll2 + . . + Xn12 (Euclidean norm which we also denote by 1xl)x;

Ixllio = max{ lll, . , xnjl} (modulus of the largest component of x);

Next, for any positive semi-definite matrix B we use the notation 11j11B to de-

note the proximity measure /TBf and in order to compare the positive definite-

ness of matrices the following notation is used A >- () B = A - B is posi-

tive (semi) definite, with -<, defined analogously. For the matrix M we define

IM = maxAi(M TM) , i.e., the square root of the largest eigenvalue of the matrix

MTM.

The Schur, or Hadamard, product of two matrices which we denote by A o B is

defined by multiplying corresponding entries in the respective matrices, ie. (AoB)i =

Aij x Bij and we will denote the Schur product of a matrix A with itself by A(2) .
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For x E int(P) let E(x, r) be the region

aT - bi
Z(x,r) = {y: Vi, 1<i<, 1 - < iamTYb 1 + r} (1.4)

and note that if r < 1 then E(x, r) C P.

The volumetric barrier function V(x) is defined by V(x) = ln(det(AT S-2A)),

where s(x) = Ax - b > 0, and A is an m x n matrix with linearly independent

columns. Here, n refers to the dimension of the underlying space and m is the

number of constraints of the system Ax > b. For a given s > 0, the projection onto

the range of S -1A (see Appendix A.3 for some properties of projection matrices) can

then be written as

P(s) = S-A(ATS- 2A)-lATs-l (1.5)

For s > 0 we then define the vector o(s) to be the vector of the diagonal entries of

P(s), ie. ai = Pii(s), i = 1,..., m. From the definition of the projection matrix P

we then have that

i = 2.aiT(ATS-2A)ai (1.6)

The gradient and Hessian of V(.) at x (see Appendix A.4) are then given by

g = g(x)= VV(x)T = -ATS-1a (1.7)

H = H(x) V 2 V(x) = ATS-1(3E - 2P(2))S - 1 A

Letting Q = Q(x) = ATS-2EA, then Q(x) is a good approximation to H(x), in that

(see Appendix A.5)

Q(x) -< H(x) - 3Q(x) (1.8)

There is a quantity that plays an important role in maintaining control over the
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proximity of the iterates in the algorithm. It is defined differently in Vaidya (1989)

than in Anstreicher (1994c). Vaidya denotes this quantity by (x) and defines it as the

largest number A satisfying the condition that Q(x) - AG(x) and later bounds L(x)

by 1/4m. However, Anstreicher defines this quantity explicitly as u(x) = (2 a/;- -

min )- 1/2 after obtaining the bound shown in Lemma 2.1 in the next chapter. The

role that p(x) plays will become apparent in the subsequent chapters.

Let p = p(x) = -H-lg denote the Newton direction for V(.) at x. The new point

after taking a Newton step is denoted by means of the bar (-) notation, ie. x = x +p,

= s(x), = a(s), = (x), = g(x), p = p(x), H = H(x), Q = Q(x).

To represent the constraint system after a constraint addition or a constraint deletion

has occured we use the tilde () notation, e.g. S = S(x) = Ax-b, Q(x) = T,-2A,

V(x) = - ln(det(AT S 2 A)), etc., to denote quantities which depend on the current

point x, but are defined using the new constraint system [A, b]. On a constraint

addition the system [A, b] will be augmented to obtain the new sytem [A,b] such

that

am+l ) b m+l) (1.9)

and on constraint deletions (assuming for simplicity that the mth constraint is the

one to be deleted) the new reduced system is of the form [A, b], where

A = ( a ), b b (1.10)

Finally, as we progress through the algorithm we denote the sequence of iterates

by xk, where k > 0 is the current iteration. Thus, we are naturally led to use the

following abbreviated nomenclature: sk = s(xk), ok = a(xk), /uk = ,(xk), gk = g(xk),

Hk = H(xk), Qk = Q(xk). Also, at each iteration the bounded polytope that contains

C is denoted by pk and is of the form

pk = {x E Rn Akx > bk}

17



where Ak is an Mrk x n matrix with independent columns, and bk E Rmk. Whenever

we refer to the set pk, we are implicitly refering to the algebraic representation given

by the constraint system [Ak, bk ], and the volumetric barrier associated with pk is

the function Vk(x) = 2 n(det(Ak T S- 2Ak)), where s = Akx - bk.2~~~~~~~~~~~~ 
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Chapter 2

The volumetric barrier

In this chapter we will collect together a number of properties of the volumetric

barrier function V(-) which will be used in subsequent analysis. Many of the results

that will be established and the approach that will be taken relies on Anstreicher's

(1994b) quadratic convergence result for Newton's method applied to V(.) for points

sufficiently close to the volumetric center w (see Appendix B).

We are now in a position to analyze some of the properties of the volumetric

barrier and the proximity measure 1II 1H. Let us begin by presenting the following

lemma, Anstreicher (1994c), that provides a better bound on the 1II Q measure than

Vaidya (1989) achieves by explicitly working with the infinity norm IIS-AJI.

Lemma 2.1 Let x have s = s(x) > 0, and let a = a(s). Then V E in,

(TQ~ > (2V _ min ) S-1A 12

Proof: Applying the same technique as in the proof of Theorem A.5.2 (see

Appendix) and using the same change of variables, proving the lemma is equivalent

to proving that

'T U3uT (2/' mi n - min)U (2.1)

Proceeding as in Theorem A.5.2 but replacing (A.14) by the following relaxation of
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the problem

m

min u 1
2 + 'mi n j (T )2

i=2 (2.2)
m

s.t. E (uT)2 = j112 -1
:=2

the solution value of which is obviously llu 112 + min( 112 - 1). Since 1 = lulT <

~u111 >Fl llU -2 l/ Ž1l 2 . Letting 0 = j1f112 > 1, the solution value in (2.2) is

therefore no lower than the solution value in the minimization problem

in min( 1) } (2.3)
0>1 0 -min- -1

A straightforward calculation shows that the solution in (2.3) is 0 = 1/a,, with

objective value 2a-min - rmin, proving (2.1) and the lemma. 

Let us define / = (x) = (2 -min - 'amin)- 1/2* Then Lemma 2.1 and (1.8) imply

that

6 = IIS-1Aplo, < IIpllQ < llpIIIIH (2.4)

There are two quantities that the algorithm will need to maintain explicit control

over, namely the measure llPllH and the quantity PllIpllH and they will later be used to

argue that following a constraint addition or deletion only a small number of Newton

steps suffice to return the current iterate to a suitable proximity of w. The results of

the following lemma follow from the quadratic convergence result, namely Theorem

B.7 (see Appendix) and (2.4). It establishes quadratic convergence properties written

entirely in terms of the measures we seek control over, in addition to a relationship

between Q and Q that will be needed in the proof of Theorem 2.4.

Lemma 2.2 Let x have s = s(x) > 0. Assume that IIlpllH < .014, and let

= x + p. Then

i) IIPlII < 21.6llplH,

20



ii) HfllpIH < 2 1.6/1 plH,

iii) Q < exp(6.02/ulpllH)Q

Proof: Using Theorem B.7, (2.4) and the fact that IJpjjQ < flPH, we get that

19/t(1 + /I1PH) )
t/~ f < (1 - lplH)6 H < 21.27 Hp (2.5)

where the last inequality uses the assumption that jllpIH < .014 = i) holds true.

Next, since 6 < 1 E E(x, 6) C E(x, [uljPIIH) and it follows from Proposition B.3 that

(2.6)(1 + 6)2 - - (1 - )2(1 +) 2 - ai - (1-) 2

and this gives us that min > min(l - 6)2/(1 + 6)2. Since the function 2 x/ - -y is

monotone increasing for y E [0, 1], it follows that

2Vmin - min 2 '(
1 - A
1 + 6

- 1 _n( 6 2

- 1'i + 6) > (2/om - umin)

and therefore

t = /(z) = (2v/oi=-nmin)- 1 / 2 <
(1+ 6\1/2

" k1 - 61
1 + plPH 1/2

z1 -PH)

where the last inequality uses (2.4). Substituting /LHP IH .014 into (2.8), and

combining the resulting bound with (2.5), proves part ii).

Proposition B.3 and (B.1) we get that

OTQ < (1 + )4

Next from combining

V E Rn, and therefore

6) - 2 ln(1 - 6) (2.9)

But for 0 < 6 < 1, ln(1+6) < 6, and ln(1-6) > -6-.562/(1-6) = -6[1+.56/(1-6)]

21
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Combining these facts with (2.9), and using IlPIIH < .014, we obtain

in (,-) < 4 p||H + 2 + 2L + 2(1- 014 ) < 6.02/ lP HE7TW +2(1(-.014)
proving iii). o

Lemma 2.3 Let P = {x I Ax > b}, where the columns of A are independent, and

assume that the interior of P is nonempty. Then p is bounded V(.) attains its

minimum at a unique point w of P.

Proof: If P is bounded then V(.) clearly attains its minimum over P at a unique

interior point, since V(-) is strictly convex in the interior of 7P, and V(x) - o as

x approaches a boundary point of P. Now assume that P is not bounded, hence P

must contain a ray, say r, such that if x E P then x' = x + Or E P for all 0 > 0.

Letting s(O) = A(x + Ow) -b = s + Aw > 0 (since Aw > 0, Aw $ 0) and using
aiaiT

the fact that ATS(O)- 2 A = ( ai) 2 on letting - o, we see that the
(s +aTw)2

matrix ATS()-2A tends to become more and more like that of a Null matrix =>

det(AT S(O)-2A) - 0 V(x') - -oo and therefore no minimizer w can exist. 

Theorem 2.4 Let x have s = s(x) > 0, and assume that /lIpIIH < .014. Then

V(.) has a unique minimizer w E int(P), and V(x) - V(w) < 1.11Ipi2.

Proof: Consider an infinite sequence of Newton steps initiated at x ° = x,

xk+l = xk + pk for k > 0. Applying Lemma 2.2,

/Pllpt][H1 < 21-6(/ 011p llHO) < 21.6(.014) 2 < .014

and by induction it follows that kllpklHk < .014 for all k > 0. Lemma 2.4 then

implies

IIPk+lllHk+l < 2 1. 6 plIpk 11k < 21.6(.014)[lpkllHk < .3111Pk lIH (2.10)

forall k > 0, and therfore llpklHk - 0. Also, since V(.) is strictly convex, the

22
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subgradient inequality implies that

V(Xk+l) > V(Xk ) + gkTpk = V(Xk) _ Ipk 2k

If it is the case that xk - w E int(P). Then H(w) being positive definite, (2.10)

implies that g(w) = 0, and therefore w is the unique minimizer of V(-). Moreover,

using (2.10) and (2.11) we have

V(w)
00

= V(x o ) + [v(Xk+l) _ V(X)]
k=0

00> V(x) - E (097)pkk=O
> V(x ° ) - (1.10971)jjIIp 

k=O

> V(X ) _ 1.111p0 12HO (2.12)

as claimed in the lemma. To complete the proof we must prove that the sequence

{xk) converges to a point w E int(P) and to bound the sequence we will first prove

that

Q = QO < 1.14 Qk (2.13)

for all k > 0. Now, since

TQOJ
TQkq

k-1

= 
j=0

(2.14)OVQjl

~TV+1l

and part iii) of Lemma 2.2 implies that

(In TTQO
k-i

=o
j=0

TQjk

MTj+l (

k-1

< E 6.02,jllP pHj
j=O

(2.15)

and through repeated application of part ii) of Lemma 2.2 we get

Hj IpJIIHj < (21.6)2 -1 (L0 p°lHO)2 ,

23
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Substituting (2.16) into (2.15), using p°llpllHo < .014, gives us

In ( Q)
k-1

< 6.02 Z(21.6)2 J-1 (P0 f°lp0° Ho) 2i
j=O

602
2 0- (21.6 0LO p0oIHo) 2J

21.06 3=0

< .28 (.31) ji l

j=o

.28(.31)
1 - .31

Exponentiating (2.17) proves (2.13). Using (2.13), (1.8) and (2.10) we then have

that

xk _X OIIQ
k-1

< E IIxj+l - XjQ
j=O

k-1

< V.14 Ip IIHj
j=o

< 1.14-(.31) jIp° IHo
j=0 o

< 1.5511p°llHo (2.18)

But from Lemma 2.1, IIS-1AIloo < / IIQ V~. Letting = x k

that

- x° , (2.18) implies

IS-lA(xk - x° )Io < 1.5511P°llHO < .022

and therefore

sk
.978 < - < 1.022,0 -S.

k > 0

From (2.18) we get that IIxkQll < IIxOIIQ + 1.551poIIHo and since Q =

(2.19)

RTDR >-

Amin = l1xk < 1j IXkII,2 we get that the entire sequence {xk}
- Xmi n Q

is bounded and

from (2.19) the sequence lies in the interior of p. By the Bolzano Weirstrass theorem
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there exists at least one accumulation point and it is an interior point of P. Then

pk I Hk -+ 0, from (2.10) implies that g(w) = 0 at any accumulation point w of {(k}.

But there can only be one such point, the minimizer w of V(.), and therefore xk - w

as claimed. 
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Chapter 3

The algorithm and its complexity

In this chapter we will present the cutting plane algorithm. The original version of

this algorithm was first developed in Vaidya (1989), later went through some changes

in Anstreicher (1994c). These changes were mainly improvements in the definitions

of some key parameters and the use of the Hessian of V(.) in the computation of

the Newton steps, the effect of which was a dramatic reduction in both the number

of Newton steps required for termination and the maximum number of constraints

used to define P. We further introduce a linesearch into the algorithm following each

Newton step that brings in an additional parameter, namely the number of steps

taken in the Bisection Method [1] that we have used in performing the linesearch

and that we denote by KIC. The performance of the algorithm and the efficacy of the

linesearch is measured by the total number of inversions carried out until termination.

The values assigned to our parameters was done in such a way so as to minimize the

number of inversions carried out by the algorithm and this is discussed in Chapter 5.

3.1 The volumetric cutting plane algorithm

The Bisection Method [1] is used with termination after KC bisections. Given the

current point x and the Newton direction p the problem

min f(c) = V(x') = V(x + oap)
O<ca<amax
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where c is the step-length and x' will be the next current point, has a unique solution

since the function V(.) is strictly convex. The quantity ma.x is the value that will

take x' to the boundary of the polytope P and is computed using the min-ratio test,

namely

Si
mnin

l<i<m aTp

s.t. aTp < 0

The Bisection Method [1] uses a gradient function and a closed step-length range. In

our case a simple differentiation with the aid of the chain rule yields

f(a) = -cTS(c)-lAp

We now present the pseudo-code of the cutting plane algorithm with a linesearch

following every Newton step.

Step 0. Given x °, P ° = {xlA°x > b°}, 0 < < 1, Y > 0, 2 > 0, L, KC and Vka.

Go to Step 1.

Step 1. If Vk(xk) > Vkax, then STOP. Else go to Step 2.

Step 2. If ak > E, go to Step 3. Else go to Step 4.

Step 3. (Constraint Addition) Call the oracle to see if k E C. If so, STOP. Other-

wise the oracle returns a vector ak E Rn such that akTx > akTxk Vx E C. Let

[Ak+1, bk+l ] be an augmented constraint system having a k+
1

l = ak, bk+l <

ak k. Go to Step 5.

Step 4. (Constraint Deletion) Suppose that jk = aki n < E. Let [Ak+l, bk+l ] be the

reduced system obtained by removing the jth contraint. Go to Step 5.

Step 5. (Newton Direction) Let ° = k. Compute the Newton direction and take a

sequence of steps with the opitmal step-length a of the form ij+l = ij + ajii,

where p = p(ij), j > 0 (go to Step 6 at each iteration) until pJjJ < y1,
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PfJIIP Jlfj < Y2, where HJ = H( J), i = - p(). Let xk+ l = J, set k = k + 1,

and go to Step 1.

Step 6. (Linesearch) Initialize amin to 0 and ma,, to minl<i<m - si/aTp s.t. aTp < 0.

Then, For i = I to KC Do: a = (amin + amax)/2. If f'(a) < 0 then min = a.

Else ama,, is set to a, End. Go back to Step 5.

In Step 3 the value of bMk+I that corresponds to the placement of the new con-

straint is not arbitrary, but will be prescribed precisely in terms of a parameter r > 0

in Chapter 4. Also, throughout the algorithm the iterates xk will have IIpkllHk < 'l,

Pk pkIpk < y2 for all k.

3.2 Initialization

In Step 0, the initial system is taken to be

po = { x En Ilx > _ 2 L,j = 1,.. ,n,eTx < n2L}

Note that P 0 then contains a sphere of radius 2 L, centered at the origin. What is

the volumetric center of P0 ? It is the point x such that ATS-lr = 0. To simplify

matters in calculating this point it will suffice to consider the scaled system 50 given

by

po = {x E n I x j > -,j = 1, .. ,n,eTx < n}

since if x E P ° then x/2L E p°o, and so the volumetric center of P ° will simply be 2 L

times the volumetric center of P5. Proceeding therefore with

AO = -e T ) b -n (3.1)
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Si = xi + 
si = -eTx + n

we get that

ATS-1 =

1
x 1+l

O
1r =

1 eTi
Xn+ 1 eT-n/

?_A + n+1
x1 +1 eTx-n

axn + n+1
\Xn+l eTx-nl

and so our point x that will be our volumetric center must have the following property

(xj + )n+l
eTx - n

(3.4)

Now, using (1.6), (3.1) and (3.2) we have

(ATS- 2A) - 1
cTi = (Xj + 1) 2

eT(ATS-2A)-le

(Xj + 1)2

and together with

(ATS-2A) -1 =
(x 1 + 1)2

0 (Xn + 1)

where wT = ((x 1 + 1)2, ... , (Xn + 1)2) , we get that

(xj + 1) 2 [i(xi + 1)2 + (iX i - n)2 - (Xj + 1)2]
j = 1, *,n (3.6)

(EiXi - n) 2 Ei(Xi + 1)2
i(x i + 1)2 + (ixi - n)2 (3.7)

from (3.6) and (3.7) we find that (3.4) is satisfied if Eixi + xj = n - l, j = 1,., n,

ie. for Dx = (n - 1)e, where D = I + eeT, a straightforward calculation using the
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and

l<i<n
i = n+1 (3.2)

=0 (3.3)

wwT

(eTx - n)2 + Ei(xi + 1)2

Oj =

(3.5)

and



n-1
Sherman-Morrison-Woodbury formula A.2.1 gives us that xi = n+l' i = 1, n.

This is a strictly interior point of 'P0 and is therefore the unique minimizer, i.e., the

volumetric center. It is also interesting to note that the analytic center for P° happens

to coincide with the volumetric center for this case.

It can easily be shown through induction that the determinant of a matrix D

of the form D = c + deer , where I is the identity matrix is given by det(D) =

cn-l(nd + c). In computing V(x), it can be seen from (3.1) and (3.2) that the

matrix G°(x° ) will be of this form and a straightforward computation gives us that
( n+1 \2n

det(G° ) = rn2L+ 1 (n + 1) and so the value of V0(.) at x ° is

V°(x°) = -ln(2)n(L + 1) + nln(1 + / n) + In(n + 1) > -. 7n(L + 1) (3.8)

3.3 Termination

The value of Via > 0 which depends on mk and that is set in Lemma 3.3.1 is such

that Vk(xk) > Vkax implies that Vol (pk), and hence also C C pk, is less than that of

an n dimensional ball of radius 2-L. However, since from the outset we have assumed

that if C is non-empty then it must contain a ball of radius 2- L, this result would

mean that the convex set C is empty. Note that by construction, from Step 5 of the

algorithm, all of the iterates will satisfy flpkllHk < l, L/kllPkIIHk < 72.

Lemma 3.3.1 Assume that the iterates of the volumetric cutting plane algorithm

satisfy lIpk IHk < .014 forall k. Then on setting Vka x = .7nL + nln(mk) termination

in Step 1 establishes that Vol (C) is less than that of an n dimensional sphere of radius

2-L

Proof: By Lemma 2.3 and Theorem 2.4, pk is bounded for each k, and therefore

the analytic and volumetric centers of pk both exit. From (1.2) and (1.3) we have
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that

Vol(9Pk) < Snme-Vk(k) (3.9)

and since C C pk Vk > 0 to show that Vol (C) is less than that of an n dimensional

ball of radius 2
- L it suffices from (3.9) to have

Snmkne- Vk(wk) < S2-nL

and on taking logarithms this is equivalent to

Vk(wk) > nLln(2) + nln(mk) (3.10)

But Theorem 2.4 and ]IpkllHk < .014 imply that

Vk(wk) > V(x) - .00022

and so (3.10) is satisfied if Vk(xk) > .7nL + n ln(mk). [

3.4 Complexity

Assuming for a fixed c > 0, and 7Y2 < .014 the algorithm achieves

Vk+l(xk+l) Vk(xk) + AV+ (3.11)

on steps where a constraint is added, where ZAV + > 0, while on steps where a con-

straint is deleted it achieves

Vk+(Xk(+l) > Vk(xk) - aV- (3.12)
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where AV- > 0. From the boundedness property of pk and noting that P 0 is defined

by the least number of constraints needed to bound a polytope in ~R it is apparent

that at any point in our algorithm we will have that the number of constraint additions

that have occurred will be greater than the number of constraint deletions. Thus, if

we can guarantee that AV = AV + - AV- > 0, then as the next theorem shows our

algorithm will terminate in (nL) iterations.

Theorem 3.4.1 Assume that the iterates of the volumetric cutting plane al-

gorithm, using > 0, 2 < .014, satisfy (3.11) and (3.12) on iterations where a

constraint is added or deleted, respectively. Assume further that AV = AV+ - AV-

is Q(1) and positive, and that the number of Newton steps in Step 5 of the algorithm

is 0(1). Then using Vmka, as in Lemma 3.3.1, the algorithm terminates in 0(nL)

iterations, using a total of O(nLT + n4 L) operations, where T is the cost of a call to

the separation oracle.

Proof: The number of constraint additions being greater than the number of

constraint deletions, together with (3.11) and (3.12), implies that

Vk(xk) > V(x ° ) + k(AV+ - AV-)/2 = V°(x) + kAV/2 (3.13)

Next, the fact that on steps where a constraint is added we always have kin > , and

mkain < eTak = n for all k, implies that mk < (1/e)n + 1 < (1 + 1/e)n for all k.

Using this fact with (3.8) and (3.13), we see that Vk(xk) > Vk certainly occurs if

-. 7n(L + 1) + kAV/2 > .7nL + n ln( + 1/e) + nln(n)

and therefore the algorithm must terminate for

2n(1.4L + ln(n) + ln(1 + 1/e) + .7)k > AV = 0(nL) (3.14)
AV

Finally, noting that mk < n(l + l/e), we have that the work per iteration for the

algorithm using standard linear algebra is O(n3 ) and as a result the total complexity
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of the algorithm is O((nLT + n4 L) operations, where T is the cost of a call to the

oracle. o
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Chapter 4

Adding and deleting constraints

Results will be proved that characterize the effects of constraint additions and dele-

tions, that occur in Steps 3 and 4 of our algorithm, on V(.), a, and IIPIIH, respectively.

We will see that from the observations following Lemma 4.1.1 and Lemma 4.2.1 we

will have that AV = - V- = ln(l +Tr)/ 2 -ln(1-e) - 1/ 2 , where the quantity r is

yet to be defined. We will leave the analysis of the Newton steps and linesearches that

occur immediately after a constraint addition or deletion to the following chapter.

4.1 Constraint additions

We now consider in detail the effect of adding a constraint in Step 3 of the algorithm.

Dropping all dependence on the iteration k to reduce the burden of notation, and

with our new system defined by (1.9) with the assumption that aT+ 1x > bm+,, so

that sm+1 = aTm+lX-bm+ > O we let

r = +laT (ATS-2A) am+1 (4.1)

This definition of r has an interesting geometric interpretation, for if we consider
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2

separating hyperplane

Figure 4-1: Setting the value of r

the following program:

Max a+(x - )

s.t. (x - )TATS- 2 A(x - ) < 1

we have that the solution occurs at x (see Figure 4-1) with maximum objective

function value given by

a= amaT+(ATS-2A)-lam+l

and so T = (o/Sm+1)2

From a geometric perspective = (a/s)2 is the ratio of the distances a and s

squared as can be seen in Figure 4-1, and so decreasing 7 has the effect of pushing

the separating hyperplane ever further away. It is advantageous to have the separating

hyperplane as close to the test point as possible, as this will result in the greatest

decrease in the volume of the polytope P on the next iteration and hence the greatest

35

v



increase in the function V(.) and that is what we hope to achieve. Thus, it will be

attempted to set T at a maximum value in such a way as to still be able to satisfy the

assumptions of our theorems in Chapter 2 that prove convergence of the algorithm.

The quantity T being set beforehand in this way, will necessitate computation of the

value s,+l during each iteration in order to satisfy (4.1).

We will now prove three results that demonstrate the effect of a constraint addition

on V(.), , and llPllH, respectively.

Lemma 4.1.1 Suppose that a constraint (a T±, bm+l) is added, and T is given as

in (4.1). Then V(x) = V(x) + 1/2 ln(1 + r)

Proof By definition,

V(x) = in [det (ATS-2A)]2 1)]

-2 ln[det(ATS-2A + sm+am+laT+)]

- [det ((ATSA) (I + (ATS A)-lam+la ))]

V(x) + ln[det(I + sm2 l(ATS 2A)- 1 amaT)]

The lemma then follows from the definition of T, and the fact that det(I + uvT) =

1 + uTv. 

Note that from the above lemma we have that following a constraint addition

V(w) - V(w5) > ln(1 + T)1 /2 and thus in Theorem 3.4.1 AV+ will be represented by

ln(1 + )1/2

Lemma 4.1.2 Suppose that a constraint (aT+ 1, bm+l) is added, and r is given as

in (4.1). Then &m+1 = T/(1 + T), and ai > i > ai/(1 + r), i= 1,...,m.

Proof We have that ATS-2A = ATS-2A + s2+lam+laT,+, so the Sherman -

Morrison-Woodbury formula A.2.1 obtains

(AT'SA=-A2A ) A- 1 (AT TS-2 A)- AT -2A-lam+laT + (ATS-2A)- (4.2)
1+-;4

36



Now i = s-2aiT(ATS-2A)-lai, so from (4.2) we immediately obtain,Now~i Si 61

5i = Oi -

8-2 -2 /(aT(ATS-2A)-a,,1+)2
1, -47- , z 1,...,m
I+T7

Note that (4.3) implies that ai > ai, i = 1,..., m. Applying Proposition A.2.6

Is-1 -1 T(ATS-2A)lam+ < lIsi-ail (ATS-2A)-1 HlSIliam+ll (ATS-2A)-'

Combining (4.3) and (4.4) then obtains 3i > rir/( + T), i = 1,...,m, which is

exactly the bound of the lemma. Finally, from (4.2) we have

&m+l = Sm-+lam+1(A S A) aml = 1+ * 

Theorem 4.1.3 Suppose that a constraint (aTm+ l, bm+ ) is added, min > e > 0,

and r is given as in (4.1). Then

ipiHf < V'- ( 1IPII H +
T(1 + FT1)

1 + T
l+T

Proof Using Lemma 4.1.2, we have

m+l 

Q = : -aiaiT
i=1 z

1
1 +T

aOi T
2 aiai

i=1 i

1
= Q

1+T

and therefore Q-' - (1 + r)Q-1, by Claim B.2. As a result,

lIIPI h I=II-ft' < I|9| |-1 < 1 + Tjj1Q- - 1 +l AT-IaJlQ - 1

where the first inequality uses (1.8) and Claim B.2. We also have that

m+l i
ATS-a& = E i ai

i=l Si

m di
= --ai

i=1 Si

a-m Um+l
+Eai 's a,+l

i=1 Si Sm+l
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Since g = ATS-1a, combining (4.5) and (4.6), and using the triangle inequality,

obtains

iPHl < 1I T (9HQ-1 + fI E ai IIQ-1
i=1 Si

+ 'm+lam+l Q- 1

Sm+1

Next, from (4.3) we have

11 - aiai 12 -1 = dTEl/2 S-lA(ATS-2EA) - lATS- E1 / 2 d <
i=1 i

where

lldl 2 (4.8)

-2 -2 (a (AT S-2A)-a +1)2

a1/2(1 + T)

and the last inequality follows from the properties of projection matrices (see Ap-

pendix A.3).

Using the bound from (4.4), we have Idil< ra 1/2/(1 + r), i = 1,. . , m, so

m

i=1

< m s 2i sm+lam+(ATS-2 A)-laiaT(ATS- 2A)-lam+ T1/2

i=l 1/(1 + ) 1 + T

-2 T 2
T(1 2a+ )2

m+ m+am+l

(4.9)
(1 + r) 2

Combining (4.8) and (4.9) then obtains

HE
i=1

ai IIQ-1
si

T

-1+r
(4.10)

The fact that amin > = Q = ATS-2A >- eATS-2A, giving us that Q-1 <

(1/e)(ATS- 2A) - 1, and as a result,

m+1 2 -1 < E-&+2 S a +1 (A S - 2 A ) - lam+l
II amm+ IQ O1m+l m+la+
$m+l

T T2

e (1 + )2 (4.11)

where the last inequality uses m,,+l = r/(1 + r), from Lemma 4.1.1. Finally, using
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Q- 1 < 3H-1 from (1.8) and Claim B.2 we get

flgIlQ-1 < v g11IgjH-' = V |pllH (4.12)

The proof is completed by combining (4.7), (4.10), (4.11) and (4.12). a

4.2 Constraint deletions

We now consider the effect of deleting a constraint, as occurs in Step 4 of the al-

gorithm. We again drop all dependence on the iteration k to simplify notation and

simply consider the system given by (1.10), where once again for simplicity we assume

without loss of generality that the mth constraint is the one to be deleted. Assum-

ing that the columns of A are linearly independent then linear independence of the

columns of A is a consequence of am < < 1, as will be seen from (4.13), where for

am in that range we get that (ATS-2A)- 1 is positive definite , ATS-2A is positive

definite and thus the columns of A must be independent. This is an important obser-

vation as the proof of the boundedness of pk deduced from Lemma 2.3 and Theorem

2.4, requires that the columns of Ak be linearly independent for all k.

We now proceed to establish the three results (as in the case for constraint addi-

tions) to show the effect of a constraint deletion on V(.), , and IIPIIH, respectively.

For the latter, we give a result in terms of amin, and not > min, for reasons that

will become clear in the next chapter.

Lemma 4.2.1 Suppose that the constraint (a , bin) is deleted, where am < e.

Then V(x) > V(x) + 1/2 In(1 - ).

Proof By definition,

V(X) = ln[det(ATS-2 A)]

= ln[det(ATS-2A - s2ama)]
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= ln[det((ATS-2A)(I- s2(ATS-2A)-lamaT))]

= V(x) + ½ ln[det(I- s2(ATS-2A)-lama)]

The lemma then follows from a, < E, and the fact that det(I - uvT) = 1- uv. a

It is worth noting that from Lemma 4.2.1 we can establish that 0 < V(tw)- V(wh) =

ln(1 - a,) - 1/2 < ln(1 - e) -1/2 and thus in Theorem 3.4.1 AV- will be represented by

ln(1 - e)- 1/ 2.

Lemma 4.2.2 Suppose that the constraint (aT , b ) is deleted, where am < e.

Then ai < ji < ai/(1 - ), i = 1 ,..., m- 1.

Proof We have that ATS-2A = ATS-2A - s 2 amaT, so the Sherman - Morrison-

Woodbury formula A.2.1 obtains

(ATS-2A)- s(2 (ATS-2 A)-laI aT (ATS- 2 A)-l
= (ATS - 2A ) - + l m

1 - am
(4.13)

Now i = s- 2 aT(ATS- 2A)-lai, so from (4.13) we immediately obtain,Nowai= i Ii\

= + s Sm (a i (A T A) am)

1 - am
(4.14)

Note that (4.14) implies that ai ai, i = 1,...,m - 1. Applying Proposition A.2.6

as in (4.4), then obtains

Ils-1 s aT(ATS-2A)-lamI < ajm1i m ai (4.15)

Combining (4.14) and (4.15) and using am < , then obtains ai < ai + aie/(1 - e),

i = 1,..., m- 1, which is exactly the bound of the lemma. 

Theorem 4.2.3 Suppose that the constraint (aT, bm ) is deleted, where am = amin.

Then

V1 -min + 2min
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Proof Using Lemma 4.2.2, we have

m-1 
i(i T

j=1 Si

m ai T m T am T
E aia - 2amam = Q - -ama,
i=l S m m

Using Claim B.2, and the Sherman-Morrison-Woodbury formula A.2.1, we then have

- 1_l (Q
'm
m

msQ-2ama TQ-1

1 - mS m amQ am

Since we know that Q = ATS- 2AEA aminATS-2A, Claim B.2 implies that Q-1 <

(1/Omin)(ATS- 2 A)-1, and therefore

Sm2aTQ- lam < 1 -2aT (ATS-2A)-lam - m
min rmin

Combining (4.17) and (4.18), and using am = amin, then produces

Q-1 _ Q-1 + min m2Q - T -1
- iSm ama

- ~1 - Omin

1 (4.18)

(4.19)

and therefore

I1II = 1-1 < -I 1 < 19|2 1 -+ Omin
1 - min

( T Q-lam\ 2

Sm 

where the first inequality uses (1.8)'and Claim B.2. Next from Proposition A.2.6 we

have

(4.21)

where the last inequality uses (4.18). Combining (4.20) and (4.21) then obtains

I[Ip2I < II2-1 + 1min I - = lll- (4.22)
H- 1 - min 1 - min
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Now

m-1 m m-1 m i-

g = AT&S-7 = S -ai i= E ai +E i- oi

i=l Si i= Si i=1 Si

so (4.22) and the triangle inequality imply that

IIPII < I (II9IIQ-1 + L- Ei ai a Q-1

t=1 Si
+ 1-am IQ-i

Sm

Next, from (4.14) we have

m--1 

II - ailQ_ = dTZl/2S-IA(ATS-2ZA)-'ATS- l l/ 2 d < lld 2
i=1 Si

where

di =

(4.24)

2i S2(aT (ATS-2A)-'am)2

1/2(1 - Um)
Ol ( - .

and dm = 0, with the last inequality following from the properties of projection

matrices (see Appendix A.3).

Using the bound from (4.15), and the fact that am = umin, and also noting that

dil < a1/2Omin/(1 - Omin), = 1, ... , m - 1, we have

m

i=1

<
rn-i s-2 -2- T ATS-2A)-aaT/ ATc-2A-1 1/2

sim 1/2 1a-- ina
zi=l - 7i (I- min) 1- min

s ~smam(ATS2 A) laiaT(ATS
2

A)-la 'i
'~ 8i2-2aT(A T A)-laia(A TS-2A)-lam o2

U1i/ (1 - Umin)

Umin -2 TT

(1 - min)2 m am A S 2 A) am

2
U-min

(1 - Umin) 2

Combining (4.24) and (4.25) then obtains

11 -Si i Q-1
i=l i

1 - 'min

(4.25)

< min

1 - O'min
(4.26)
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Finally, using (4.18),

-IIam Q-l = 'im a < m = in (4.27)
Sm -1 - min

Combining (4.23), (4.26), (4.27) and (4.12) completes the proof. o
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Chapter 5

Analysis

In seeking to find the maximum number of Newton steps that would guarantee the

next iterate satisfies the proximity conditions we will use the more general results

pf -11 19(1 + Hll pH) 2 (5.1)

and

IPit (1-9 1 < IpIIH)2.5 (HIIP1 H)2 (5.2)

which follows from the analysis used in the proofs of parts i) and ii) of Lemma 2.2.

There are four parameters that will play a role in the analysis, namely r, , 'Yi

and 72. Intuition tells us that it is wise to set r large; however, we are restricted by

the bounds in Theorem 4.1.3 and Theorem 4.2.3 on the proximity measure 11l511I that

must be maintained for all the iterates in a run of the algorithm. These bounds play

an important role in establishing that the number of Newton steps that are needed to

recover the proximity conditions after a constraint addition or deletion is 0(1) and

this is required by the convergence Theorem 3.4.1. In order to set r at an optimum

value and still satisfy the bounds the following parameter settings were used: was

set to .0062, = .0049, yl = .000006 and y2 = .0001. With these settings, the

maximum number of Newton steps on a constraint addition was shown to be 7, while
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the maximum number of Newton steps on a constraint deletion was shown to be 4.

These results are established in the following two theorems.

Theorem 5.1 Let x be a point with s = s(x) > 0. Assume that Yl < .000006,

and 72 < .0001 . With amin > = .00475 and with 7 set to .0062 suppose that a

constraint (am+l, bm+l) is added, and let [A, b] be the augmented constraint system.

Let x be obtained by taking 7 Newton steps for V(.) starting at x. Then

i) IIPIIH < .000006,

ii) f IPI < .o0001,

iii) V(z) > V(x) + .0025438

Proof: Since 'min > E, and 7- > , Lemma 4.1.2 implies that &min > /(1 + 7) >

.00472 and therefore

(5.3)- = (2 min - min) 1/ 2 < (2 .00472 - .00472)1/2 < 2.745

Also, Theorem 4.1.3, with 7 = .0062, gives

iPjH 1.0062 (v(.000006) + .0062(1 + 1.0062 ) < .01325 (5.4)

Combining (5.3) and (5.4) , tI11pf < 2.745(.01325) < .0364. Using the same notation

as in Step 5 of the algorithm, repeatedly applying (5.1) and (5.2) then obtains

IIPIIH

lip7 IIf
t1~411~

< .012290,

< .010837,

< .008514,

< .005165,

< .001803,

< .000205,

< .000003,

-211p2 I2 I _

3113 11f_

F511 5 11J l f

711 711a7

< .034989

< .031952

< .025916

< .016137

< .005724

< .000655

< .000008
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proving parts i) and ii). The proof of part iii) follows from repeated application of the

convexity property of V(.), namely if x = x+ then V(x) > V(x)+gT = V(x)- t32 .

Using this convexity property and Lemma 4.1.1 we have

6

V(X) > V(x) + ln(1 + T) - PS I/lJ
j=o

= V(x) + .5ln(1.0062) - (.013252 + .012292 + ... + .000212)

= (x)+ .0025438

proving part iii) and the theorem. [

We now consider the case where a constraint is deleted.

Theorem 5.2 Let x be a point with s = s(x) > 0. Assume that 7Y1 < .000006,

Y2 < .0001 and that am = amin < e = .00475. Suppose that the constraint (am, bin) is

deleted, and let [A, b] be the reduced constraint system. Let x be obtained by taking

4 Newton steps for V(.) starting at x. Then

i) 11p1lH < .000006,

ii) fI p a < .0001,

iii) V(x) > V(x) - .0025125

Proof: By Theorem 4.2.3, using am < E,

ft(Hft 1 ( + .0095
i.p99525 < .99525/

Also, by Lemma 4.2.2, min > min, and therefore <

again, using armin < e, and IIH < .0001, then obtains

< .009579

/p. Applying Theorem 4.2.3

1\/ (V'IIPIIH + I )

1 (.000173+ 2 minl )
9952 .99525.

< .000 17 3 6 + 2 .0140min (5.5)
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But Jmin < = .00475, so min < V /-Vmi;j = .0689 amin and therefore

= (2 - min)'/2 (1.931 ;) - 2/ 2 < .7197ami (5.6)

Combining (5.5) and (5.6) and using min < e = .00475 we then have that

/fJijpjf < .0001736 + 2.014(.7197)(.00475) 3 / 4 < .00264

Using the same notation as in Step 5 of the algorithm, repeatedly applying (5.1) and

(5.2) then obtains

< .005943,

< .002174,

< .000272,

< .000004,

11 IP'1jf1 < .016819

flIP2fl 2I < .006257

f 3 1 P311f3 < .000787

/4 11p4 I4 < .000012

proving parts i)

property of V(.)

and ii). To

and Lemma

prove part iii) we again repeatedly use the convexity

4.2.1 to give us

3
V(X) V(x) + ln(1 - e) -Z IlpJi

j=o

> V(x) + .51n(.99525) - (.0095792 + 0.0059432 +... + .0000042)

• V(x) - .00251

proving part iii) and the theorem. 

From Theorem 5.1 and Theorem 5.2 we see that AV = AV+ - AV- = .0025438 -

.0025125 = .000031 > 0. It is not possible to increase r much further and still

satisfy the proximity conditions. Insignificant increases in beyond this value merely

increases the number of Newton steps that will be needed after a constraint addition

or deletion and also results in a huge decrease in V. Further increases in r merely

results in AzV becoming negative and thus violating the assumptions of Theorem 3.4.1.
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5.1 Comparison with Anstreicher's and Vaidya's

constants

In terms of specification of the algorithm, this algorithm differs from Anstreicher's

algorithm in that we have included a linesearch prior to every Newton step and have

used a different set of parameters. As for Vaidya's algorithm it takes Newton steps

based on directions d = -Q-g and uses a proximity measure based on V(x) - V(w),

where w is the true minimizer of V(.). By contrast the fundamental proximity mea-

sure used here is [IP[H, but explicit control over the measure [llplH is also necessary.

Anstreicher's quadratic convergence result gives much sharper control over the prox-

imity measures, using Newton steps, than Vaidya has over his measure V(x) - V(w)

and this means that r and can be increased on steps with constraint addition and

deletion while still returning the proximity measures to their prescribed values using a

very small number of Newton steps. This is obviously very desirable from a practical

perspective and is what motivated us to find how large we can increase r and still be

able to establish the same complexity result.

Now, a larger e means that we will carry fewer constraints (the maximum number

of constraints carried being n/e+ 1), and in practice a larger setting of r translates into

an immediate larger value for AV that will lead to fewer iterations of the algorithm.

In his analysis Vaidya uses e = 10- 7 and his AV is about 1.325 x 10 - 7. Furthermore,

on a step where a constraint is added Vaidya's algorithm takes 2197 Newton-like steps

(based on the matrix Q), while on a step where a constraint is deleted his algorithm

takes 1493 Newton-like steps. Anstreicher sets T = .0035 and e = .0025, in one of the

instances that he considers, resulting in AV = .00033 with a total of 3 Newton steps

taken on an a constraint addition and 2 on a constraint deletion. In our attempt to

set T at a maximum value, while still satisfying the requirements of the convergence

Theorem 3.4.1, we get that r can be increased to .0062 (an increase of more that 77%

over Anstreicher's setting of r) with = .0049, ?lY = .000006 and y2 = .0001 and this

gives zAV = .000031 with 7 Newton steps taken on a constraint addition and 4 on

a constraint deletion. The restrictions imposed by the proximity measures and the
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bounds that ensure that the number of Newton steps will be 0(1), causing the value

of AV to in fact decrease by about a factor of 9. Any further increase in T using this

procedure would result in a negative AV.

Anstreicher thus reduces the number of constaints that are carried by Vaidya by a

factor of 2.5 x 104 while increasing AV by a factor of about 2490 ( .00033/(1.325 x

10-7)) more than Vaidya. Also, Vaidya requires a factor of 738 (= (2197 + 1493)/5)

more Newton steps following a pair consisting of a constraint addition and deletion

and since by (3.14) the maximum number of iterations of the algorithm is inversely

proportional to AV, Anstreicher's analysis succeeds in reducing the total number of

Newton steps required by the algorithm by a factor of about 1.8 million (- 2490 x 738)

over that of Vaidya's. With our modifications we have an improvement by about a

factor of 2 ( .0049/.0025) over Anstreicher and 5 x 104 over Vaidya in the maximum

number of constraints that are carried. As remarked earlier our /AV has decreased

by about a factor of 9 over that of Anstreicher's result, but is still greater by about

a factor of 230 over Vaidya's result. Vaidya requires about 335 more Newton steps

than us following a pair consisting of a constraint addition and deletion, whereas we

exceed the number of Newton steps that Anstreicher takes by 6. We decrease the

total number of Newton steps required by the algorithm by a factor of about 77,000

over Vaidya but Anstreicher reduces our total number of Newton steps by a factor of

about 23.

Our algorithm therefore further reduces the maximum number of constraints that

will be carried, at a cost of a decrease in the value of A\V. These results have been

obtained from our attempt to make the algorithm more efficient while implementing

it in practice (through increasing r) and while still trying to satisfy the theory that

establishes that the number of Newton steps at each iteration will be 0(1). In the

following section we consider the case where we can allow to increase indefinitely

under the 'black box' assumption that the number of Newton steps that will be taken

at each iteration will be 0(1).
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5.2 Analysis using a black box volumetric center-

ing complexity model (BBVC)

In this section we consider a Black Box Volumetric Centering complexity scenario

(BBVC) where we remove all restrictions placed on the parameter , (i.e. we can

have it set at any value greater than zero) and make the assumption that the number

of Newton steps taken will be 0(1) in order to re-center after a constraint addition or

deletion. Under this assumption it is easy to see that we can satisfy the requirements

of Theorem 3.4.1 that establishes that termination will be achieved in O(nL) steps.

By Lemma 4.1.1 and Lemma 4.2.1 we have that

AV > 1 In( + )+ln(le) = 11ln[(l +r)(1-e)]

and thus AV will be Q(1) and positive if e < r/(1 +r) and this will always be the case

in our analysis. Thus, we define the BBVC as our volumetric cutting plane algorithm

together with linesearch and our complexity assumption for larger r. The computer

code representing the BBVC (see Appendix C) was used to draw conclusions about

what parameter settings would be best to enable the algorithm to perform at an

optimal level in practice

We proceeded to analyze the BBVC during runs of our algorithm on randomly

generated instances of the convex set C and try and arrive at some promising values

for both the parameter r that determines how far from the test point our separat-

ing hyperplane would be placed and the parameter KC that specifies the number of

bisections the Bisection Method [1] would perform while doing a linesearch. The

cases that we considered were instances of our problem using dimensions (2 x 6),

(5 x 15) and (10 x 30). The parameter T and the parameter KC were allowed to vary

within ranges that most influenced the efficiency of the algorithm. As the bulk of

computation is in matrix inversion it is reasonable to use the total number of ma-

trix inversions that have been carried out in a run of the model as a yardstick by

which to measure efficiency. It can easily be seen that the calculation of the Hessian
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Table 5.1:
problems

Table 5.2:
problems

Average number of matrix inversions required for 2 x 6 instance on 5

Average number of matrix inversions required for 5 x 15 instance on 5

involves two such matrix inversions whereas the calculation of the gradient involves

only one matrix inversion. Hence, it can be easily verified that a single Newton step

requires two matrix inversions while every step in the Bisection Method requires one

inversion. Three separate problem sizes were considered and each entry in the tables

shown below represent averages of several runs of the program for each pair of 7 and

K; with promising results indicated by asterisks.

Looking at the results across the dimensions considered, it appeared that a promis-

ing value for r would be 15 whereas a good value for K would be 9 for smaller dimen-

sion problems and 10 for larger ones. In Table 5.1 for the 2 x 6 instance taking 7r = 15

and K = 9 the algorithm took a maximum of 3 Newton steps at any iteration and

the total number of Newton steps taken ranged from 24 to 35. In Table 5.2 for the

5 x 15 instance, with = 15 and KC = 9 the algorithm took a maximum of 4 Newton

steps at any iteration and the total number of Newton steps taken ranged from 90 to

120. Finally in the 10 x 30 instance with again taken to be 15 and K; taken to be
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K3 .1 .5 1 2 5 10 15 20 30 50 80
8 530 405 440 340 410 392 350 420 327 330 325
9 613 376 404 315* 393 346 324* 338 341 352 345

1 10 504 408 429 336 426 393 342 369 404 354 444

T

K .1 .5 1 2 5 10 15 20 30 50 80
8 5070 2123 1710 1533 1473 1263 1266 1330 1310 1376 1396
9 3945 2273 1727 1426 1294 1224 1191* 1155* 1235 1345 1345

10 3920 2348 1796 1480 1392 1308 1228 1232 1344 1428 1404

* indicates favourable results



Table 5.3: Average number of matrix inversions required for 10 x 30 instance on 3
problems

9 we got that the algorithm took a maximum of 5 Newton steps at any iteration and

the total number of Newton steps taken ranged from 260 to 273.

Another important observation that can be seen from the tables is that for larger

values of 7 the performance drops (as is the case for smaller values of r). The reason

behind this is that if the separating hyperplane is placed too close to the test point

then it hampers the progress of the Newton steps that are taken starting at the test

point. It seems that for the best performance the hyperplane must be backed off

a short distance from the test point before starting the Newton steps. Anstreicher

(1994c) refers to this as a fundamental limitation in that the constraint cannot be

placed through the current point and this is clearly shown by our results.
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KC .5 1 2 5 10 15 20 30 50 80
9 6163 4264 3527 3157 3069 2944* 3021 2929* 3080 3138

10 5980 4308 3520 3232 3072 3004 2968* 2940* 3120 3152
11 7921 4563 3802 3601 3094 3121 3282 3139 3484 3427



Appendix A

Proofs of some theorems

A.1 The analytic center

The analytic center of a polytope P = {xlAx > b is the point that maximizes the

logarithmic barrier function f(x) = - (ln aTx - bi) over P, ie. it is the solution

of the following program

m

max -E ln(aTx - bi)
i=1 (A.1)

s.t. Ax-s=b, s>O

We have that Vf(x) = -ATS-le and so for x and to solve (A.1) then it must be the

case that Vf(x) = -ATS-le = O, else we could find a descent direction d = -Vf(x).

Proposition A.1.1 p = {x I Ax > b} C EoUT = {x I (x - .)TG(.XXx - .) < m 2 }

Proof We first observe that Vx, s with Ax - s = b, s > 0

eTS-1s = eTS-1 (Ax - b) = -eTS-lb = -eTS-1(At - ) = eTS-19 = m
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Next, using (A.2) we have that for x E P

m T - j -j
i=1 8j

11-'A(x _ ) 2
M a

= T( (X

= Sj

E S)2

-))

-2 -+m <
i=1 J

:= X E EOUT = {x I ( - )TATS-2A(x - ) < m 2 }.

A.2 Some properties of matrices

[Sherman-Morrison-Woodbury formula]

(A + vw T) A-lvwTA-1

1 + wTA-lv

Proof

(A-1 A-1vwTA-) (A + vwT)
I + wTA-lv

I + A-lvwT _

= I+ A-lvwT-

A-lvwTA-1A + A-lvwTA-lvwT

1 + wTA-lv

A-lvwT(1 + wTA-lv)

1 + wTA-lv
= I. C

Corollary

If P >- O, then P o (aaT) O

Proof Let M = P o (aaT), then Mij = Pijaiaj and TMJ = Ei Ej ZiMij, j =

'i Ej =iaiPijajfj = vTPv 0, where vk = akk. o
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mi=l S

O

Proposition A.2.1

(A + vvT ) - 1
A-lvvTA-1

1 + vTA-lv

Proposition A.2.2

O

M~ Sj~

= m 2



Proposition A.2.3 If P >- O0 and Q 0, then Po Q >- O0

Proof Let Q = RRT and let M k = Rk(Rk)T, where Rk is the kth column of

R. Then j1VIk = RikRjk and (k Mk) = Ek RikRjk = Ek Rik(RT)kj · Also we have

that, Qij = EkRik(RT )kj = Ek(Mk)ij, ie. Q = Ek M k . Thus, PoQ = E k Po =

Ek P o (Rk(Rk)T) >_ 0, since by Proposition A.2.2 P o (Rk(Rk)T) > 0 Vk. 

Proposition A.2.4 If A and B are symmetric positive semi-definite matrices, and

A - B, then A(2) B(2) .

Proof We have that B - A >- 0 and B + A >- 0 and so by Proposition A.2.3

(B + A) o (B - A) 0 O, ie. B( 2) - A(2) _ 0 . [

Theorem A.2.5 [Gershgorin Circle Theorem] The eigenvalues of a symmetric

matrix W are contained in the union of the intervals Wii + Eji Iwijl, i = 1,. . , m.

Proof Take any eigenvalue A and let x be the corresponding eigenvector. Choose

i such that xil IŽ xj Vj. Now, Wx=Ax = Wiixi + EjiWijxj = Axi, and it

follows that (Wii - A) = i Wi - ji WWij < (Wii - A) < Eji Wijl

and so we have that Wii - Eji IWij3l A < Wii + Ejoi IWijl. Thus, Ak E

Ui(Wi, + ±Ei Iwijl) Vk. [

Proposition A.2.6 If B is a symmetric positive definite matrix, then

IJlB21 < 1(1IIB I2611B

Proof Letting B = MTM, we get that

lTB21 = I(Ml )T(M 2)l < Ml 1 IM 2 l = Il1IIB II2IIB-. 

Proposition A.2.7 IIMxll < IMIIIlxl

Proof IIMxll = XTMTMX = JfxTQTDQx, (since MTM is symmetric and can be

written as QTDQ where the columns of the matrix Q are orthogonal and the diagonal
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matrix D contains the eigenvalues of MTM),

= i Di (Qx)i2 < VI2(QX)2 = MI x T QTQX = MI -T = IMIIIxII.

Proposition A.2.8 M is symmetric => MI = max IAi(M) I

Proof Self-evident. If A, x are eigenvalue, vector of M then Mx = Ax = MTM =

ie. A2, x are eigenvalue, vector of MTM and the result follows.

o

Proposition A.2.9 Let A and B be n x n symmetric matrices such that JITAI <

JTBJ V E V ' and suppose that the matrix B is positive definite. Then I 1 4TAJ2 1 <

V 1 2 E Rn.

Proof Let A = B-1/2TAB-1/2 ; where B is written as B1/2TB1/2 as it is positive

definite. Then V E R'n, IJTAI = TB-1/2 TAB-1/2kI < TB-1/2TBB-1/2 = TI ,

-I - A < I. Now A is symmetric and thus it can be written as RTDR where R is the

matrix of orthonormal eigenvectors of A and D is the diagonal matrix of eigenvalues of

A. Thus, -I - RTDR I = 7 r E Rn, - 7TIq < (TR)RTDR(RT%) = vTDv < VT

and so Ai(A) E [-1, 1] giving that IA I 1.

Finally,

xTAy = xTB1/2T B-1/2TAB-1/2B1/2Y = xTB1/2TAB1/2y < IIB1/ 2xII IIAB1/ 2 yl

< IB1/2XII IA I IIB1/2yI < IIB1/2xII IIB1/2yII = IIxIIB IIYII. [

A.3 Projection matrices

A matrix P is a projection matrix if the following two properties hold

1. pT = p

2. PP=P
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For any projection matrix P the following holds true:

1. I - P is a projection matrix

2. P is positive semi-definite

3. IJPxl < ilx

Proof

1. (I_p)T= = = I-P, and (I-P)(I-P) = I-2P+PP = I-2P+P =

I-P. 

2. xTPx = xTPPx = XTPTPX = PxIl 2 > 0. 

3. I11x2 = IIP + (I - P)xl 2 = IPxfl 2 + I(I - P)xZl 2 + 2x TP(I - P)x = IlPx112 +

11(I - P)xI 2 and since P(I - P) is just the null matrix it is evident that,

Ilxll 2 > HPxll2 = jlxll > IPx1. ]

A.4 Properties of the volumetric barrier function

V(.)

Lemma A.4.1 Fix s > 0, and let = a(s), then 0 < ai < 1, i = 1,...,m, and

z~=l ai = n.

Proof Let P = P(s), and let ei denote the vector with a 1 in the ith component,

and all other components equal to zero. Then ai = eiTPei = IIPeill2 < lei12 = 1,

establishing that 0 < a i < 1. Also, note that as s > 0, (ATS-2A) is positive definite

and so (ATS-2A) -1 is also positive definite = ai = a(ATS-2A)-lai > 0.
Si

That -ir=l aci = n follows from the fact that P has n eigenvalues equal to 1, and

m - n eigenvalues equal to 0. This is seen as follows.

First for any m x m symmetric matrix A, E=l Aii = Li=l Ai(A)
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(To see this, let A = RTDR, where RT is an orthonormal matrix whose columns con-

tain the eigenvectors of A and D is the diagonal matrix consisting of the eigenvalues

Ai(A) then Aii = jm 1 jRji im = Aii = A[R21 + + R 2m] + + Arn[R2ml +

R2m] = E iml Ai, since ilrill = 1)

Secondly, the dimension of /ull(ATS - 1) is m - n, since only n out of m columns

of AT are linearly independent and if x E Mull(ATS - 1) then Px = Ox; and the

dimension of Range(S 1-A) = n, since the columns of A are linearly independent and

if x E Range(S-1 A) then Px = x. Thus, A has m - n eigenvalues equal to 0 and n

eigenvalues equal to 1. [

Lemma A.4.2 Let u, v E Rn. Then det(I - uvT) = 1 - uTv.

Proof This follows from the fact that the matrix (I - uvT) has n - 1 eigenvalues

equal to 1 with corresponding eigenvectors spanning iRange(S-1A), and one eigen-

value equal to 1 - uTv with corresponding eigenvector u; and that for any n x n matrix

A, det(A) = 1 - Ai(A)

(To see this, we have that (I - uvT)x = x X uvTx = 0 and n - I eigenvectors span

the space Z = {x E Rn vTx = O}. Also, we have that (I - uvT)u = u - uvTu =

u(1 - vTu) = u is an eigenvector and (1 - uTv) its eigenvalue.

Finally, for any n x n matrix A let R be the matrix whose columns contain the

eigenvectors of A and let D be the diagonal matrix of corresponding eigenvalues Ai(A)

of A. Then AR = RD = det(A)det(R) = det(R)det(D) = det(A) = H-=l Ai(A).) 

Lemma A.4.3 Let x have s = s(x) > 0, and let a = a(s). Then VV(x)T =

-ATS-la.

Proof Consider the function v(.): Rm - R given by v(s) = I ln(det(A T S-2 A)).

Then

Ov(s) = lim v(s + Aej ) - v(s) (A.3)

Osj xA+0 A

However, v(s + ej) = 1 ln(det(AT (S + AEj)-2A)), where E = diag(ej). Letting2~~~~~~~~~~ 
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aT denote the jth row of A, we getI

AT(S + AE j )- 2 A = ATS-2A + ((sj + A)-2 - s )ajaT

(this is because AT(S + AE j )- 2 A = AT(S - 2 + ((sj + A)-2 - s-2)Ej)A = ATS-2A +

((sj + >)-2 - s 2)ATEjA, and ATEjA = aja.)

= ATS- 2A _ A + 2JsA T
(83i + )2S 2 aai

(A.4)

A2 + 2sjA T
= A T S - 2A I- )( s 2 ( A T S - 2 A ) - la j aT

(,, ) SA(sA + )2 so

Now P(s) = S-A(ATS- 2 A)-lATS- 1, and so aj a(ATS2A)aj, giving us

that v(s + ej) =

(A.4.2) with u =

A2 +2s -A
1In [det(ATS2A) det (Ia- A + A Tl
2 [ \ / V (s +A) 2s4 ij

I I
A2 +2s-A 
(s+A)2 s (ATS-2A)-lajaT(Sj+A)2, '

On applying lemma

and v = aj we get that

1
v(s+ Aej) = v(s) + 

2

Substituting (A.5) into (A.3), we have

1 1
= - lim - In

2 x-o A
(1 A2 + 2sjA 

- (sj + )2 i) 2 dx= oIn 1-2 dA A=0 
- ~U) + ) (A.6)

(sj + A) 2

where the last equality follows from,

A2 ±2s A (s -+A)'- -2s ujs2 +s orj

(i) 1 - (SA) j = (sj+

= (1 - j) + ( +)

(ii) if we define the function f by f(A) = in

and lim f(A ) - f(o)_ d I f(A)
A-o A - dAX t fo

A straightforward computation then gives,

d
d In

(1 - o)± + (sj + A)2 

(1

(sj+A)2 (1-aj)+
(s j+A)

- ) + (sj+A)2 , then f (0) = 0

(A.7)
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( 2 + 2sAIn I - (sj + A)2 -

dy(s)

.38.

(A.5)

-2sa 3i 01
(sj + A)[(sj + A) 2 - Aaj(2sj + A)]



and on putting A = 0 we get that
s - -j = Vv(s) = -aTS-1081 -

And since s = Ax - b, the chain rule gives that VxV(s(x)) = VV(s(x))Vxs(x) =

aTS-1A4

(we have that v is a function of s,. .. , s and that each si is a function of xl,..., x

then by the chain rule we have that,

av _ v ds
dxj -a s1 axj

+ v asm
a Sm axj

- ( v '"... v )-- ~3-1 , . , O-m Ozs

axj

= -arTS - Aj , where Aj is the jth column of A

= VxV(s(x)) = -aTS-A).

Lemma A.4.4 Let x have s = s(x) > 0 and let a = a(s),P = P(s). Then, V2 V

(x) = ATS-1(3 - 2P(2 ))S-1 A, where E =diag(a).

Proof Let g(s) = Vv(s)T = -S-1a(s). Then,

9i(s) =- i(- ) i (S) --- 

Si 3

where Vi(S) = aiT(ATS-2A)-lai = i(S). We will compute,

Dvi(s) li aTai - a(ATS- 2A)-lai
sj -limo A

First, using (A.4) and the Sherman-Morrison formula we obtain,

(AT(S + AEj)-2 A) - 1 = (ATS-2A) -1 +

= (ATS - 2A)-' +

A2 + 2Asj
(sj + )2sj

A(2sj + A) 
8?[j+ A)2 - aj(2sj + A)] 3w
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(A.8)

(A.9)

(ATS-2 A) - 'ajaT(AT S-2 A)-1

1 - ajA(2sj + A)/(sj + A) 2

(A.10)



where wj = (ATS- 2 A)-laj. Substituting (A.10) into (A.9) and noting that

1 awj
Pij = Ia[(ATS- 2 A )- la, =

Si j3 sisj

we obtain

1
- 111A (s

x\-o A (sj

A(2sj + A) psi

+ A) 2 - aj,(2s; + X)

2p?. s?S 2

Sj
(A.11)

From (A.8) and (A.11) we then have

Ogi(s)
asj

_ -2p2j/(sisj) if j i

(3ai - 2pi)/si otherwise

which is exactly V 2v(s) = S-1(3E- 2( 2))S -1 . The formula for V 2V(x) follows from

the relationship s(x) = Ax - b and the chain rule

(we have that v is a function of sl,..., sm and that each si is a function of xl,.

then by the chain rule we have that,

Ov _ Ov Osl
Oxj - s1 axj +

applying the chain rule again gives,

,Xn

dv asm
as+ sm axj

.. + 2v '\Osm
a k OXiO asm axOOxj +,9xj , since 02iz = 0

Ox si '' '

= [Ai]T [V 2 v(sjl [A[Aj] = V 2 V(x) = ATS-1(3E - 2P(2))S-1A) . o

A.5 Properties of the matrix Q(x)

Theorem A.5.1 Let x have s = s(x) > 0 and let a = a(s). Define Q(x) =

ATS-2 A. Then V E , ~TQ(x) < TV 2V(x)~ < 3 TQ(x)(
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Ovi (s)

dsj

2OxvOx 02v

= 1(O - axi01
= 0sl1sl ) -"i

( 02 v Osm

+OSmaSm aXi[Aj]19S,08,n a di

I ..... -



Proof Recalling that V 2V(x) = ATS-1(3E - 2 P( 2))S-1A and noting that 3E -

2 p(2) = E + 2 (E - p(2 )), then the relation E < 3E - 2 p(2) < 3E and hence the

proof will follow if we can show that the two matrices (E - p(2)) and p(2) are positive

semi-definite.

First we have that the matrix P >- 0 since ATS- 2A >- 0 and by Theorem A.2.3

it follows that p(2 ) = o P >- 0. Secondly, using the properties of a projection

matrix, namely ppT = PP = P we get that i = Pii -= Ejm=Lp = - j=(P(2 ))ij , ie.

i - Or2 = ji(P(2))ij (E _ p( 2)) is diagonally dominant and so by the Gershgorin

Circle Theorem A.2.5 all the eigenvalues are > 0, ie. the matrix is positive semi-

definite. o

Theorem A.5.2 Let x have s = s(x) > 0, and let a = a(s). Then for every 0 <

p < 1, and E Rn, T A T S-2(E + pI)AE > [2 p( m- 1) + 1/(1 + #i-)] IIS- 1AI 2I

Proof Let A = S-1A. Since the columns of A are linearly independent, we can

write A = UR, where U is an m x n matrix with orthonormal columns, and R is a

nonsingular n x n matrix. Using the change of variables { = Rs, and noting that

iiUO= -/TTU = 11I V E E , proving the theorem is equivalent to proving that

PII 112 + TUTsru T > 2 ) + 11 (A.12)

V{ E Rn. Pick a £ E Rn with IIUlO11O = 1. Note that the projection matrix P

simplifies to UUT, since R is nonsingular, and therefore i = ii = uTui = lluill2,

where uT denotes the ith row of U. Taking note that rLJTZUU = iL luil 2(u7'{)2

and that IIUII = i=1(Ui) 2, a natural minimization problem to consider towards

proving (A.12) is

m

min pH 211 + E Iluill2(uT)2
i=l
m

s.t. IlUill 2 = n (A.13)
i=l
m

~;7(E 2= I1 112
i=1
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Since IIU~Ilo = 1 there is a component i with uTfl = 1, so assume WLOG that

IuTI -= 1. Notice also that IuTI < iullul 11, so lulll 1/II11-

(A.13) is then the problem

min pll11I2 + (1/F l2) +

m

s.to E
i=2

A relaxation of

m

E IUiI I (U=T)
i=2 (A.14)

(uT-)2 = -11
2

- 1

To obtain a lower bound on the solution value for (A.14), first consider the solution

value of the problem

m

min E Iluil (us)2
i=2 (A I A\
m

S.t. Z(T) 2 = 11112 _
i=2

V 1. J)

1

as a function of I11f. Let 0 = I112 > 1. Using the fact that (u[T) 2 < llui 12 I2 =

fl ui 2 we then have that IluilH2 Ž (u[T) 2 /0Vi > 2. Defining vi = (uT[) 2 , the mini-

mum value in (A.15), with llI2 = 0, is no less than the solution value in the mini-

mization problem

m

min (1/0) vi2
i=2 /A 1ON\
m

s.t. E vi 0 -
i=2

ti. u)

But the solution of (A.16) has vi = ( - 1)/(m - 1) Vi > 2, and the solution value is

m-1 0-1 2
0 -1 1

(0 - 1)2

O(m- 1)
(A.17)

Using (A.17), a lower bound on the minimum value for (A.14) is

1 + (_ 1)2 

0 (m - 1) =(m-1
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0>1

+ 110 - 2} (A.18)mn + [(m - 1)



A straightforward differentiation shows that the minimizing 0 in (A.18) is

0 = p(m-1) + 1

and the solution value for (A.18) is then

m[p(m - 1) + 1]
2 > p (m- 1) /p(m- 1)+ 1
2 V/p(m- ) + 1

and we have just shown that

pHl 112 + e: T U T
2 p(m-+l

V~ with JJU~1Qo = 1, proving (A.12) and the theorem. =

Corollary Let x have s = s(x) > 0, and let = (s). Then for every G C n

$TQ > 2/(1 + V'i) JJS-1AI 2l

Proof Follows on setting p to 0.

m-1(\

(A.19)

0o
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Appendix B

Quadratic convergence result

We will show the quadratic convergence result for Newton's method applied to the

volumetric function V(.) for points in a close enough vicinity of the volumetric center

w. We will first start by establishing two claims.

Claim B.1 Let B be an n x n symmetric positive definite matrix. Then

max {(wT(y- X)) 2 } = r 2 wTB-lw
yEE(B,x,r)

where w E Rn is an arbitrary fixed vector.

Proof Since we are maximizing the square of a linear function over a convex set the

optimal value will be on the boundary. Let x be the point that gives the maximum

value, then from the Karush-Kuhn-Tucker conditions we have that

-2w + 2vB(x- x) = 0

( - x)TB(J- x) = r 2

rB-lw
which gives us that x = rBwTB lw + x, and the maximum value (wT(- x)) 2

=

r 2 wTB-lw. 
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Let 0 > 0, and let B 1, B 2 be n x n positive definite matrices. Then

B1 > B 2
1

= B - l B - 1

Proof Suppose that V~ E n, TB1j > OnTB2 Then TB1 < 1 <TB2 ~ < I

Thus,

1
E(B 1, , 1) C E(B 2,0 -)

and hence for w E Rn,

max {(WT)2}
~EE(B,0,1)

< max { (wT )2}
FeE(B2,0O, )

So by Claim 1,

wTB-1 <I wTB- 1 w
0 2

and the proof is complete. D

Let p E Rn have 6 = IlS-Aplloo < 1, and let x = x + p, where x E int(P).

s= s(x), P = P(s), a = a(s-), H = VV(x).

Proposition B.3 Let x = x + p, where = IIS-1Aplloo < 1, then x E E(x, 6) C

int(P) and

(1 - 6)2 < 

(1 + 6)2 - i

Proof By the definition of the infinity

< (1 + 6)2

- (1 - 6)2

norm we have that -IIS- 1Apllo < a <

I s -l A plloo = (1 -)si < aTp + si si(1 + ). Now aTp + si = i = x E E(x, 6) C

int(P), since 6 < 1.
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From the definition of G(x) we have

2

~Tcjz) =
m (aT) (aTx - bi) 

< T G(~) •

and since x E E(x, ) we get that

aTG(x)~
(1 + 6)2

applying Claim B.2 we get that

(1 + )2aiTG(x)-ai > aTG(i)-lai > (1 - 6)2aTG(g)-lai

Then noting that
aTG()-aii( ) = a_ i) it followsoaG = Z-b7J2

that for 1 < i < m,

(1 - 6) 2 (aTx - bi) 2 i(x) < (art - bi) 2 ai() < (1 + 6) 2 (ax - bi)2 i(x)

giving that

(1 _ )2

(1 + )2 ( ) < i (X) 
(1 + )2 (X)

and proving the lemma. 

Inorder to arrive at some quadratic convergence result for 1IIH II the magnitude of

H(x) - H(x) must be bounded. There are clearly two components in this difference,

namely one involving E - and the other p(2 ) _ p(2), and these are both bounded

in the next two lemmas. To facilitate let R = R(x) = ATS-lp( 2 )S-1A, and R =

R(x) = ATS-lP(2 )S-1A, so that H = 3Q - 2R, and H = 3Q - 2R.
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Hence,

(aT) 2

(aTx -bi) 2

min } TG(x)
l<i<m ( a - bi) 

maxf{ ( - bi) 2I<i<m (a~ ta - bi) z

JTG(1 )
( - )2

(B.1)



Lemma B.4 Let t = x + p, where 6 = |1S-'Ap o < 1. Then V E R',

P t 66
JT(Q - Q)I < - TQ

Proof From Proposition B.3 we immediately obtain

(1 - 6)2

(1 + )4 < T < (1- + )TQ(I - 6)4 v'

Subtracting ~TQ( throughout in (B.2), and noting that

(1 - 6)2
(1 + )4

(1 6)2< +--~1 for 0<6<1
- (1 - )4

we then have that

(1 + 6)2
(1 - )4 (B.3)

But (1 + 6)2 - (1 - 6)4 = 6(3 - 6)(2 - 6 + 62), so (B.3) can be written as

(B.4)

and (3 - 6)(2 - 6 + 62) < 6 for O < 6 < 1. c

Lemma B.5 Let x = x +p, where 6 = IS-1Apllo < 1. Then V E ,

Proof Let U = A(ATS- 2A)-1AT, and U = A(ATS-2A)-AT. Then p(2 ) =

S-2 U(2 )S - 2 , and p(2) = -2U(2)g-2. Applying Claim B.2 and Lemma B.3, we obtain

(1- )2U -< U -< (1 + 6) 2U

(1 - 6)4U(2 ) < U(2) < (1 + 6)4U(2 ) (B.5)

we begin by obtaining an upper bound for T(_ - R)C. Letting zi = si/si, and
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(B.2)

- I 'TQ

I~T(Q- QW 6(3 - 6)(2 - + 62) w

(I - 6)4

J~T(f? - R)rI 166TI
( - 6)6



Z = diag(z), (B.5) implies that

= TAT (- 3 U-(2)j- 3 _ S-p(2 )S-1) AE

< TAT ((1 + )4S-3U(2)S-3 S-1P(2)S-1) A

=- TATS-IE/ 2 Z-1/2 ((1 + 6)4Z3p(2)Z3 _ p(2)) Z-1/2E1/2 S-1AJ

< Amxa, TQ (B.6)

where Ama,, is the maximum eigenvalue of the matrix

z-1/2 ((1 + 6)4Z3p(2)Z3 _ p(2)) E-1/2

By similarity, Amax is also the maximum eigenvalue of the matrix

W = E- 1 ((1 + 6)4Z3p(2)Z3 _ p(2))

Also by the Gershgorin Circle Theorem A.2.5, the eigenvalues of W are contained in

the union of the intervals wii + Eji Iwijl, i = 1,..., m and since P(i2) = ai we have

(B.7)
i)o,_ (1 )6

where the inequality follows from Proposition B.3. Moreover,

wzijl
3$2

__ 1 42 33 2
= 1 E 6 ij ) 4 3zj- Pij

i ji

<1 ((1+ 6()4

c- (1-6)6

(1 + 6) 4

(1 - 6)6

- I) p j

(B.8)

and the last step follows since Eji p = i - Combining (B.7) and (B.8) we have

that Amax < [(1 + )4/(1 - )6] - 1, and therefore by (B.6)
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(1 + 6) 4

-< (1 - 6)6 - I) Q

1)

(B.9)

Similarly from Proposition B.3, we get the following condition

- I) (B.10)wii = ((1 + 6)4Z6 - 1 ) a i > (+ )

and combining this with (B.8) we get that

min >[ (1 + )2 (1-ai)] (B.11)

It follows that ~T(R - R)I < -Amin~ T Q~ and on noting that 1 - 1/(1 + 6)2

< [(1 + 6)4/(1 _ 6)6] - 1 V6 E [0, 1] we get that

< (1 + )4

- (1 - )6 -) TQ~ (B.12)

But (1 + 6)4 - (1 - 6) 6 = 6(5 - 26 + 62)(2 _ 6 + 462 _ 63), SO (B.9) and (B.12)

together imply

T( R)~ < 6(5 - 26 + 62)(2 - 6 + 462 _ 63)
(1 - 6)6

(B.13)

Finally, the maximum of the polynomial (5 - 26 + 62)(2 - + 462 - 63) for

0 < 6 < 1 occurs at = 1, with value 16. o

Theorem B.6 Let = x +p, where 6 = S- 1Apllo < 1. Then V E n,

386
IT(H- H)~ < (1 ) Q

(1Proof By definition H = 3Q- 2R. Then (H-)6

Proof By definition H = 3Q - 2R and H = 3Q - 2R. Then JIT(fi - H)~j
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< 31fT(Q - Q)lj + 21 T(R - R)Il. From (B.4) and (B.13) we then have

_ + 62) 26(5 - 26 + 62)(2 - 6 + 462 63))

15 k - ) -- (1-

6(3(3 - )(2 - + 2)(1 _ )2 + 2(26 + 62)(2 - 6 + 462 - 63) TQ

( - 6)6

and the polynomial 3(3 - 6)(2 - 6 + 62)(1 - 6)2+2(5 - 26 + 62)(2 - 6 + 462 - 63 ) =

38 - 696 + 10862 - 7063 + 3064 - 565 is maximized for 0 < 6 < 1 at 6 = 0. 0

Now that we have obtained this bound on H the quadratic convergence result for

Newton's method applied to V(.) is established in the following theorem.

Theorem B.7 Let x = x + p, where p = -H-lg and 6 = IS-'Apll < 1. Then

196(1 + 6)2
(1 - 6)6

Proof For 0 < c < 1, and ( E R', define h(a, () = g(x + p)T - (1 - a)g(x)T(.

Then for any (, h(O, () = 0, h(1, () = g(x + p)T(, and the chain rule gives us that

d h(al, ) = pTH(x + ap)~ + gT = pT(H(x + ap) - H)5
da

where the last equality follows from p = -H-lg. Now for 0 < a < 1, = x + ap E

E(x, ac6) and on appealing to Theorem B.6 and Proposition A.2.9 with symmetric
38a6

matrix A = (H-H), and symmetric positive definite matrix B = (1-a6)6 Q we get

that

38a6
(1 - a6)6 IIPIIQ 11~Q forO < a < 1

integrating both sides,

lh(l, )I = Ig(x + p)Tl < 381plIIQIIIIQj/
ca6

(1 - a6)6

Note that a6/(1 - c6)6 = (1 - a6)-6 - (1- a6)- 5 . A straightforward integration then
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I - T, 36(3 - 6)(2

I d h(r, ) l <dal

(B.14)

I >-I H _ 11 l iF I I
,-\ A |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

6)4



0 ( 1 - 6) 6 da i ((1- 6)5 + 5 6 - 1
205 (1 - )5

6 (10

<

- 106 + 562

(1 - )5
6

2(1 - 6)5

for 0 < 6 < 1. Combining (B.14) and (B.15),

196
Ig(x +p)T (1 - 6)5 H[[QlP[fQ V' E Rn (B.16)

Now let = -H(x + p)-lg(x + p) = p, so that Ig(x + p)TIj = Tp = p112. Then

(B.16) is exactly

IIPIIH
196

-< (1 - 6)5 IIPIQ IIPQ

196(1 + 6)2
(1- 6)6

where the second inequality follows from (1.8) and (B.2).

(B.17)

C

Theorem B.7 establishes the quadratic convergence for the 11 IIH measure associated

with V(.), this is seen as follows. Since from Theorem A.5.2 with p set equal to zero

we have

2 1

- 1+ rIM \/ ii
tV EfRn

and this immediately implies that

6 = IS-lApl < ml/4 IPIIQ < ml/4 IIPIIH

(B.18)

(B.19)
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Finally, combining (B.19) with Theorem B.7, using lPIIQ < IIPIIH, gives

IIP lI < 19m 1 /4 (1 + m I/4 p IH) 2

(1 - m/ 4ap ) 6 Il

and it is straightforward to verify that (B.20) implies liplI <

IIPIIH < .038m- 1/4.

IIPIIH for roughly
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Appendix C

Computer code

The algorithm was coded and implemented in Matlab. The main program starts by

prompting the user for his/her choice of parameter values and dimensions for the

problem. Based on these it then maintains control over the iterations and deter-

mines when the algorithm will terminate. The main program also calls the linesearch

subroutine and two procedures, one that updates the vectors and matrices after the

current test point has shifted and the other that furnishes a separating hyperplane

for use during the following iteration of the algorithm. The computer code is now

presented.

C.1 The main program

clear;

L = 6;

k = input ('Enter the number of lsearch steps:');

tau = input ('Enter the value of tau:');

eps = input ('Enter the value of epsilon:');

gammal = input ('Enter the value of gammal:');

gamma2 = input ('Enter the value of gamma2:');

q = input ('Generate a new matrix, or use old one? [1 = Yes, 0 = No] :');
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if q == 1

n = input ('Enter dimension n of C:');

m = input ('Enter dimension m of C:'):

C = normrnd(0,1,m,n);

d =- abs(normrnd(0,1,m,1));

save temp C d m n;

else

load temp;

end

nrows = n+1;

V-max = 0.7 x n x L + n x log(nrows);

A = eye(n);

A(n+l,:) = -ones(l,n);

b = -( 2 L) x ones(n,1);

b(n+l) = -n x (2L);

x = 2LX ((n-1)/(n+l)) x ones(n, 1);

addcounter = 0;

deccounter = 0;

newtmax = 0;

newtmin = 10;

counter = 0;

totnewt = 0;

update;

V = 0.5 x log(det(B));

while (V max > V)

counter = counter + 1;

if (sigm-min >= eps)

[flag, new-row] = oracle(C,d,x);

if (flag == 1)
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break;

end;

A =[A; newrow'];

bl = newrow' x x - ((newrow' x inv(B) x newrow)/tau)0 5;

b = [b; bl];

nrows = nrows + 1;

addcounter = addcounter+1;

else

ind = find(sigm == sigm-min)

if (length(ind) > 1)

ind = ind(1);

end;

if (ind == 1)

A = A(2:nrows,:);

b = b(2:n rows);

elseif (ind == nrows)

A = A(1:n rows-l,:);

b = b(l:n rows-1);

else

A = [A(l:ind-l,:); A(ind+l:n rows,:)];

b = [b(l:ind-1); b(ind+l:nrows)];

end;

n-rows = nrows - 1;

deccounter = deccounter +1;

end

update;

t = 0;

while (crit > gammal) (m x crit > gamma2)

t = t+1;

lambda = lsearch(A,p,s,n rows,k)
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x = x + lambda x p;

update;

end;

totnewt = totnewt + t;

if ( newtmax < t)

newtmax = t;

end;

if (newtmin > t)

newtmin = t;

end;

V = 0.5 x log(det(B))

V-max = 0.7 x n x L + n x log(n rows)

end;

counter

addcounter

deccounter

avgnewt = totnewt/(counter-1)

totnewt

newtmax

newtmin

inversions = totnewt x 2 + totnewt x k

C.2 The oracle procedure

This is the procedure that checks to see whether the current test point lies within the

convex set (the result being indicated by the state a returned flag is in) and if not, it

provides the separating hyperplane.

function [flag, y] = oracle(C,d,x)
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ind= (d > C x x);

flag = 0;

z = find(ind == 1);

if z == [];

flag = 1;

y =x;

else

y = C(z(1), :)';

end;

C.3 The update procedure

This procedure merely updates all matrices, vectors and associated value after our

test point has shifted, both during the linesearch subroutine and after a Newton step

has occured.

s = Ax x x-b;

S = diag(s);

Sinv = inv(S);

ASinv = A' x Sinv;

B = ASinv x ASinv';

P = ASinv' x inv(B) x ASinv;

sigm = diag(P);

sigmmin = min(sigm);

g = -ASinv x sigm;

H = ASinv x (3 x diag(sigm) - 2 x p.2 ) x ASinv';

p =-inv(H) x g;

m = (2 x sigm-min -5 - sigm-min)- 5 ;
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crit = (p' x H x p)5;

C.4 The linesearch procedure

The Bisection Method is used as our linesearch algorithm and is presented here. It is

called prior to every Newton step that is taken.

function flambda = lsearch(A,p,s,nrows,k)

z = 1;

for w = 1:nrows,

if A(w,:) x p < O

alph(z) = - s(w) / (A(w,:) x p);

z = z+l;

end;

end;

maxalph = min(alph)

a= 0;

b = maxalph;

tlambda = (a+b)/2

for i = l:k,

temp = s + tlambda x A x p;

TS = diag(temp);

TSinv = inv(TS);

TASinv = A' x TSinv;

TB = TASinv x TASinv';

TP = TASinv' x inv(TB) x TAS-inv;

Tsigm = diag(TP);
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Tg = -Tsigm' x TSinv x A x p;

if Tg > 0

b = tlambda;

else

a = tlambda;

end;

tlambda = (a+b)/2

end;

flambda = tlambda

end;
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