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Abstract

A single machine produces several different classes of items in a make-to-stock

mode. We consider the problem of scheduling the machine to regulate finished goods

inventory, minimizing holding and backorder or holding and lost sales costs. Demands

are Poisson, service times are exponentially distributed, and there are no delays or

costs associated with switching products. A scheduling policy dictates whether the

machine is idle or busy, and specifies the job class to serve in the latter case. Since

the optimal solution can only be numerically computed for problems with several

products, our goal is to develop effective policies that are computationally tractable

for a large number of products. We develop index policies to decide which class to

serve, including Whittle's "restless bandit" index, which possesses a certain asymp-

totic optimality. Several idleness policies, which are characterized by hedging points,

are derived, and the best policy is obtained from a heavy traffic diffusion approxi-

mation. Nine sample problems are considered in a numerical study, and the average

suboptimality of the best policy is less than 3%.
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In a make-to-stock production facility with multiple products, one of the goals

of the scheduling policy is to regulate finished goods inventory. Too small of an in-

ventory risks incurring backorder or lost sales costs, while too large of an inventory

increases holding costs. The target inventory level, called the base or safety stock,

is vitally linked to randomness in the system and capacity constraints that limit the

ability to respond to unexpected demand. Accordingly, a realistic model of the make-

to-stock system should include queueing effects. The queueing framework combines

the dynamic stochastic nature of the scheduling problem, often studied in inventory

systems, with the capacity constraint, usually dealt with through deterministic pro-

duction scheduling.

Although make-to-order environments, where production occurs after customer

orders are received, have been analyzed extensively as queueing control problems (see,

for example, Klimov 1974), little work has been done on the problem of scheduling

a multiclass make-to-stock queue. Wein (1992) develops a scheduling policy for the

make-to-stock system based on a heavy traffic approximation that results in a Brow-

nian motion control problem. Zheng and Zipkin (1990) and Zipkin (1992) propose

and analyze a simple "longest queue" policy that is optimal for a system with iden-

tical product classes operating under independent base stock policies. Zipkin (1990)

proposes yet another policy, attempting a compromise between the very different

Brownian and longest queue policies. Ha (1992) partially characterizes the optimal

policy for the two-product case. While promising computational results have been

reported for the Brownian and longest queue policies, no performance guarantees are

available and both have obvious deficiencies in the structure of the control.

This paper develops and tests several new scheduling policies. The system con-

sidered is a multiclass M/M/1 make-to-stock queue. Preemptive resume scheduling

is allowed and no set-up costs or times are incurred when switching classes. In the

backorder version of the problem, which was addressed in the references cited above,

the objective is to minimize holding and backorder costs. A lost sales problem is also
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considered, where demands that cannot be met from inventory are lost and a cost

incurred. A long-run average cost criterion is used.

Three index policies are considered, where an index is computed for each class

as a function of the inventory in that class. The class with the smallest index is

served; if all indices are positive, the server is idle. Index policies have the advantage

of being computationally tractable even for a large number of classes. An index

policy proposed in Zipkin (1990) performed best among those considered. The most

innovative, and one that also performs well, is a "restless bandit" index, defined

for a general problem in Whittle (1988). This index has the property that it is

asymptotically optimal as the number of classes goes to infinity (and the utilization

of each class goes to zero). We also discuss the Gittens index for this problem,

neglecting its "restlessness," and point out a connection between the Gittens and

restless bandit indices. A third index is developed by computing the value function

for the system under a naive random policy.

We will show that index policies perform well at determining which class to serve,

but do poorly at deciding when to idle. The problem is that each index is computed

without knowledge of the other classes, and hence, without knowing the system uti-

lization. Several other approximations are proposed for when to idle. One method

decomposes the system into single-class subproblems with the same utilization as the

original system. Another aggregates the system into a single product class. The

most elegant, and the most accurate, idling decision is derived using a heavy traffic

diffusion approximation. We analyze the approximating Brownian control problem

for the lost sales case, complementing the backorder case treated in Wein. A fourth

idleness policy is derived by computing the inventory distribution assuming that the

longest queue policy is used, and then decomposing into single-class subproblems.

Numerical results are presented that compare all of the proposed policies with

optimal policies for two- and three-product problems. Combinations of index and
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idleness policies are found that perform well; the average suboptimality for our best

policy is 2% for 6 lost sales problmes and 4% for 3 backorder problems. The structure

of optimal policies is also investigated.

The rest of the paper is organized as follows. Section 1 formulates the problem

mathematically and discusses the structure of scheduling policies. Index policies are

derived in Section 2 and hedging points (idleness policies) in Section 3. Numerical

results are presented in Section 4, and some concluding remarks are made in Section

5.

1 Dynamic Scheduling Problem

Consider a multiclass, make-to-stock M/M/1 queueing system: a server can produce

K different classes of items; each finished item is placed in its respective inventory,

Xk(t) for class k, k = 1,..., K at time t; this inventory services an exogenous demand.

In the backorder version of the problem, demand that cannot be met from inventory

is backordered and recorded as negative inventory. In the lost sales problem, class k

demands that occur when Xk(t) = 0 are ignored and a cost incurred. We have several

reasons for considering the lost sales problem. It has received less attention than the

backorder problem in the literature, is at least as appropriate in many applications,

provides an interesting example of Brownian motion analysis, and is the only version

to which the restless bandit index of Section 2.3 applies. This index is unique in

possessing some form of asymptotic optimality.

The demands for each class are independent Poisson processes with rates Ak and

the service times for class k items are independent and exponentially distributed with

mean mk = /Ilk. In Section 3.3, we will briefly consider general interdemand and

service time distributions. For the backorder problem, stability of the system requires
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that p = E pk < 1, where Pk = Ak/tk (all indices range over 1,... , K unless otherwise

noted).

The scheduling decision is whether to produce product 1,... ., K or to idle at each

time t. An admissible scheduling policy 7r is a function ((X,t) that takes on the

values 0, 1,..., K (zero denoting idle) and is nonanticipating with respect to X. Let

H denote the class of admissible policies. Production of an item can be interrupted

and resumed; no set-up costs or times are incurred when switching from one class to

another. Because the system is memoryless, a Markov policy, depending only on the

current state X(t) = (X 1(t),... ,XiK(t)), will be optimal. Consequently, the policy

space can be enlarged to include multiple servers or the allocation of partial service

effort without changing the problem.

The objective is to minimize holding and backorder costs, incurred at the rate

CBO(x) = E(hkX+ + bkx~k) in state x, for the backorder problem, or holding and lost

sales costs, CLS(x) = Z(hkk+ + Skl{k=0}), for the lost sales problem. Note that k is

the cost rate for a stockout. The expected cost per lost sale is Sk/Ak. The infinite-

horizon cost, discounted at the rate a > 0, is V=(x) = E fo e-"tc(X(t))dt. Here Ex

denotes expectation given the initial state X(0) = x and policy r. Let Fl = maxk{lk}

and A = E Ak + jT + a. The optimal cost function, V(x) = minien V(x), satisfies

the dynamic programming optimality equations

V(x) =TV(x), (1)

TV(x) = [c(x) + E AkV(x -k)

+ min{fV(x),min{hkV(x + ek) + (- Ik)iV(x)}}] (2)

where ek is the unit vector with kth component equal to one. For the lost sales

problem, replace x - ek with x in (2) when xk = 0. It is more convenient to deal

with an undiscounted, long-run average cost criterion. In this case a = 0; the optimal
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average cost rate (gain) g and relative value function V(x) satisfy

V(x) + g = TV(x), (3)

where we arbitrarily set V(0) = 0.

The following characterization of Markov policies will be useful. Let Bk be the

set of states in which class k is produced and I the set in which the server is idle.

We consider only policies having the monotonicity property that x + aek C 13 k if and

only if a < A, for some -oo < A < oo. For such policies, each pair 3j, 83 k can be

separated by a switching surface that is nondecreasing (when viewed as a function of

any K - 1 of the state variables xk). Roughly speaking, the intersection of all of the

switching surfaces forms a switching curve. To be more precise, define the switching

curve as a sequence of points {x,, n = 1,..., N} C Zk such that

1. Xn +l = Xn + ek, where x n E aBk,

2. xN C I, and

3. for every x n C Bk and j $ k, either xn - ejC Bj or, for the lost sales problem,

x = 0.

The final point in the switching curve is called the hedging point, denoted x* = xN;

its components x; are the target or base stock levels. Starting from any point not in

I, the system without arrivals moves toward the switching curve, then along it to the

hedging point, and then stops.

On its recurrent states, a policy can be defined by the switching surfaces and

hedging point. To see the role of each more clearly, eliminate the idleness option and

augment Bk to include the (previously idle) states in which class k is served, defining

new switching surfaces and an unbounded switching curve (N = oc). These surfaces



define the preference among classes. The hedging point (on the switching curve)

defines the idleness region. The combination of switching surfaces (just a switching

curve for two classes) and hedging point fully specifies a policy.

Optimal policies for this problem can only be found numerically, and only when

the number of classes is small. Hence, we are led to consider approximate policies.

Several classes of policies have been considered in other papers. One possible set

of switching surfaces is the non-Markov policy considered by Zheng and Zipkin that

services demands FCFS given a hedging point. They also consider a longest queue

(LQ) policy that serves the class with the most demands in the demand queue. Zheng

and Zipkin consider two identical products, so that the LQ policy (which is symmet-

rical for x* = x) is optimal, and find that LQ is only marginally better than FCFS.

For two non-identical products, we call a switching curve that lies along x1 = 2 for

Xk < min{x*, x2}, then extends vertically or horizontally to the hedging point, an LQ

switching curve. An offset LQ switching curve lies along x = x2 + (x1 - x*). How-

ever, the offset LQ switching curves tested in Section 4.2 are modified, if necessary, for

consistency with the following property. Ha (1992) proves that, in the two-product

case, it is optimal to serve the class k with maximal bkuk when it is backordered; i.e.,

the switching curve cannot have k < 0 for this class.

Wein proposes a policy for the backorder problem that is suggested by a heavy

traffic analysis and reminiscent of the cu rule: if there are classes in danger of being

backordered (i.e., Xk(t) < %k, where k is discretionary), serve the class within this

set with the largest bktuk; otherwise, serve the class with the smallest hktk for which

Xk(t) < x. The hedging point x* is obtained as the solution to a Brownian control

problem.

The primary goal of this paper is to develop more sophisticated, yet easily com-

putable, switching curves/surfaces and additional hedging point approximations that

perform better than the policies described above.
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2 Index Policies

The class of index policies is attractive because its computational complexity only

grows linearly in the number of classes. An index policy is defined by assigning

an index Vk(Xk) to class k and serving the class with smallest index. If the indices

are nondecreasing, the policy has the monotonicity property of Section 1 and has a

switching curve. A hedging point must also be defined. We will call a policy pure

index if the idleness region is I = {x: Vk(Xk) > 0 for all k}; the hedging point is the

first point on the switching curve that is in 2. Otherwise, the hedging point will be

specified in addition to the index.

Since the minimum in (2) is achieved by a class k for which YkAkV(x) is minimal,

where AkV(x) = V(x + ek)- V(x), the goal of any index policy is to rank-order

{/kAkV(x)}. Several indices, listed in Table 1, are developed and tested in this

paper. The most obvious approach is to approximate the optimal value function

V(x). In Section 2.1, AkV() is approximated using the value function for separate

single-product problems where service capacity is allocated across product classes. In

the lost sales problem, a hedging point must be specified before this index can be

computed. The service time look-ahead (STLA) index of Section 2.2, proposed by

Zipkin (1990), replaces V(x) with the expected cost rate after one service time. It is

related to the fully myopic policy of using the cost rate after one transition, which

produces the b and h rule. The last index is based on a Lagrangian approach to

the multi-armed "restless" bandit problem in Whittle.

2.1 Value Function Approximation

In this section, we derive an index for backorders and lost sales, using a value function

approximation. For brevity, this index is called /AV. Consider a single-product
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Table 1: Proposed Indices and Hedging Points.

Backorders Lost Sales
Index
Value function approx. (/tAV) / v/

Service time look-ahead (STLA) V
Restless bandit v/

Hedging Point
Server allocation hedging point hedging point
Aggregate product workload workload
Longest queue (LQ) hedging point hedging point
Brownian motion workload workload

subproblem for class k with the service rate (pk/p)/lk. In this problem, the server's

availability in any time interval has been allocated across classes in proportion to their

utilization Pk. One motivation for this allocation is that it changes the subproblem

utilization from pk, which tends to zero as the number of classes increases, to the

system utilization p. Another motivation is that this fixed allocation can be viewed

as a crude static policy. Selecting the minimal AV under this policy is equivalent

to performing one value iteration, giving an improved policy.

We solve the allocated server subproblem for the undiscounted backorder case

first. Drop the subscript k, let t be the allocated service rate, and let V(x) and g be

the optimal relative value function and gain for this problem, satisfying

V(x)+g =

A minfc(x) + AV(x - 1) + tV(x + 1), c(x) + AV(x - 1) + t V(x)}. (4)

The optimal policy will be of threshold form Ir(B) for some B > 0: the server is busy

in states x < B and idle in states x > B. Under 7r(B), B - X is an M/M/1 queue.

Letting f(.) and F(.) be the steady-state p.d.f. and d.f. of B - X, the corresponding
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B

= E c(x)Pr{X
X=-00

B-1

= Eh(B-
X=0

oo

x)f(x) + E b(x- B)f(x).
x=B+1

Differencing,

A(g'(B+l) _ g7r(B))

B

= hf(x)+
=0O

= (h + b)F(B) - b. (6)

The d.f. F is nondecreasing, so g(B) is convex. It attains its minimum at the

smallest B for which (6) is positive, namely B = min{x : F(x) > b/(h + b)}. Since

F(x) = 1 - pX+l, it folows that

B = [ln[h/(h + b)]/lnp - 1. (7)

We will also need the optimal gain. Evaluating (6) using f(x) = (1 - p)pX gives

Ag =
hB - h(B + l)p + (h b)pB+l

1-p

The dynamic programming equations are

(8)

I
V(x) + g = -[c(x) + AV(x - 1) + 1 V(x + 1)],

V(x) + g = A[c(x) + AV(x - 1) + V(x)],

We can recursively compute AV(x) from the equations

x < B, and

x >B.

AV(x) = [h(x + 1)- Ag]/A, x>B-1,

9

gain is

Ag7(B) -x}

(5)

bf(x)
00B+

x=B+l

(9)

(10)

and (11)



AV(x) c(x + 1)- Ag AV(x + 1) <nv = + -, x < B - 1. (12)
A P

The index is v(x) = uzAV(x).

The same approach is used for the lost sales problem, except that B must be

specified separately, i.e., a hedging point is needed. The recursion obtained is

AV(O) = (Ag- s)/1 and (13)

Ag - hx
AV(x) + pV(x + 1), 0 < x < B, where (14)

/1

g =( {PB, hPB[ B - ( B + I )p + p B+ I
g = SPBB + hPB[ (I -p)2 ] } /A and (15)

PB (16)
1 - pB+l'

Solving the recursion gives

pAV(x) --= spx(l - pB-x) h[B - - (B + )p x + l + ( + l)pB+1] (17)

- 1- pB+l (1 - pB+I)(1 - p)

2.2 Service Time Look-Ahead

Static priority policies such as the h rule are fully myopic in the sense that they

minimize the cost rate c(-) of the next state. Zipkin (1990) proposes a service time

look-ahead (STLA) policy that considers the expected cost rate after one service time.

It can be viewed as a myopic policy with no preemption. No preemption forces some

degree of looking ahead, and so is preferable to only considering the cost rate of the

next state. This policy is reminiscent of the transportation time look-ahead policy

of Miller (1974) for the decision of which base to send an item repaired at a central

depot, where transportation time takes on the role of service time.

For a given product, let g(x) = E[c(x - D(S))], where S is the service time and
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D(t) is the number of demands in the interval (O,t]. Then g(x) is the expected cost

rate after one service time if the server is idle. If the server is busy, the cost is g(x+ 1);

hence, the rate at which serving this class increases the expected cost rate, assuming

no preemption, is v(x) = ltAg(x). Zipkin's policy is to choose the class with smallest

>(x), so it is an index policy. We also consider the pure index policy of idling when

v(x) > 0 for all classes.

Zipkin evaluates the index for the backorder problem using the fact that D(S) + 1

has a geometric distribution with parameter p = u/(A + /u). Letting q = 1 - p,

Pr{D(S) =j} = qp, j> 0 and for x > 0

g(x) h jqX-jp + b jqx+Jp
x=1

h(xp - q + q+l)/p + bqx+l/p. (18)

The index is

Atg(x) = -bzqx+ + h(1 - q+l), x > 0. (19)

Note that, as x --+ oo, (19) approaches ht, and for large inventories the STLA policy

gives the h rule. For x < 0, g(x) = E[b(-x + D(S))] = b(-x + q/p), and the index

is

tAg(x) = -bit, x < 0, (20)

which yields the bt rule. Turning to the lost sales problem,

g(x) = syqjp+hjq-jp
j=x j=1

=sqx+h (xP q + + l) (21)

The index is

,tAg(x) = -slpqx + h(1 - qx+l). (22)
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2.3 Restless Bandit Analysis

In this section, we use Whittle's work on "restless bandits" to obtain an index for

the lost sales problem and analyze its properties. Whittle defines a restless bandit

problem as a resource allocation problem similar to a multi-armed bandit except that

the arms not being played, called passive, continue to change state according to a

Markov law that is different than the law governing their transitions when active.

Passive arms can also incur costs. In the scheduling problem, there are K + 1 arms,

one for each class plus an idleness arm whose index is zero. There must be exactly

one active arm at each time, where active means that the server is assigned to that

class. An index is defined by considering a single-product subproblem that chooses

between active (serving) or passive (idling) given a passive tax, or cost of not serving,

v. We will consider only the undiscounted, lost sales problem. Let Ak = Ak + /1 k ·

Dropping the subscript k, the optimal cost function V(x, v) and gain g(v) satisfy the

optimality equations

V(, ) + g() =

A min{c(x) + AV(x -1, v) + yV(x + 1, v), v + c(x) + AI(x -1, v) + ,V(x, v)}. (23)

When x = 0, replace x - 1 with x in (23). The optimal policy will be of threshold

form, active in states x = ,... ,B- 1 and passive when x > B. Denote this

policy r(B), with the corresponding gain g(B). Under r(B), B - X is a finite

queue with utilization p (all notation now refers to a single class). Assuming that

p < 1, its steady-state distribution is PB(x) = Pr{X = xl7r(B)} = pB-xPB, where

PB = PB(B) = (1 - p)/(1 - pB+1). The restless bandit index v(x) is defined as the

passive tax that achieves indifference in the min in (23), i.e., AV(x, v(x)) = v(x)/lt,

where AV(x, v) = V(x + 1, v) - V(x, v). Indifference in (23) at x = B - 1 implies

that the policies r(B - 1) and 7r(B) are both optimal. Hence, the index v(B - 1) can

be found by solving for v in

glr(B-1)(V) = g(B)(V). (24)
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For a given policy, the contribution of v to the gain (per transition) is

9gr(B)() = gr(B)(O) + PB/A.

Combining (24) and (25),

(B - 1) =A [gr(B)(O) - g7r(B-1)(O)]

PB- - PB

The gain is

Ag7(B) (0)

The denominator of (26) c

(26) becomes

B

= Z PB(X)C(X)
x=O

B

= SPB(O)+ h E PB(x)
X=1

B

= pBPB + hPBpB Z X(1/P) T

x=1

= SPPB + hPB [B - (B + 1)p + B+1( - p)2

:an

(27)

be written pBPB_1PB, and after further simplification,

s h[l -(B + 1)p B + Bp+1 ]

v(Bp- 1) = -- -) 2 p
P 1- )p

(28)

Notice that the lost sales term in (28) is constant, meaning that the penalty paid

for lost sales in this index scheme is the same whether lost sales are being incurred

(x = 0) or not (x > 0). We can understand why the s term is constant by viewing

x = 0 as a renewal point with a certain reward. Discounting would change this result.

The lost sales term tends to dominate the index for small inventory positions (less

than the hedging point), and the class with minimal k/uk/Xk is produced when x

is small. This min s/ rule will be seen again in Section 3.3. For large inventory

positions (beyond the hedging point), the switching curve is approximately a straight

line with slope dxi/dxj = in pi/ In pj, which is a weighted version of the LQ policy.

13
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Unlike the Gittens index for the standard multi-armed bandit problem, the rest-

less bandit index does not give an optimal policy. Under certain conditions, however,

an asymptotic optimality holds. Let X be the state space for an arm and D(v) C X

be the set of states in which the optimal policy for tax v is active.

Definition 1. An arm is indexable if D(v) increases monotonically from 0 to X as

v increases from -oo to oo.

Consider a problem with the constraint that exactly m of n arms must be active at

any one time, and a relaxed-constraint problem where a time average of m arms must

be active. If all arms are indexable, then as m, n - oc with m/n fixed, the optimal

per-project gain is asymptotically the same as that for the relaxed-constraint prob-

lem. Furthermore, Whittle conjectures and Weber and Weiss (1990) prove under an

additional technical condition that the index policy defined above is asymptotically

optimal for the relaxed-constraint problem. Hence, the index policy is asymptotically

optimal for the exactly-m problem.

To establish indexability for the lost sales problem, one needs to show that v(x) is

nondecreasing and well-defined for all x. These properties follow from (28). However,

the above result is for problems with m -- oc active arms, i.e., rn servers. It says that,

for an m-server K-class problem (with K+m arms), the index policy is approximately

optimal for a large number of servers and classes. The one-server problem differs from

an m-server problem with service rates divided by m only in the higher service rate

that can be applied to a class. If Kpk is bounded for all k as K - c, i.e., each

product has a small utilization, then the service rate limit should be irrelevant and it

is reasonable to expect that asymptotic optimality holds for the one-server problem

with a large number of classes.

In contrast, the backorder problem is not indexable; v(x) does not exist (i.e.,

equals -oo) for all x. The difficulty is that v is a Lagrange multiplier for the constraint

on the time-average number of active arms. For the backorder problem, any stable
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policy must serve a time-average of p classes, so relaxing this constraint does not

change the optimal value and the Lagrange multiplier does not exist.

A second characteristic of the restless bandit index is that the hedging point x*

defined by the pure index policy lies on the boundary of the optimal idleness region,

x; = min{xk : x e I}, so that x* is a lower bound on the optimal hedging point.

Monotonicity arguments imply that I touches the "asymptotes" k = 4x for large x.

3 Hedging Points

Several hedging point approximations, listed in Table 1, are also developed and tested.

Recall that one can use either a pure index policy or an index policy plus a hedging

point approximation. The server allocation method allocates service capacity across

classes and then solves each single-product problem to find its base stock level .

A second method is to aggregate into a single product. Instead of stock levels, a

threshold is found on the total workload, or expected service time, represented by

the stock. Given a switching curve, the workload threshold defines a hedging point.

Both of these methods reduce to solving a single-product problem, which is done

in Section 3.1. A third method (Section 3.2) uses the analysis of the LQ policy for

the backorder case in Zipkin (1992). For each product, the variance of the demand

queue under an LQ policy is approximated, a distribution fit to the variance, and

a stock level computed. A workload threshold can also be found through a heavy

traffic diffusion approximation. The backorder problem is analyzed in Wein; we treat

the lost sales problem in Section 3.3. Finally, if the performance of a policy can be

evaluated, the best hedging point for a given index policy can be found by searching

along the switching curve.
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3.1 Single-Product Methods for Hedging Points

In this section we develop two hedging point approximations that construct and

solve single-product subproblems. The first method, called allocated server, creates a

subproblem for each class by allocating the server as in Section 2.1. The subproblem

parameters for class k are iu4 = (Pk/P)PLk, p"1 = p, and Ak, hk, bk, and sk unchanged.

The second method, called aggregate product, aggregates all products into a single

class. The subproblem parameters are Aagg = A, ,k, agg = Z Ak/P, pagg = p, hagg -

(pk/pl)hk, bagg = (pk/p)bk, and sagg = (pk/p)sk. To interpret stock levels for

this aggregate product, we use the workload concept of Section 3.3. A stock level of B

represents an expected service time, or workload, of w = B/,uag g. This workload can

then be combined with a switching curve to set stock levels for the original products.

Before solving these subproblems, we comment on the nature of the approxima-

tions. Decomposing the system into single-product problems with the same utilization

is analogous to decomposing a multi-server queue into parallel single-server queues.

Performance degrades, total queue length increases, and the optimal stock level in-

creases to compensate. Thus, the allocated server hedging point should be larger than

optimal. Aggregating the system into a single product neglects the variation in Xk

given E Xk, i.e., the inability to maintain the desired allocation of inventory among

classes. Because variability is neglected, this hedging point should be smaller than

optimal.

We will solve a generic subproblem, dropping the superscripts and subscripts from

the parameters. The backorder case has already been solved; the optimal stock level

is given by (7). For the lost sales case, let Ag(B) = g(B+l) _ g7r(B), where gr(B) is

the gain under policy 7r(B). From (15),

AAg(B) = spB(pPB+l - PB)
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_h PB+[B - I - (B + 2)p + B+2] - PB[B - (B + 1)P + pB+]} (29)

where PB is given by (16). We wish to find the stock level B that minimizes g1(B). It

can be shown that g(B) is concave; hence, B = min{x : ASg() > 0}. A search over

the values x = 0, 1,... is used to find B.

3.2 Hedging Points Based on Longest Queue Policies

Zipkin (1992) analyzes the longest queue (LQ) policy for identical products in the

undiscounted, backorder problem. In this section, we use his result to approximate

the case of non-identical products. The corresponding policy is offset LQ. The steady-

state distribution of Xk is then used to find the hedging point. This LQ hedging point

involves five approximations:

1. Assume an offset LQ policy is optimal,

2. Use Zipkin's approximation of the inventory variance for identical products,

3. Adjust for non-identical products,

4. Fit a distribution to the mean and variance, and

5. Decompose the idleness decision into single-product subproblems.

Step (2) is exact for two products and (1) is exact for identical products. We also

tested the accuracy of steps (3) and (4) for two products by computing the joint p.d.f.

of the inventories as outlined in Section 8 of Zheng and Zipkin. The j.p.d.f. method

gave slightly larger hedging points but, due to compensating approximation errors,

resulted in worse values of the gain g. The j.p.d.f. method is not described here or

used in Section 4.
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Zipkin's variance estimate is a function of the number of identical products. For

products with Aj 5# Ak or j # Ilk, the fraction of utilization due to class k is

ak = Pk/P. Define the effective number of products for class k as kff = 1/ck, i.e.,

the number of identical products needed to achieve the system utilization. Notice

that for identical products K"f"= If. The steady-state variance of Xk is

2 Var(N) + E(D2)(
rk f(j = (30)

where N is the aggregate demand queue for Keff identical products, each with demand

queue Nk(t) = k- Xk(t), and E(D2) captures variation in Nk given N. Since N is

the number of customers in an M/M/1 queue, Var(N) = p/(1 - p)2. Zipkin uses the

approximation

E(D) = (,ff k - )p[l + p + (1 -2 2ak)p 2 + (1 - 2k) 2p3 ]. (31)

Also, estimate the mean of Nk as

E(Nk) = E(N) _akP _ Pk (32)
Kff 1- -p 1-p

which is exact for identical products.

Given the first two moments of Nk, we will fit a distribution to them in order to

calculate the upper percentiles on which the stock level depends. Since N is geometric,

it is reasonable to use a distribution that has a geometric tail. For simplicity, we use

the shifted geometric distribution f(x) = pq(-)-l, x = a + 1, a +2,.... Fitting to

(30) and (32) gives

q=1 - 1 and (33)

1
a =E(Nk)- q (34)
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The optimal stock level has already been found for a geometric distribution; (7) gives

B = ln[h/(b + h)]/l In q -1 + a. (35)

3.3 Brownian Motion Analysis

Wein develops a policy for the backorder problem using a diffusion approximation.

The server is idle when the workload W(t) = E mkXk(t) exceeds the threshold

C kmk(vk + vk) In(l + b/h), (36)
2(1 - p)

where b = min{bkUk}, h = min{hktUk}, and v,k and dk are the service and inter-

demand time coefficients of variation for class k. In the case of exponential distri-

butions, vsk = dk = 1. The switching curve is determined by the b and h rule,

so that all of the workload is held in the class with minimal hktuk (actually, a small

discretionary amount can be held in every other class).

We derive an analogous policy for the lost sales problem. The essential difference

is that the heavy traffic condition, p slightly less than one, is replaced by the conditions

p 1 and the ratio of holding to lost sales cost is small, h/s << 1. The approach taken

is to (1) formulate the scheduling problem in terms of cumulative processes, (2) define

an approximate Brownian motion control problem, (3) reformulate to give a more

tractable control problem called the workload formulation, (4) solve the workload

formulation for an initial throughput, and (5) calculate a new throughput from this

solution and iterate until the throughput converges. For consistency with much of

the heavy traffic scheduling literature, inventory will be denoted Zk(t), not Xk(t), in

this section.
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3.3.1 The Scheduling Problem

Define the renewal counting processes

Sk(t) = number of class k service completions after serving class k for time t,

Dk(t) = number of class k demands that occur during the first t units of non-
stockout time, i.e., times s when Zk(s) > 0,

with rates and coefficients of variation Pk, Ak, Vsk, and Vdk, respectively. It is implicit

in this definition of Dk that the demand process is turned off during stockouts, i.e.,

interdemand time is measured with respect to nonstockout time. For exponential

distributions, the Poisson demand process of Section 1, which is not turned off, is

equivalent. The scheduling problem of Section 1 can be posed as finding processes Tk

that are nonanticipating with respect to Z to

im sup E hkZk(t)dt + sA k(T) (37)
T-*oo T

subject to

Zk(t) = Sk(Tk(t)) - Dk(Ak(t)), (38)

Ak(t) = l{zk(s)>o}ds, (39)

Ak(t) = t - Ak(t), (40)

I(t) = t- Tk(t), and (41)

Tk and I nondecreasing with Tk(O) = 0. (42)

Here Tk(t) is the cumulative time that class k is served in (0, t]. I(t) is the idle time

in (0, t], and Ak(t) is the time in (0, t] during which class k demands can arrive.

20



3.3.2 The Brownian Control Problem

Let ak = Pk/P. Following Wein and Dai

Tk(t) and

and Harrison (1991), define Yk(t) = akt -

Xk(t) = Sk(Tk(t)) - kTk(t) - [Dk(Ak(t)) - AkAk(t)] + (kak - Ak)t.

By (38), (40), and (43),

Zk(t) = Xk(t) - 1lkYk(t) + AkA(t).

Note that Ak increases only when Zk = 0. Letting Lk(t) = AkAk(t),

is the lower regulator for Zk, and the term kAk(T) in (37) equals

lk = Sk/Ak is the cost per lost sale.

we see that Lk

IkLk(T), where

A heavy traffic limit argument can be used to approximate Xk; see Veatch (1992)

for details. We assume the heavy traffic condition that there exists a large integer n

such that V/ll - l is small. Notice that, in contrast to traditional open queueing

systems, our lost sales case allows for the possibility that p > 1. However, with

lost sales, this heavy traffic condition is not sufficient to obtain a limiting Brownian

control problem. As in Krichagina, Lou and Taksar (1992), we must also have that

the relative cost of lost sales, lk/hk, tends to infinity; in particular, their limiting

argument assumes that lk/hk = O(n). It is the scaled processes Xk(nt)/V, where

n is large, for which a limit argument is constructed. Accordingly, we fix n and

introduce the scaled processes and cost parameters

k(t) = Zk(nt)

Zk) 

Xk (n t)
Xk(t) - _'

Vn
Yk(t) = Yk(nt)v n iL(t):- Lk(nt)

i(t)= I(nt) k = /-hk and k = k/ /, -
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For a given policy, define yk = limt,, Tk(t)/t and Pk = limt,, Ak(t)/t. Then

yk is the actual utilization for class k, reduced from pk by lost sales, and P/kYk is the

class k throughput. The lost sales rate for class k is AkPk, Pk is the probability of a

stockout, and

7k = (1 - Pk)Pk < Pk- (47)

Upon replacing Tk(t) and Ak(t) in (43) by their mean values ykt and (1 - Pk)t, as

proposed in Harrison (1988), it can be shown by weak convergence arguments that

Xk(nt)/x/i is well approximated by a Brownian motion process. For simplicity of

notation, we also use Xk to denote the Brownian motion. By (43), the drift of the

Brownian motion Xk is (V/-kak - Ak) and the variance of Xk depends on the policy

and equals /kOv2k + Ak(l - Pk)Vdk = ikk(Vs2k + Vdk). In (37), Zk(t) can be replaced

by Zk(nt) while Lk(t) can be replaced by Lk(nt)/n, giving

min limsup T E [ E hkZk(t)dt + kk(T) (48)

The requirement that Tk be nondecreasing can be dropped because, for any policy

with throughput Akk > 0, Tk(nt)/V- increases arbitrarily quickly in t for large 7n.

Hence, for small 1 - pl and large lk/hk, we are led to approximate the scheduling

problem (37)-(43) by the following Brownian control problem (BCP): find processes

Yk that are nonanticipating with respect to X to achieve the objective (48) subject

to

Zk(t) = Xk(t) - JLkYk(t) + Lk(t), (49)

i(t) = E k (t), (50)

Lk(t) = - inf {X k(s)- kYk(s)}, (51)
0<s<t

I nondecreasing and 1Yk(O) = 0. (52)

The symbols Zk, Yk, Lk and I now refer to the Brownian approximation. As with other

heavy traffic approximations, the BCP may be accurate even when these conditions
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are not met.

3.3.3 The Workload Formulation

To achieve a state space collapse, we reformulate as in Wein. Let B(t) = E mkXk(t),

a Brownian motion with drift = /(1 - p) and variance 2 = E mkk(v2k + Vdk).

The workload formulation (WF) is to find processes Zk, , and Lk that are non-

anticipating with respect to B to minimize (48) subject to

S mk2k(t) = B(t) - (t) + (t), (53)

£(t) = mkLk(t), (54)

Zk(t) > 0, and (55)

I and Lk nondecreasing. (56)

As the following theorem asserts, WF is a relaxation of BCP with the same optimal

objective function value, and we can solve WF instead of BCP.

Theorem 1. (i) Every feasible policy Y for BCP corresponds to a feasible policy

(Z, I, L) for WF of equal cost. (ii) Every optimal policy (Z, I, L) for WF corresponds

to a feasible policy Y for BCP of equal cost.

A proof is given in Section 3.3.4 after the optimal policy is derived.

3.3.4 Solving the Workload Formulation

The workload formulation will be solved in two steps. First, an optimal and L is

found in terms of I, then an optimal is found. Define 1W(t) = E mkZk(t) and classes

i and j satisfying h _ hi/ti = min{hk/ak} and - ljj = min{lktk}. It is optimal to
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set £(t) = - info<,<t{B(t) - I(t)}, since this is the minimal C that satisfies WI(t) > 0,

implied by (55), and cost is increasing in L. Then the optimal Z at each t is a solution

to the linear program

min E iZkk(t)

subject to E mkZk(t) = /B(t) - i(t) + £(t) and

Zk(t) > 0,

(57)

(58)

(59)

namely, the h rule

,kW(t),

0,

k=i

k i.

The optimal cost is hW(t).

Similarly, the optimal i at each t is a solution to

min E kLk(t)

subject to E kLk(t) = t(t) and

Lk(t) > O.

(60)

(61)

(62)

(63)

namely, the "" rule

Lk(t) = ,
O,

k=j

k j.
k ~-

(64)

Note that L* is nondecreasing as required by (56). The optimal cost is iL(t).

Next we solve for . Substituting Z* and L* into WF gives

min lim sup -E
T-oo T

[IThW(t)dt + IW(T)
(65)

(66)subject to W(t) = B(t) - i(t) + L(t) and
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L(t) =- inf {B(t)- I(t)}. (67)O<s<t

A natural choice for I is to keep W in the interval [0, c]; standard arguments (see, for

example, Menaldi and Robin 1984 and Taksar 1985) can be used to show that such

a policy is optimal. Let be the unique function satisfying (t) = supo<S<t[B(s) +

L(s)- ]+, (67), and I increasing only when W(t) = . Then W is a regulated

Brownian motion (RBM) on [0, c] with the same parameters as B. Let us begin with

the case X > 0, corresponding to p < 1. It is well known (see Harrison 1985) that the

steady-state p.d.f. of W is p(x) = 'eX/(e - 1), 0 < x < c, where v = 2/til/ 2, and

the lower control rate is

-lim (t) = (68)

If we restrict ourselves to RBM policies, then (65) - (67) reduces to finding to

minimize

(C) = j xp(x)dx + i

= dxte a

ie- + h&vc h (69)

Setting '() = 0 yields

e'- - 1 - i/h~: = 0. (70)

We now reverse the scalings of the parameters in this equation so that it is ex-

pressed solely in terms of the original problem parameters. The solution c to (70)

is an upper control limit for the scaled workload. If we denote the workload in the

original system by W(t), where W(t) = W(nt)/, then our proposed idleness policy

for the original system is to idle when W(t) = c = vTi. In terms of c, (70) can be
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written, using (46) and A = /(1 - p), as

s 2 (1 -p) _ 2(1 - p)2 = O, (71)
a 2 a-2h

where h _ min{hk/uk} and I _ min{lklk}. This equation can be solved numerically

for the proposed workload threshold c in terms of the original problem parameters.

Now consider the case i < 0, corresponding to p > 1. The p.d.f. of I is

p(x) = e-"x/( -e- c), < x _< c, and the lower control rate is

3= ~l2 . (72)
1 - e- VC

The cost rate is

o hed- - (72)+(C) = I -e - -d x + 1 - e- c ( 

li - he- h (73)
1 e-vc V

and is minimized at

e- ~ + i- - lllI/h = O, or (74)

2(1 - p)c 2( 1 - p)2(
C + . _ - - 0. (75)a02 2 h

Finally, for the case = 0, corresponding to p = 1, the p.d.f. of 1/4 is p(x) = 1/,

0 < x < , and the lower control rate is o = a 2/(26). The cost rate is (c) =

ih/2 + lc2/(26), and is minimized at E = a 2 1/, or

c= 2 1/ h. (76)

These three results are consistent. As p -+ 1, v - 0 and the small-exponent approx-

imation e x 1 + x + x2/2 can be used in (71) and (75), giving (76).
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We end this section by proving the theorem.

Proof of theorem.

(i) Given Y feasible for BCP, let Lk satisfy (51), C satisfy (54), and Zk satisfy

(49). Then

E mkZk(t) = E mk(t) -- Yk(t) + E mkLk(t)

= B(t)- I (t) + (t), (77)

i.e., (53) holds. Also, (49), (51), and (52) imply (55) - (56), and (Z,I,L) is feasible

for WF.

(ii) Given (Z, I, L) optimal for WF, let Y satisfy (49), namely Yk(t) = mk[X(t)-

Zk(t) + Lk(t)]. Then

E 4(t) = Bk(t) - mk2k(t) + L(t) = (t), (78)

i.e., (50) holds. Substituting Yk into the r.h.s. of (51) gives

- inf {Zk(s)- Lk(s)}. (79)
O<s<t

For k j, Lk(s) = 0, (79) reduces to Zk(0) = 0, and (51) holds. Now consider k = j.

If j # i, then Zj(s) = 0 and, since Lj is nondecreasing, (79) is just Lj(t), i.e., (51)

holds. If j = i, then by WF optimality, Lj increases only at times s when L(s) is

increasing. But is the lower regulator for W14, so at these times I4/(s) = Zj(s) = 0.

Since Z j (s) > 0 and Lj is nondecreasing, it follows that (79) is the largest value of

Lj, namely, Lj(t), and (51) holds. Optimality also ensures that (0) = 0 and (52)

holds, so Y is feasible for BCP. O
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Table 2: Throughput Iteration for Lost Sales Case 2.

Iteration Initial 72 c Final 72

1 .45 10.8 .4069
2 .4069 10.5 .4084
3 .4084 10.5 .4083

3.3.5 Updating the Throughput

The Brownian motion variance a 2 appearing in (70) and (74) depends on the unknown

throughputs k. As in Dai and Harrison, we overcome this difficulty by iteratively

computing c and -y. A reasonable initial value is 7k = Pk. Given 7Yk, compute 2 , use

(71), (75) or (76) to compute c, and (68) or (72) to compute 3. To update y, recall

that all lost sales are attributed to class j by the l/ rule, so that L(t) = mjL(t) and

the lost sales rate for class j is AjPj = //mj. From (47), we obtain

j = pj -. (0)

It is possible for (80) to give yj < 0, meaning that there are more lost sales than class

j arrivals. A reasonable allocation of these lost sales is to set yj = 0, = / - pj,

and repeatedly apply (80) to the class with next smallest Ik1'k. Using the new A,

the calculations can be repeated. Convergence is reached rapidly, as demonstrated in

Table 2.

4 Numerical Results

Dynamic programming value iteration was used to compute optimal policies for undis-

counted problems with two and three products. The recurrent states are those below

the hedging point, x < x*. For the lost sales problem, the recurrent class is finite,
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0 < x < x*. For the backorder problem, the state space was truncated. Larger

and larger state spaces were tested until the results were insensitive to increasing the

state space. State spaces up to about 30 by 30 and up to 2000 value iterations were

required to achieve three digit accuracy. The lost sales problem generally ran much

faster.

All compatible combinations of switching curves and hedging points listed in Table

1 were tested. These candidate policies were evaluated using a value-iteration scheme

to avoid directly solving a large linear system. The LQ and offset LQ switching curves

described in Section 1 were also tested, as were the hedging point approximations

generated by pure STLA and restless bandit index policies. Finally, for STLA, restless

bandit, and LQ switching curves, a one-dimensional search along the switching curve

was conducted to find the best hedging point for that switching curve. This data point

is used to determine how much of the suboptimality of a policy is due to the switching

curve and how much is due to the hedging point. These three switching curves

are combined with hedging points by converting the hedging point to a workload

threshold (see Section 3.3), then finding the point on the switching curve that matches

or exceeds this workload. The yuAV and offset LQ switching curves require a K-

dimensional hedging point, not just a a one-dimensional workload, to be specified.

Best hedging points were not found for these switching curves.

4.1 Lost Sales

Most of the testing was devoted to the two-product lost sales problem. Five test cases

are defined in Table 3. We begin by comparing hedging point approximations. Table

4 shows the hedging points for the test problems. Since t k = 1 in these problems,

the workload is just the sum of the hedging point coordinates, w = E x;. The

suboptimality, measured in terms of the gain per unit time g/A, is also shown. For

convenience, all of the hedging points are combined with the STLA switching curve,
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Table 3: Lost Sales Cases ( = 1).

Case Al A2 A3 hi h 2 h3 s 1 82 s3

1 .4 .5 1 1 60 80
2 .45 .45 4 1 45 45
3 .45 .45 1 1 90 360
4 .3 .6 1 1 120 300
5 .3 .4 2 1 60 40
6 .2 .3 .4 1 1.25 1.5 40 75 120

Table 4: Lost Sales Hedging Point Approximations.

Pure Index
Restless S
X* sub z*

(4,5) 15% (4,4
(2,4) 7% (2,3
(5,6) 41% (4,5
(4,8) 48% (4,6
(3,4) 2% (3,3

(3,3,4) 29% (2,3,

;TLA
sub

L) 21%
1) 14%

;) 54%
i) 54%
;) 5%
4) 28%

Allocated
x* sub

(8,10) 9%
(4,7) 2%

(10,18) 23%
(11,17) 15%
(5,5) 8%

(7,8,10) 27%

except for the pure restless bandit index hedging point, which is combined with its own

switching curve. However, the ranking of the suboptimalities was the same for most

of the cases when other switching curves were used. Note that the allocated server

hedging points shown must be shifted onto the STLA switching curves, maintaining

the same workload, before evaluating the policy.

The results show the Brownian hedging point to be the clear winner, both in

terms of accuracy of the workload threshold and the resulting gain. If the workload

must be broken down into stock levels, the allocated server hedging point is the

best candidate. As expected, the allocated server hedging point is too large and

the aggregate product too small. Since the pure index policies disregard congestion
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Case
1
2
3
4
5
6

Opt.
X*

(6,7)
(3,6)

(7,10)
(7,13)
(3,5)

(5,5,6)

Aggregate
w sub
9 12%
5 14%

15 5%
15 9%
6 5%
9 28%

Brownian
w sub

12.4 0%
10.5 2%
13.9 8%
17.9 1%
6.5 0%
13.9 2%



Table 5: Lost Sales Switching Curves.

LQ Offset LQ Restless STLA [tAV
Case w sub * sub sub x sub * sub * sub

1 13 1% (8,10) 11% (6,7) 1% (6,7) 0% (8,10) 10%
13 1% (6,7) 1% (6,7) 0%

2 11 20% (4,7) 13% (5,6) 13% (3,8) 2% (4,7) 6%
8 9% (3,5) 1% (3,6) 0%

3 14 38% (10,18) 35% (7,7) 15% (6,8) 8% (10,18) 34%
20 17% (9,9) 6% (8,10) 2%

4 18 9% (11,17) 20% (6,12) 8% (7,11) 1% (11,17) 19%
21 6% (7,14) 6% (8,12) 1%

5 7 5% (5,5) 16% (3,4) 2% (3,4) 0% (5,5) 15%
8 4% (3,5) 1% (3,5) 0%

6 14 7% (7,8,10) 26% (4,4,6) 6% (5,4,5) 2% (7,8,10) 27%
17 2% (4,5,6) 4% (6,4,5) 2%

from other classes, their hedging points are too small, as predicted in Section 2.3.

However, they perform much better in case 5, where p = 0.7, than the other cases,

where p = 0.9.

Next, using the best available hedging point (Brownian if only the workload is

needed, allocated server if the stock levels are needed), the switching curves are

compared in Table 5. The second row of figures within a case gives the best hedging

point for the switching curve, where available. The best hedging point illustrates how

much of the suboptimality is due to the switching curve. The results suggest that the

best policy is the STLA index combined with the Brownian hedging point. Its gain

is within 8% of optimal for all five test cases. The restless bandit index combined

with the Brownian hedging point also does well. Much of the suboptimality for these

policies is due to the hedging point, even though we have used the most accurate of

the approximations. It appears that finding a good hedging point is more difficult

than finding a good switching curve. The potential savings from using index policies

is best measured by comparing STLA to the LQ policy. Average suboptimality is
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reduced from up 15% to 2%.

The offset LQ and IuAV switching curves perform poorly, possibly because they

must use the less accurate server allocation hedging point. The simple LQ switching

curve performs slightly better, but has trouble with asymmetric products, such as case

3. Its suboptimality is due to both the switching curve and the Brownian hedging

point that is used with it.

The shapes of various switching curves for case 4 are shown in Fig. 1. The STLA

curve is slightly closer to the line of symmetry xl = x 2, i.e., the LQ switching curve,

than optimal. The restless bandit curve starts much farther from symmetry and

initially is nearly horizontal, reflecting the dominance of the lost sales term in (28).

The 1iAV curve is parallel to the symmetry line but shifted too far away. The optimal

idleness region is also shown. The curvature of its boundary determines how far the

optimal hedging point, (7,13), is from the the pure restless bandit index hedging

point, (4,8), the latter lying on the asymptotes of the idleness region.

The optimal switching curve was found to be close to the symmetry line for fairly

different products. The curve is particularly insensitive to s, with differences of a

factor of two scarcely affecting the curve. Significantly different product parameters

were found to have the following effects on the switching curve:

1. s << s2. The curve is offset toward class 2 (x1 < x2 ).

2. h > h2. The curve starts at the origin and moves toward x1 < x2 (slope

steeper than one).

3. A1 < A2. The curve starts at xl > x2 (below the symmetry line) and moves to

X1 < x2 (slope steeper than one). If lost sales costs are equal, sl/A1 = s2/A2,

then the curve starts above the symmetry line.

4. Expensive product: sl << s2 and hl/sl = h2/s 2. The curve starts at x1 < x2
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Figure 1: Shape of the Switching Curves- Lost Sales Case 4.

(above the symmetry line) and is nearly horizontal.

We also made a few runs with three products. Case 6 in Tables 4 and 5 is

consistent with the results for two products. Recall that the restless bandit index is

predicted to become more accurate for a large number of products. The three-product

cases we have tested neither support nor refute this prediction.

4.2 Backorders

Three backorder cases are described in Table 6. The hedging point approximations

and their suboptimality are shown in Table 7. Again, STLA switching curves are

combined with the hedging points. The results suggest that the Brownian and LQ

hedging points are the most accurate, with Brownian a little better on case 1, which,

surprisingly, is the case with the lowest traffic intensity. The aggregate product
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Table 6: Two-Product Backorder Cases ( = 1).

Case A1 A2 hi h2 bl b2
1 .3 .4 2 1 10 5
2 .45 .45 1 1 2 4
3 .45 .45 1.25 1 4 2

Table 7: Backorder Hedging Point Approximations.

Opt. Pure STLA Allocated LQ Aggregate Brownian
Case x* x* sub x* sub x* sub w sub w sub

1 (1,3) (1,1) 23% (5,5) 46% (1,2) 6% 5 0% 4.2 0%
2 (4,4) (0,1) 55% (10,15) 99% (4,6) 5% 13 15% 9.9 5%
3 (3,5) (1,0) 48% (13,10) 78% (6,4) 7% 12 13% 9.9 7%

hedging point also performs fairly well. As expected, the allocated server hedging

point is too large and the aggregate product too small.

To compare switching curves, the Brownian approximation is used when only

a workload is needed; the LQ hedging point is used when stock levels are needed.

Table 8 shows the results, where the second row within each case again gives the best

hedging point for the switching curve. The STLA index combined with the Brownian

hedging point appears to be the best candidate policy, with suboptimality of 7% or

less. The LQ switching curve (which is symmetrical) combined with the Brownian

hedging point also performs well, but may do poorly on more asymmetric products.

Case 3 suggests that the LQ hedging point of (6,4) gives a fairly accurate workload

(10 versus an optimal workload of 8), used with the STLA switching curve in Table 7,

but poor stock levels, used with the offset LQ switching curve in Table 8. Although

the differences found between switching curves are not very dramatic, the results

clearly show that choosing a good hedging point is very important.

Switching curves for case 3 are drawn in Fig. 2. The /Al/ curve is inaccurate
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Table 8: Backorder Switching Curves.

LQ Offset LQ
Case w sub x* sub

STLA
x* sub sub

1 5 7% (1,2) 8% (1,4) 0% (2,1) 11%
4 3% (1,3) 0%

2 10 6% (4,6) 7% (5,5) 5% (3,7) 12%
9 5% (4,5) 4%

3 10 7% (6,4) 10% (2,8) 7% (7,3) 15%
8 5% (2,6) 5%

X2

CIl
Idle

Class 2

Figure 2: Shape of the Switching Curves- Backorder Case 3.
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primarily because of the LQ hedging point, (6,4), on which it is based. The STLA

curve is slightly more asymmetrical than the optimal curve. In general, backorder

curves are much more sensitive to asymmetric products, specifically to differences in

A and h. The 25% difference in holding costs in case 3 is responsible for moving the

hedging point from symmetry to (3,5). Larger differences in h, such as in case 1,

result in a hedging point near the axis. This explains the good performance of the

"modified h" rule reported in Wein, where hedging points one unit away from the

axis, e.g., (l, 1), were used.

5 Concluding Remarks

We have considered a scheduling problem for a multiclass make-to-stock queue in

both the backorder and lost sales cases. Since the optimal solution can only be

numerically computed when there are a small number of products, our goal was to

derive a scheduling policy, which consists of a hedging point that dictates when to

idle and an index policy that specifies which product to serve, that performs well and

can be easily computed when there are a large number of products.

Our numerical results suggest that the STLA index policy derived by Zipkin

(1990) coupled with the hedging point derived by a Brownian analysis performs very

well, at least for two- and three-product problems. Of all the index policies and

hedging points considered in this paper, these two are the only ones for which the

exponential assumption can be easily relaxed. Our numerical results also suggest

that both a good hedging point and a good switching curve are required to attain

performance that is close to optimal. Moreover, good hedging points appear to be

harder to derive than good switching curves.

We did not attempt any numerical computations for problems with a, large number
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of products because the suboptimality of our proposed policies cannot be calculated

in these cases. It is possible that the accuracy of the Brownian hedging point would

degrade with more products, since it is based on the hp rule, which holds all inventory

in one class. However, a Brownian workload threshold can be computed using any

desired inventory mix, not just the mix dictated by the hu rule. For example, Section

9 of Wein obtains a hedging point for the backorder case by performing a Brownian

analysis under the LQ policy. This alternative hedging point may be more accurate

for large problems that are relatively symmetric.

We noticed a relationship between the Gittens index for the multi-arm bandit

problem and the restless bandit index that may be useful for other research. The

Gittens index measures the value of playing an arm (serving a class) given that there

are other arms of equal value, so that when its value drops we can "retire" to another

arm of equal value. For restless problems, the arms change state while passive and

there is no constant retirement value. As a result, the Gittens index may not be

meaningful. The Gittens index for the discounted, backorder version of our problem,

computed in Veatch (1992), is not monotonic and does not produce a coherent policy.

Whittle's restless bandit index assumes that the cost of the server is constant over

time, and that each product can use the server whenever it is cost-effective. For

our problem, these assumptions are only accurate when there are many classes and

many servers (or one server and many low utilization classes). Another approach is

to compute a Gittens index using a variable retirement cost, M(xk, v), that depends

on the inventory Xk, as well as the "base" retirement cost v. The traditional Gittens

index uses M(xk, v) = . Using M(xk, v) = V(xk, v), the optimal value function for

the single-product subproblem with server cost v (see Section 3), gives the restless

bandit index. In other words, the restless bandit index can be defined as a Gittens

index with variable retirement cost. The question is how to specify M(xk, v) so that

the Gittens index will be nondecreasing and produce accurate policies. Computing

such indices numerically should be possible; one approach is found in Taylor (1968).
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The restless bandit and generalized Gittens index may also be useful for attacking

the related problem with set-up costs. When set-up costs are added, the state of the

dynamic program must be augmented with the class currently being produced. The

form of the optimal policy becomes much more complex, involving lot-sizing and

scheduling, and good approximations have not been found. An index policy could be

constructed by computing two indices for each class, measuring the value of starting

and stopping production of that class.

Acknowledgements

We acknowledge helpful discussions with Avi Mandelbaum and Vien Nguyen. This

research is supported by National Science Foundation grant DDM-9057297.

References

Dai, J.G. and J.M. Harrison 1991. Steady-State Analysis of RBM in a Rectangle:

Numerical Methods and a Queueing Application. Annals Appl. Prob. 1, 16-35.

Ha, A.Y. 1992. Optimal Control Policies for Some Production/Inventory Systems.

Ph.D. dissertation, Stanford University, Stanford, CA.

Harrison, J.M. 1985. Brownian Motion and Stochastic Flow Systems. John Wiley

and Sons, New York.

Harrison, J.M. 1988. Brownian Models of Queueing Networks with Heterogeneous

Customer Populations, in W. Fleming and P.L. Lions (eds.), Stochastic Dif-

ferential Systems, Stochastic Control Theory and Applications, IMA Vol. 10,

Springer-Verlag, New York, 147-186.

38



Klimov, G.P. 1974. Time Sharing Service Systems I. Th. Appl. Prob. 19, 532-551.

Krichagina, E.V., S.X.C. Lou and M.I. Taksar 1992. Double Band Policy for Stochas-

tic Manufacturing Systems in Heavy Traffic. Working paper, State Univ. of New

York, Stony Brook.

Menaldi, J.L. and M. Robin 1984. Some Singular Control Problems with Long

Term Average Criterion. Lecture Notes in Control and Information Sciences,

Springer-Verlag, New York, 424-432.

Taylor, H.M. 1968. Optimal Stopping of a Markov Process. Annals Math. Stat.

39, 1333-1344.

Taksar, M.I. 1985. Average Optimal Singular Control and a Related Stopping Prob-

lem. Math. Oper. Res. 10, 63-81.

Veatch, M.H. 1992. Queueing Control Problems for Production/Inventory Systems.

Ph.D. dissertation, Sloan School of Management, MIT, Cambridge.

Weber, R.R. and G. Weiss 1990. On an Index Policy for Restless Bandits. J. Appl.

Prob. 27, 637-648.

Wein, L.M. 1992. Dynamic Scheduling of a Multiclass Make-to-Stock Queue. Oper.

Res. 40, 724-735.

Whittle, P. 1988. Restless Bandits: Activity Allocation in a Changing World. In A

Celebration of Applied Probability, ed. J. Gani, J. Appl. Prob. 25A, 287-298.

Zheng, Y. and P. Zipkin 1990. A Queueing Model to Analyze the Value of Central-

ized Inventory Information. Oper. Res. 38, 296-307.

Zipkin, P. 1990. An Alternative Dynamic Scheduling Policy. Working notes, Grad-

uate School of Business, Columbia Univ., New York.

Zipkin, P. 1992. Performance of the Smallest-Inventory (or Longest-Queue) Policy.

Working paper, Graduate School of Business, Columbia Univ., New York.

39


