
ON THE P-COVERAGE PROBLEM
ON THE REAL LINE

Stan Van Hoesel
and

Albert Wagelmans

OR 255-91 June 1991

ON THE P-COVERAGE PROBLEM ON THE REAL LINE

Stan Van Hoesel 1

Albert Wagelmans 2

June 1991

Abstract: In this paper we consider the p-coverage problem on the real line.

We first give a detailed description of an algorithm to solve the coverage

problem without the upper bound p on the number of open facilities. Then we

analyze how the structure of the optimal solution changes if the setup costs

of the facilities are all decreased by the same amount. This result is used to

develop a parametric approach to the p-coverage problem which runs in

O(pnlogn) time, n being the number of clients.

OR/MS subject classification: Analysis of algorithms, computational

complexity: parametric application of dynamic programming; Dynamic

programming/optimal control, applications: parametric approach to p-coverage

problem on the real line; Facilities/equipment planning, location, discrete:

p-coverage problem on the real line

Department of Mathematics and Computing Science, Eindhoven University of

Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
2

Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR

Rotterdam, The Netherlands; currently on leave at the Operations Research

Center, Massachusetts Institute of Technology, Cambridge MA; financial

support of the Netherlands Organization for Scientific Research (NWO) is

gratefully acknowledged.

O. Introduction

In Hassin and Tamir (1990) recent results in dynamic programming are used to

improve the complexity bounds of several median and coverage location models

on the real line. A general model that unifies some of the classical problems

in location theory is shown to be solvable in O(n2) time, where n is the

number of clients. One of the special cases of this general model is the

p - coverage problem, where - as usual - p refers to an upper bound on the

number of open facilities. Hassin and Tamir show that if this upper bound is

ignored (or redundant), the resulting problem is solvable in O(nlogn) time.

Because the p-coverage problem can be formulated as a 0/1 linear program with

a totally unimodular restriction matrix, an optimal solution to the Lagrangean

dual problem that results from relaxing the upper bound constraint yields an

optimal solution to the p-coverage problem. To find that optimal solution a

parametric method due to Megiddo (1979) is used, resulting in an O(n21og2n)

algorithm.

In this paper we present an algorithm that solves the p-coverage problem on

the real line in O(pnlogn) time. After describing the problem in Section 1, we

give a detailed description of an algorithm to solve the coverage problem

without the upper bound on the number of open facilities (Section 2). This

algorithm takes O(nlogn) time. We consider the actual p-coverage problem in

Section 3. First we analyze how the structure of the optimal solution changes

if the setup costs of the facilities are all decreased by the same amount.

Then this result is used to develop a parametric approach to the p-coverage

problem which runs in O(pnlogn) time. In Section 4 we describe how the

algorithm should be modified to obtain an O(pn) algorithm for two special

cases of the p-coverage problem. Section 5 contains some concluding remarks.

1. Problem description

We consider the p-coverage problem in which n distinct points, v1 to vn, are

located on a line. These points represent both the set of clients and the set

of potential facility sites. To facilitate the exposition, we assume that the

points are numbered from left to right, i.e., j<m if and only if vj is located

to the left of vm. Let d(vi, vj) denote the distance between the points vi and

vj. With the client at vi we associate the radius ri, which has the

interpretation that this client can only be served by facilities at vertices

vj for which d(vi, vj) <ri. We will say that a client is covered by a subset S

of facilities, if S contains at least one facility that can serve that client.

1

The cost structure of the problem is as follows. If a facility is opened at

point vj, a setup cost cj>O is incurred. If the client at vi is not covered by

the set of open facilities, a penalty of bi> O units has to be paid. The

objective is to open facilities such that total costs are minimized.

We will not explicitly deal with variants of the problem. For instance one may

think of the problem in which the set of potential facility sites does not

coincide with the set of points where the clients are located or the problem

in which several clients with different radii are located at the same point.

In most cases it is easily seen that those problems can be dealt with in a

similar fashion as the one described above.

It is easy to see that the nxn matrix A defined by

1 if d(vivj)<ri

0 otherwise

has the row consecutive 's property and that the following 0/1 linear

programming formulation describes the problem.

min E =lCjyj + i=lbii

s.t.

=laijyj+zi 1 for all i= 1,...,n (1)

Ej=lyj < p (2)

Yj {O, 1} for all j=l,...,n (3)

zi e {0, 1} for all i = l,..., n (4)

The restriction matrix of the above program is totally unimodular and

therefore we can replace (3) and (4) by non-negativity constraints. (Because

of restriction (1) and the fact that the objective function coefficients are

non-negative, it is not necessary to introduce upper bounds on the

variables.) An optimal solution to the resulting linear programming problem

can be found by solving the Lagrangean dual with respect to (2):

2

max_>o{min lE=l(cj +)yj + E : =lbizi - /P}

s.t.

E=laijYj + Zi 1 for all i = 1,..., n

yj 0 for all j = 1,...,n

zi 2 0 for all i = 1,..., n

It follows that an optimal solution of the above Lagrangean dual provides an

optimal solution to the p-coverage problem. The approaches followed by Hassin

and Tamir (1990) and in this paper are based on this fact. For fixed p the

resulting problem can be viewed as a coverage problem without an upper bound

on the number of open facilities. We will refer to such problems as relaxed

covering problems. As already pointed out by Hassin and Tamir, the special

structure of the matrix A allows these problems to be solved very efficiently.

In the next section we will discuss in great detail an algorithm that solves

the relaxed coverage problem in O(nlogn) time.

2. Solving the relaxed coverage problem

We will present a dynamic programming algorithm to solve the relaxed problem.

In a somewhat disguised form this algorithm already appeared in Hassin and

Tamir [1990]. The explicit presentation as a dynamic programming algorithm

will enable us to make observations about the specific problem structure that

are useful in developing our algorithm to solve the p-coverage problem.

The dynamic programming algorithm has n stages. We start with an empty client

set and in every stage one client is added to the current set. Then we

consider the coverage problem that results if only this set of clients is

present (but we allow facilities to be opened in any of the n points). The

order in which the clients are added to the set is determined as follows. Let

f(i) and (i) denote the first respectively last column that has a 1 in row i

of matrix A. Note that we may assume that f(i) >0, because aii = 1. First permute

the rows such that they appear in order of non-decreasing (i). This results

in at most n blocks of rows all having the same 1(i). Subsequently, permute

within each block the rows such that they appear in order of non-decreasing

f(i). This last step is only carried out for convenience of presentation, but

not really necessary. The matrix that results after permuting the rows of A in

this way will be denoted by D.

3

1st block

2nd block

3rd block

0

0

Figure 1: Structure of matrix D

It is easily checked that matrix D is in standard greedy form (cf. Kolen and

Tamir, 1990), which implies that the relaxed coverage problem can be solved

using a greedy algorithm. Our dynamic programming algorithm is essentially

this greedy algorithm applied to the special case that the restriction matrix

has the row consecutive 's property.

The row order of D defines the order in which we will consider the clients in

the dynamic programming algorithm. From now on we let ui denote the client

that corresponds to the i-th row of matrix D. We accordingly re-index the cost

coefficients bi, i.e., bi corresponds to ui. Furthermore redefine f(i) and

1(i) to be the first respectively last column that has a 1 in row i of matrix

D (instead of A). We also define 1(0)=0, l(n+l)-n+l and for j{l,...,n} we let

ij be such that l(ij-1)<r<l(ij), i.e., row ij of D is the first row with a 1

in a column greater than or equal to j. Note that we have not altered the

column order. Therefore we will use our original notation vj, j=l,...,n, to

refer to the potential facilities.

We are now able to describe the dynamic programming algorithm in more detail.

Let Z(i,j), 1<i, jn, denote the optimal solution value of the coverage problem

in which the client set is {u,...,ui) and the largest indexed open facility

is restricted to be vj. Furthermore we define Z(0,0)-0. Now consider client ui

and suppose that Z(i-l,j) is known for all je{O,...,l(i-l)). First suppose

that (i) = l(i- 1). It is obvious that if a facility that covers ui is already

open, then this client can be added at no extra cost, i.e.,

Z(i,j)=Z(i-1,j) if f(i)<j<l(i) (5)

Because ui is not covered by facilities vj with j<f(i), we will incur the cost

bi. The best thing we can do is to cover the other clients optimally. Hence,

4

Z(i,j)=bi+Z(i-1,j) if O<j<f(i) (6)

Using (5) or (6) we are able to compute Z(i,j) from the already known value

Z(i-l,j), j = ,...,(i), in a straightforward way. Now suppose that

l(i- 1)<l(i), i.e., i is the first row of a block of rows k having all the same

1(k) value. In this case we first of all determine Z(i -1,j) for

j=l(i-1)+l,...,l(i). If facilities vj with j>l(i-1) are opened we will incur

the cost cj, but none of these facilities covers any of the first i-1 clients.

Therefore it is not difficult to see that in an optimal policy one incurs

additional costs equal to minO<t<l(i-){Z(i-l,t)}. Hence, it follows that

Z(i-l,j)=cj+min<t<(i){Z(i-l,t)} if j>l(i-1) (7)

It is now obvious how the values Z(i,j) can be computed recursively for all

i{1,.. .,n} and j{O,...,n}. The optimal value of the coverage problem is

equal to mino<j<n{Z(n,j)}. To show how an optimal set of open facilities can

be determined, we first prove the following.

Lemma 1 Let r{2,...,n} and consider any subset S of {v,,...,vn} that contains

vr. Suppose the facilities in S are opened and let T{vl,...,vrl} be a choice

of additional open facilities. Then T is an optimal choice if and only if T

represents an optimal solution for the coverage problem in which the set of

potential facilities is {v1,...,vr-1} and the client set is {u1,...,i 1}.

Proof It follows from the structure of matrix D that the clients that are

covered by {vr,...,vn} correspond exactly to the rows with an index greater

than or equal to ir . A subset Sc{Vr,...,vn} with vreS, may only cover a subset

of these clients. However, we will show that any client with an index larger

than ir which is not covered by S is also not covered by {V,...,vr l}. Hence,

these clients can be ignored when determining an optimal set T, i.e., choosing

T optimally is equivalent to making an optimal choice for the coverage problem

with potential facilities v1 to vr 1 and clients u1 to ui r-1.

Consider a client urn, m > i that is not covered by S. Because of the structure

of D, it holds that (m) 2l(ir) 2 r. Furthermore, by definition dm,,(m) =1. Now

suppose that um is covered by Vp, p <r-1, then dmp=l. Because D has the row

consecutive 's property it follows that also dr= 1. This is a contradiction

with the assumption that u is not covered by S, because r E S. Hence, any

5

client urn, m>ir, not covered by S is also not covered by {vl,...,vrl}. This

completes the proof. O

Note that an optimal choice of T in Lemma 1 does only depend on the lowest

indexed facility in S. We will now use this fact to construct an optimal

solution of the coverage problem. Let jo be such that

Z(n, j) = mino<j <n{Z(n,j)}, then we know that vjo is the largest indexed open

facility in some optimal solution. We can determine the other open facilities

in order of decreasing index as follows. Let S denote the current set of

facilities that have already been chosen to be opened in the optimal solution.

If r:=min{jlvjeS}, then Lemma 1 states that we should add to S the largest

indexed open facility in an optimal solution of the coverage problem in which

one has to choose facilities from {vl,...,vr l} to serve {U,...,uir1l}. It is

not difficult to see that the optimal value to the latter problem is

mino<k<(il){Z(iZ(ir-1,k)} and that the facility that should be added to S is

one for which this minimum is attained. This facility - which need not be

unique - is an optimal choice for the first open facility to the left of Vr

given that Vr is open. We will refer to it as an optimal predecessor of vr. If

it is not optimal to open a facility to the left of a facility, we define its

optimal predecessor to be vo. For all facilities j with l(ir-1)<jl(ir), an

optimal predecessor is found while determining the minimum in (7). By simply

storing its index at that time, an optimal solution of the coverage problem

can be constructed later on in the way indicated above.

Let us define an optimal predecessor of v+ to be a facility that has the

largest index among the open facilities in some optimal solution. As already

indicated in the preceding paragraph, a facility may have more than one

optimal predecessor. In particular we have the following result.

Lemma 2 Let 0 < h < j < k < m < n + 1 be such that vh is an optimal predecessor of vm and

vj is an optimal predecessor of Vk, then Vh and vj are both optimal

predecessors of both Vk and vm.

Proof We know that

- ik <ir,

- < Il(ik- 1) and Z(ik- 1,j) = mino<t(<i (ik l){Z(ik-l,t)}, and

- h < l(im- 1) and Z(im- 1, h) = minO<t<l(im-_l){Z(im - 1,t)}.

6

Because j<l(ik-1)<l(im-1) it follows that

Z(i m - 1, h) < Z(i m -1, j) (8)

and h < j < l(ik - 1) implies

Z(ik- 1, j) < Z(ik- 1, h). (9)

For all tE{ik,...,im-1} we have (t)2>j. Using the consecutive 's property

this implies that client ut is covered by {vl,..., vj} if and only if it is

covered by vj. Therefore,

Z(im- 1, j) =Z(ik - 1, j)+ teJbt (10)

where J{tlik <t<im and dtj = 0}. Analogously one can prove

Z(i m - 1, h) = Z(i k - 1, h) + Et-Hbt (11)

where H{t ik < t <im and dth= 0}. Again from the consecutive 's property it

follows that dtj= O implies dth = O for t 2 ik, i.e., JcH. Therefore, using (8),

(10) and (11),

Z(ik- 1, j) = Z(im- 1, j) - ~tejbt Z(im - 1, h) - tHbt = Z(ik - 1, h)

which combined with (9) yields

Z(ik- 1, h) = Z(ik - 1, j) = min0<t<l(ik- 1 Z(ik, t,) }

Hence, h is an optimal predecessor of k. The fact that vj is an optimal

predecessor of vm follows from similar arguments. O

Lemma 2 will be used in the next section to develop our algorithm for the

p-coverage problem. In the remainder of this section we will present an

efficient implementation of the dynamic programming algorithm for the relaxed

coverage problem. This implementation is based on the following result.

Lemma 3 Let i {2,... n} and suppose that j < k < 1(i - 1) and Z(i - 1, j) 2 Z(i - 1, k), then

Z(h, j) 2 Z(h, k) for all h =i,..., n.

7

�

Proof Consider a fixed h {i,...,n}. By the same arguments as in the proof of

Lemma 2 one can show

- Z(h,j) =Z(i-l1,j) + tjbt where J{tli < t < h and dtj=O},

- Z(h,k)=Z(i-l1,k)+tEKbt where K-{tli<t<h and dtk=O}, and

- KcJ.

The statement now follows easily. O

The importance of Lemma 3 is that it implies that if Z(i-1,j)>Z(i-1,k) for

j<k<l(i-1), vj may be ignored as a potential facility from stage i onwards. In

that case we will refer to v as a dominated facility.

We are now able to present the algorithm in full detail. First note that the

smallest/largest indexed facility that is able to serve a given client can be

found by binary search among the facilities. Hence, it takes O(nlogn) time to

determine a compact representation of matrix A. Obtaining matrix D requires

O(n) time if a bucket sort procedure is used twice.

At any point in time we let Q be the index set of relevant facilities, i.e,

initially Q = {0} and at the end of stage i-1 it contains all non-dominated

je{O,...,l(i-1)}. We store the elements of Q in a balanced tree (cf. Aho,

Hopcroft and Ullman, 1974). This enables us to perform the following

operations in O(logn) time: add an element to Q, delete an element from Q and

find the smallest element of Q which is greater than a given value. To keep

track of the relevant Z(i,j)-values we introduce variables Aj, j = 0,..., n,

which are initialized to 0 and which at the end of stage i-i1 satisfy

Z(i-1,j)=t<j,tQAt for all jQ. Note that the fact that Q contains the

indices of the non-dominated facilities implies A j>0 for all j eQ. Moreover,

let Jmin be the smallest element of Q, then minoj<l(il){Z(i-1,j)}=

Z(i-l,jmin)=Ajmin. Furthermore, we explicitly store the value Z(i-1,l(i-1)) in

the variable ZL.

We will now show how to update Q, ZL and the Aj -variables such that they

possess similar properties at the end of stage i. First we check whether

l(i)=l(i-1). If this is not the case then we add l(i-1)+1 to l(i) to Q, set

(i-1+l:=c(i-1)+l + Ajmin-ZL and Aj:=cj-cj 1 for all j=l(i-1)+2,...,l(i). Using

(7) it is easy to see that Z(i-1,j)=&t<j, t,QAt for all elements j of the

current set Q. Furthermore, we update ZL in this case by setting it equal to

8

IYIIYILYIII·__LLI_ .�-L ---_1_.1.__ -I

From (5) and (6) we see that Z(i-l,j)=E t,,tQAt must be increased by bi for

all jQ with j<f(i), and should remain the same for all jeQ with f(i)<j<l(i).

If g denotes the smallest element of Q greater than or equal to f(i), then

this can be effectuated by setting AJ i=AJ .i+bi and Ag:=ZAg-bi. At this point

Z(i,j)=E tj,t QAt for all jeQc{O,...,l(i)}. However, Q may contain indices of

dominated facilities. Note that keQ is dominated if the smallest jeQ with j>k

has A < 0. It is easy to see that this is only possible for

jeO{g,l(i-1)+1,...,1(i)}. To update Q we consider the elements of O in

decreasing order (although, as we will see, some elements may be skipped). Let

r be the current element under consideration and let k be the largest element

in Q with k<r. If A r <0, then k is deleted from Q and we set Ar:=Ar+Ak. We

repeat this until Ar> 0. Next we consider the largest element of On Q that is

smaller than r. After this procedure the indices of all dominated facilities

have been removed from Q and stage i of the algorithm has been completed.

To derive the complexity of the algorithm we first note that in every stage

the total amount of work can be split into three parts:

(a) a number of operations that depends on the number of elements added to Q

at the start of the stage,

(b) a number of operations that depends on the number of elements deleted from

Q during the stage, and

(c) a number of operations associated with finding g and the corresponding

update of the Aj-variables.

Clearly, the number of operations in (c) is O(logn) per stage and the

operations in (a) and (b) can be performed in O(logn) time per element added

to Q, respectively deleted from Q. There are n stages and each of the n

indices is added exactly once to Q and deleted at most once. Therefore the

total complexity of the algorithm is O(nlogn).

3. Solving the p-coverage problem

As already mentioned in Section 1, the approach to solve the p-coverage

problem proposed by Hassin and Tamir (1990) is based on the observation that

it suffices to find an optimal solution to the Lagrangean dual problem that

results when the restriction on the number of open facilities is dualized.

This fact is also used in the approach to be presented here. Consider the

9

Z(i IMi) = C(i) + 'Aimi n'

parametric relaxed coverage problem where the cost of opening facility vj is

equal to cj + =lb- A for all j =l,...,n, and A ranges from 0 to En=lbi. It is

easy to see that for A = 0 it is optimal to keep all facilities closed. The

optimal value of the parametric problem is a non-increasing piece wise linear

concave function of A. Let A* be the largest value in [0, n=lbi] for which

there exists an optimal solution with at most p open facilities, then this

solution is optimal for the p-coverage problem. The latter follows from the

fact that n=lbi - A* is the value of the optimal Lagrange multiplier. Hence,

solving the p-coverage problem boils down to finding A*. This can be done in

several ways. Hassin and Tamir indicate that an approach due to Megiddo (1979)

can be used. This approach has a computational complexity equal to the square

of the running time of the algorithm to solve the relaxed coverage problem,

i.e., it takes O(n21og2n) time. However, there exists other methods with lower

complexities. For instance, it is easily seen that the optimal value function

has at most n breakpoints on [0, E=lbi]. Using a well-known method often

attributed to Eisner and Severance (1976), this entire function can be

determined in O(n2logn) time. Then A* can be found as the value for which the

absolute value of the slope of this function changes from a value less than or

equal to p to a value greater than p. We also note that Hassin and Tamir

provide a general method to solve location problems on the real line. This

method - which is not based on the Lagrangean relaxation - solves the

p-coverage problem in O(n2) time.

We propose a parametric approach to the p-coverage problem that differs from

the parametric approaches mentioned above in the fact that it explicitly

exploits the problem structure. This will enable us to determine the optimal

value function of the parametric problem for increasing A in an on-line

fashion. Given the optimal solution for A = O in which all facilities are

closed, we determine largest value of A, say A1, for which this solution is

optimal. Because A1 is a breakpoint of the optimal value function, there

exists for that value an alternative optimal solution with at least one open

facility. Actually, it turns out that we may assume that the alternative

solution has exactly one open facility and we will find such a solution as a

byproduct of determining A1. Subsequently we determine the largest A, say A2,

for which the just found solution is optimal. Again it turns out that there

must exist an alternative optimal solution for A2 with exactly two open

facilities. We continue in this way until we find a solution that has p open

facilities. It is easy to see that this must be the optimal solution of the

p-coverage problem. So actually we are solving a complete family of coverage

10

- -

problems in which the bound on the number of open facilities ranges from 0 to

p. The value A*, although of secondary importance, can be determined as the

largest value of A for which this solution is optimal. Of course, as soon as

At _ =lbi for some t < p we conclude that there are not more than p open

facilities in an optimal solution of the relaxed problem and we terminate the

algorithm.

By now it will be clear that the most important part of our algorithm is a

procedure that calculates for a given optimal solution of an relaxed coverage

problem with cost coefficients bi and j, i,j=1,...,n, the maximal amount that

can be subtracted from all cj's simultaneously such that the solution remains

optimal. This resembles the problem in which one wants to determine the

maximal amount by which the setup costs in the well-known Wagner-Whitin

economic lot-sizing model can be reduced such that a given production plan

remains optimal. In Van Hoesel and Wagelmans (1991) it is shown how that

problem can be solved in linear time. It turns out that a similar approach can

be used for the current problem, yielding an O(nlogn) algorithm. The latter

implies an O(pnlogn) algorithm for the p-coverage problem.

Our approach is as follows. Let k(l)<... <vk(q) be the open facilities in an

optimal solution of the relaxed coverage problem with cost coefficients bi and

cj, i,j=1,...,n. Furthermore, define k(q+l)-n+1. For re{1,...,q+1} we consider

the coverage problem in which the set of open facilities with an index greater

than or equal to vk(r) is restricted to be exactly {vk(r), ... ,Vk(q)}. Define

Ar as the smallest non-negative value of A with the property that if the setup

costs are decreased to cj-A for all j= 1,...,n, the restricted coverage problem

above has an optimal solution with at least q+l1 open facilities (this is

equivalent to having at least r open facilities to the left of k(r)). Note

that for r=q+1 there is no restriction on the choice of open facilities. This

means that Aq+ 1 is the smallest non-negative value such that when all setup

costs are decreased by it, there exists an optimal solution of the coverage

problem with at least q+1 open facilities. Hence, Aq+ 1 is the value we want to

determine. When r increases the corresponding coverage problems become less

restricted and this implies that the Ar's are non-increasing in r. Our

algorithm uses this fact to determine the Ar's in order of increasing index.

For convenience, we define k(0)-O and A0 oo. The following theorem is basically

a characterization of how the structure of the optimal solution changes when

the setup costs are decreased sufficiently.

11

Theorem 1 Let re{1,...,q+l} and suppose A<Arl, then there exists an optimal

solution for the restricted coverage problem corresponding to Ar with the

following properties:

- there are exactly r open facilities vy(l)<... <v(r) with an index less than

k(r), and

- there exists an m, 0 <m<r, such that

T(t) = k(t) for all t = 1,...,m, and

k(t-1)<<T(t)<k(t) for all t=m+l,...,r.

Vk(l) Vk(2) Vk(m) Vk(m+l) Vk(m+2) Vk(r) Vk(r+l)

I IH I I I I 1 1 I I

V-(1) V(2) Vy(m) Vy(m+l) Vy(m+2) Vy(r)

Figure 2: Structure of optimal solution in Theorem 1

Proof We may assume q<n, because otherwise Ar=co for all r=l1,...,q+l. Let

r {1,...,n+ 1}. Because of Lemma 1 the coverage problem corresponding to Ar

boils down to choosing facilities from {vl, v2,...,Vk(r)_l} to serve the client

set {u1,...,ir,_l}. From now on we will therefore focus on the latter problem.

Note that {vk(l),. ,V (r-l) } is an optimal solution to this problem for A = Ar

Consider any solution with at least r open facilities that is optimal for A=Ar

and denote the indices of its open facilities by h(1)<h(2) <... <h(s), where

s > r. Let k(ml) be the largest indexed facility in the intersection of

{Vk(l),. . ,Vk(r-l)} and {Vh(l), . ,Vh(s)} (if this intersection is empty, take

ml=O). Furthermore, let m2 be such that k(ml)=h(m2), then it follows from

Lemma 1 that we can also take {Vk(l),...,Vk(ml-l)}U{Vh(n2).... ,Vh(s)} as an

optimal solution. Because Ar<Aml1 all optimal solution in which Vh(m2)=Vk(ml)

is open have at most ml-1 open facilities to the left of Vk(,,l). Therefore it

holds that I {Vh(l), ... , h(m2-l)}l < m - 1 = I{Vk(l), ... , k(ln -1)} , which implies

that also the just constructed optimal solution has at least r open

facilities.

If h(m2+l) to vh(s) are such that k(ml+t-1)<h(m2+t)<k(m1+t) for all

t= l,...,s -m 2, then we have obtained a solution of the desired form:

12

Vk(1) Vk(ml)

Vk(I lVk(ml)

Vk(1) Vk(ml)

Vk(ml+l) Vk(ml+2)

I I

Vh(m2+1) Vh(m2+2)

Vk (r- 1) Vk(r)

I I I

V h (s)

Figure 3: Solution of the desired form

Otherwise, there exists at least one t{m l+l,...,r} such that the (possibly

empty) set {Vk(t1)+l,... Vk(t)_l} does not contain exactly one element of

{Vh(m2+1), ... ,Vh(s)}. Consider the largest t with that property, say t1.

Suppose first that

{Vh(m 2+1),... Vh(s)}

those:

{Vk(tl-1)+l, ", Vk(t 1)-1} contains

and let Vh(t2) and Vh(t2+l) be

more than one element of

the two largest indexed of

Vk(1) Vk(ml)

-H--I -

Vk(t 1-1)
I

Vk(t)

... I I

Vh(t 2) Vh(t 2 +1)

Vk(r-1) Vk(r)

I I I I
I I I I I

Vh(s)

Figure 4: {Vk(t -l)+l,...,Vk(t l)-l} contains more

than one element of {Vh(m 2+l), .,Vh(s) }

Because Vk(t ll) is an optimal predecessor of k(tl) and Vh(t2) is an optimal

predecessor of Vh(t 2+1), it follows from Lemma 2 that Vk(t ll) is an optimal

predecessor of Vh(t 2 +). Hence, {vk(1),. .. , Vk(t- 1 1)}U Vh(t 2+l),. , Vh(s)} is

also an optimal solution. Moreover, this solution has the form stated in the

theorem:

Vk(tl-1) Vk

III I I
Vk(tl-1) Vh(t2+1)

(t l)
I

Vk(r-1) Vk(r)

I I I I
I I I I

Vh(s)

Figure 5: Solution of the desired form

For the case that {Vk(tll)+l,...,Vk(t1)_l} does not contain any element of

{Vh(m 2 +),.. , Vh(s)} we will deduce a contradiction. From the fact that

I{Vk(1),. . . , Vk(ml)}U{Vh(m 2 +l),. ., Vh(s)} I2 r it follows immediately that

I {Vh(m2+),...,vh(s)} l 2r-m l, and therefore there must be at least one

te{m1+l ,...,t-1) such that {Vk(t1l)+,..., v k (t) I l } contains more than one

13

Vk(1)

Vk(1)

I

-

element of the set {Vh(m 2+l),... Vh(s) } . Let t3 be the largest index with this

property and let Vh(t4) and Vh(t 4 +l) be the two largest indexed elements in

{Vk(t3-1)+1, ... Vk(t 3)-l}nf{Vh(m2 +1), ... Vh(s)}:

Vk(1) Vk(ml) Vk(t 3-1) Vk(t3) Vk(tl- 1) Vk(tl) Vk(r-l) Vk(r)

1 1 1 111 1I I I I I I I

Vh(t4) Vh(t4+1) Vh(s)

Figure 6: {Vk(tll)+1,... Vk(tl)-1} does not

contain any element of {Vh(m 2+1),...Vh(s)}

Note that I {vk(t-l)+1,..., Vk(t)-l}n {Vh(t4+2),... Vh(s)} < 1 for all

t e {t 3 + 1, .. , r}, and strict inequality holds for t = t. Hence the set

{Vh(t 4+l),..., Vh(s)} has at most r - t3 elements, which implies that

I{Vk(), ... Vk(ml-l)}U{Vh(m2), ...,Vh(t 4)}l t3- Using Lemma 2 we deduce that

h(t 4) is an optimal predecessor of Vk(t 3). Therefore

{Vk(),... Vk(ml -)}U {Vh(m2), ... vh(t4)} is an optimal choice of open

facilities to the left of k(t3) in any solution in which Vk(t3) is open.

However this leads to a contradiction, because by definition of At3 there does

not exist such an optimal solution with at least t3 open facilities for

A = Ar <At3. This completes the proof. 5

Our algorithm to determine q+l consists of q+l1 stages, where in the r-th

stage Ar is calculated. To this end we will determine for every

je{k(r-1)+1,...,k(r)} the value W(j), which is defined as follows:

W(j) = the optimal value of the problem in which clients u to i k(r)-l have

to be served at minimum cost by r facilities from {v 1,... , Vk(r)}

under the condition that exactly one facility is chosen from the set

{Vk(t-1)+1,. ,v , k(t) for every t =l,...,r- 1, and vj is the facility

chosen from {vk(rl)+l,...,Vk(r) }

Note that W(k(r)) = k(r)+Z(ik(r)-l,k(r-1)). The reason why these values are

important is the following. Assume that Ar <Ar_ and consider the problem in

which clients ul to Uik(r)-1 have to be served by facilities from

{vl,...,Vk(r)_l}. Theorem 1 states that when all setup costs are reduced by

Ar, then there exists an optimal solution in which for every t=l,...,r-1 the

set {Vk(t1)+1,...,Vk(t)} contains exactly one open facility, and furthermore

14

exactly one facility from {vk(r-l)+l,..., Vk(r)l)} is opened. It is not

difficult to see that this optimal solution has value

mink(rl)<j<k(r){W(j)} - rAr. Because Ar is the smallest non-negative value of A

for which this solution is optimal and Z(ik(r)-l,k(r-1)) -(r-1)A is the value

of the optimal solution for all A e[O, Ar], it holds that

mink(r-1)<j<k(r){W(j) } - rAr = Z (ik(r) - 1, k(r - 1)) - (r - 1)Ar

or equivalently

Ar = mink(r-l)<j<k(r){W(j) - Z ik(r)- 1, k(r- 1)) . (12)

Equality (12) only holds if Ar < Ar_1. Because Ar Ar-1, it follows that Ar can

be calculated as the minimum of the already known value Ar- 1 and

mink(r-l)<j<k(r){W(j) } - Z ik(r) - 1, k(r- 1)) .

Let us define for a fixed r {1,..., q - 1} the efficient facilities as those vj

in Vk(r-l)+l,...,Vk(r)} for which W(j)<W(t) for all t=j+l,...,k(r). We will

now discuss how the W(j)-values can be determined efficiently. Consider the

first stage. For every je{1,...,k(1)-l) the value W(j) is equal to j plus the

sum of the bi's of those clients UiE{(U,...,Uik(1)l} that can not be served

by vj. These values are implicitly calculated and stored using zAj-variables as

in the algorithm described in Section 2. This is simply done by considering

the clients u to Uik(1)-_1 in any order. If client u i is considered, then bi

is added to A1 and Al(i)+l and the same quantity is subtracted from Af(i).

Actually, we are only interested in the W(j) -values of facilities that are

efficient and these can subsequently easily be determined. If vj is the

smallest indexed efficient facility, then minO<j<k(1)(W(j)) = Ajmin; hence,

A1 = jm in.

At the beginning of stage r, 1<r _q+1, we have already calculated Ar_1 and W(h)

for every efficient h{k(r-2)+1,...,k(r-1)}. Note that these values are

defined with respect to the client set {ul,...,uik(r _1)_}. Calculating the

W(j)-values for j{k(r-1)+1,...,k(r)} is done in two steps. In the first step

we determine for all j{k(r-1)+1,...,k(r)} an optimal predecessor in

{k(r-2)+l1,...,k(r-1)} as follows. Consider for a fixed j{k(r-1)+1,...,k(r)}

and all he{k(r-2)+1,...,k(r-1)} the quantities Y(h,j), defined as follows:

15

Y(h,j) =W(h) plus the sum of bi's of those clients in {ui(r-l),...Uiil}

that can not be served by Vh

It is easily seen that a facility h for which Y(h, j) is minimal is an optimal

predecessor of vj. To determine this minimum it suffices to consider only

those facilities Vh that are efficient at the start of stage r. The latter

follows from arguments similar to those in the proof of Lemma 3 and the fact

that every client ui E {Uik(r ,...Ui} has 1(i) > k(r - 1) > h for all

he{k(r - 2) + 1,...,k(r -1). Moreover, suppose je{k(r - 1) + 1,..., k(r)} and

he{k(r-2)+1,...,k(r-1)} are such that Y(h,j)2Y(t,j) for some t, h<t<k(r-1).

Using again the same arguments, it follows that for any me{j+l,...,k(r)} it is

not necessary to consider Y(h,m) in determining mint:k(r_2)<t<k(rl1){Y(t,m)}.

In that case we will refer to vh as being a non-efficient predecessor. To

calculate mint:k(r 2)<t<k(rl){Y(t)},j) for all je{k(r-1)+1,...,k(r)} we

proceed as follows. Add the clients uik(r-1) to Uik(r)-l in order of

increasing index to the current client set. For each client this boils down to

adjusting at most two Ah - values corresponding to facilities vh in

{ Vk(r-2)+l1,... , Vk(r-l)} which are currently efficient predecessors. After a

client has been added, this set of efficient predecessors is updated (if

necessary). Suppose the client just added is ui and je{k(r-l)+l,...,,k(r)} is

such that i=ij-1, then mint:k(r_2)<t<k(rl){Y(t,j)} equals the Ah-value of the

currently smallest indexed efficient predecessor. This minimum value is stored

at this point in order to be used in the next step.

In the second step of calculating W(j) for all je{k(r-1)+l,...,k(r)}, we take

into consideration the clients that were ignored in the first step. For given

j those clients are ui to u(). Note that 1(i)> j for all

iE ij, . ,ik(r)_l1. Therefore, it is easy to verify that IV(j) is equal to

cj + mint:k(r-2)<t<k(r-){Y(t,)) plus the bi's of those clients

UiE{ui k(rl),..., Uik(r)l} for which f(i)> j. Hence, for given

i{ik(r-l),. . , i k (r) -} we should include bi in W(j) for all j with

ik(r_l)+ 1 <j<f(i). This justifies the following procedure. Initially, we take

the Aj-values such that CEt=k(rl)+lAt= cj+mint:k(r-2)<t<k(r-l){Y(t,j). Then we

consider every i {ik(rl),. , ik(r)-l} with f(i) > ik(r-)+ and set

Ak(r-l)+:=-Ak(rl)+l + bi and Af(i):=Af(i)- bi. At the end of this procedure the

A j-values represent the values to be calculated and the value Ar is easily

obtained. The r-th stage ends with determining the efficient facilities in

{Vk(r-l)+l, .. , Vk(r)}

16

After the q+l-st stage we have computed the desired value Aq+l. If we have

stored the smallest r for which Ar = Aq+l and the optimal predecessor of every

facility, it is easy to construct a solution with q+l1 open facilities that is

optimal for A = Aq+l.

The analysis of the complexity of the above algorithm is similar to the

complexity analysis in Section 2. Most of the work done in stage r is linearly

bounded by the cardinalities of the sets {k(r-2)+1,...,k(r-1)},

{k(r-l)+l,...,k(r)} and {ik(r-1),..ik(r)-l} Summing up over all stages

yields an O(n) bound on the number of operations involved. The only exception

on this bound is the amount of work needed in the first step of the stages to

determine which Ah-values should be adjusted when a client is added to the

client set. As in the algorithm in Section 2, this takes O(logn) time per

client. Hence, the algorithm runs in O(nlogn) time. The p-coverage problem can

be solved by running the algorithm p times, i.e., in O(pnlogn) time. In the

next section we consider two special cases that allow a lower running time.

There are several facts worth mentioning that follow immediately from the

algorithm in presented in this section. In the first place we have found that

the p-coverage problem on the line has always an optimal solution with exactly

p open facilities, unless the optimal solution to the relaxed problem is

feasible. Actually, this is a consequence of the fact that if the relaxed

coverage problem has alternative optimal solutions with ql and q2 open

facilities, where O<ql < q2 <n, then there exists an optimal solution with q3

open facilities for every q3 with ql < q3 <q 2. The following property is also

related to this fact. Consider the coverage problem in which all setup costs

are equal to 0 and let B(q) denote the optimal value of the problem in which

the number of open facilities is exactly q, qe{O,...,n}. Hence B(q) gives the

minimal total penalty costs as a function of q, the number of open facilities.

The following property holds.

Theorem 2 B(q) is a convex function of q.

Proof Consider the parametric problem coverage problem in which all setup

costs are equal to n=lbi- A, where A ranges from 0 to En=lbi. Clearly, for A=0

it is optimal to keep all facilities closed and for A = =lbi an optimal

solution is to open all facilities. Moreover, we have seen that there exist

values 0 <A l< A2 <... < An < i= lbi, such that there exists an optimal solution with

q, O<q<n, open facilities if and only if A[Aq, Aq+l]. For a fixed qe{1,...,n

17

it holds that

B(q) +q i=lbi- Aqj = B(q-l) +(q-l1) Ci=lbi- Aq)

or equivalently

Aq = B(q) - B(q -1) + bi13)

Analogously, it holds that

Aq+l = B(q+ 1) -B(q) + n=lbi (14)

Combining (13), (14) and the fact that Aq <Aq+l, yields

B(q) -B(q- 1) < B(q +1) -B(q)

Because this inequality holds for every qe{1,..,n}, this proves the

statement. O

4. Two special cases

Hassin and Tamir (1990) show how two special cases of the relaxed coverage

problem can be solved in O(n) time, while it takes O(pn) time to solve the

corresponding p-coverage problems. In this section we will briefly indicate

how the same bounds can be obtained after a slight modification of the

algorithms presented in Sections 2 and 3. We will only discuss the relaxed

coverage problems, because the modifications for the p-coverage problems are

similar.

Subcase I: ri=r for all i=l1,...,n. It is easy to see that in this case the

matrix D can be taken equal to the matrix A, because f(i) and (i) are both

monotonically non-decreasing functions of i in the original indexation.

Moreover, the latter also implies that determining f(i) and (i) for all

i=1,...,n can be done in O(n) time. Instead of storing the elements of Q - the

indices of the non-dominated facilities - in a balanced tree, we now use a

double linked list. Furthermore, we use a pointer to indicate g, which is in

stage i the smallest element of Q greater than or equal to f(i). Again using

the monotonicity of f(i), it is not difficult to see that finding the correct

value of g in every stage can be done in a computational effort that is

18

overall O(n).

Subcase II: bi= oo for all i= 1,...,n. Hence, in this problem every client has to

be served. We will show that instead of matrix A, we may use matrix A' which

is defined as follows. Let fc(j), j=l1,...,n, denote the smallest row such that

aij=l for all i=fc(j),...,j (note that ajj=l). Similarly, let lc(j) denote the

largest row such that aij= 1 for all i=j,...,lc(j). Column j of the

(0,1)-matrix A' is defined by a'ij=l if and only if fc(j)•ilc(j). Hence, A'

has the column consecutive 's property. This, combined with the fact that A

has the row consecutive 's property, implies that A' has also the row

consecutive 's property. Define f'(i) and l'(i) to be the first respectively

last column in which row i of matrix A' contains a 1. We have the following

results with respect to the structure of A'.

Lemma 4 fc(j) and Ic(j) are monotonically non-decreasing in j.

Proof Suppose there exists an j<n and an i such that fc(j)>i=fc(j+1). Because

a'ij=O and j fc(j)>i, it follows that j must be greater than I'(i). Hence,

also j+1 is greater than l'(i) and therefore a'i,j+l = . This contradicts

fc(j + 1) = i. One can prove analogously that Ic(j) is monotonically

non-decreasing in j. El

Lemma 5 f'(i) and l'(i) are monotonically non-decreasing in i.

Proof Analogously to the proof of Lemma 4. O

From Lemma 4 it follows that a compact representation of matrix A' can be

obtained in O(n) time, while Lemma 5 implies that the same bound holds for

solving the coverage problem w.r.t. matrix A' (cf. Subcase I). Hence, to show

that the linear time bound applies to Subcase II, it now suffices to prove

that replacing A by A' does not really alter the problem.

Lemma 6 Let S be a feasible choice of open facilities, i.e., every client is

being covered by S.. Then S is still feasible if all facilities vj eS are

restricted to serve only clients ui with fc(j)•ilc(j).

19

Proof It suffices to show that if we let every client be served by an open

facility that is nearest to it, then every vjES serves only clients vi with

fc(j) i<lc(j). Suppose this is not true, then we may assume w.l.o.g. that

there exists a client v i that is being served by facility vj, while i>lc(j).

Because aij=l-1, it follows that ahj =O for some h with j < h <i. Client h is

located between vj and vi, and therefore it holds that

d(vj, vi) = d(vj, h) + d(vh, vi) > rh+ d(vh, vi) (15)

Let vl be the facility that serves h. Clearly, < j is impossible because if

vj can not serve vi, then this would also hold for vl. If j<li then we would

obtain a contradiction with the fact that client vi is being served by an open

facility that is closest. Hence, the only possibility left is > i, in which

case

d(vi, ,) = d(vh, vI) - d(vh, vi) < rh - d(vh, vi) (16)

Combining (15) and (16) yields d(vi,vl)<d(vi,vj) and this contradicts the fact

that vj is a facility closest to vi. O

5. Concluding remarks

We have shown how the p-coverage problem on the real line can be solved in

O(pnlogn) time using a parametric approach that exploits the problem

structure. Our approach differs significantly from the one proposed by Hassin

and Tamir (1990) and has a lower complexity for problem instances in which the

upper bound on the number of open facilities is small compared to the number

of potential facilities.

In Van Hoesel and Wagelmans (1991) a similar approach as in this paper is used

to design algorithms for several economic lot-sizing problems in which the

setup costs can be viewed as linear functions of a single parameter. Hassin

and Tamir already showed that location problems on the real line and the

economic lot sizing problem allow similar solution techniques. In particular

we would like to point out here that Lemma 2 of this paper states a property

which resembles Wagner and Whitin's Planning Horizon Theorem, while Lemma 1

can be viewed as an analog of Theorem 4 in Wagner and Whitin (1958). It seems

worthwhile to identify other dynamic programming problems for which such

structural properties hold.

20

Acknowledgement

This research was carried out while the second author was visiting the

Operations Research Center at the Massachusetts Institute of Technology with

financial support of the Netherlands Organization for Scientific Research

(NWO). He would like to thank the students, staff and faculty affiliated with

the ORC for their kind hospitality.

References

Aho, A.V., J.E. Hopcroft and J.D. Ullman (1974), The Design and Analysis of

Computer Algorithms, Addison-Wesley, London

Eisner, M.J. and D.G. Severance (1976), "Mathematical Techniques for Efficient

Record Segmentation in Large Shared Databases", Journal of the

Association for Computing Machinery 23, 619-635

Hassin, R. and A. Tamir (1990), "Improved Complexity Bounds for Location

Problems on the Real Line", Working Paper, Department of Statistics,

Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv

University, Tel Aviv, Israel

Kolen, A. and A. Tamir (1990), "Covering Problems", in Discrete Location

Theory, eds. P.B. Mirchandani and R.L. Francis , John Wiley & Sons, Inc.,

New York

Megiddo, N. (1979), "Combinatorial Optimization with Rational Objective

Functions", Mathematics of Operations Research 4, 414-424

Van Hoesel, C.P.M. and A.P.M. Wagelmans (1991), "On Setup Cost Reduction in

the Wagner-Whitin Model", Working Paper, Operations Research Center,

Massachusetts Institute of Technology, Cambridge MA (forthcoming)

Wagner, H.M. and T.M. Whitin (1958), "Dynamic Version of the Economic Lot Size

Model", Management Science 5, 89-96

21

