
A Unifying Geometric Solution Framework and
Complexity Analysis for Variational Inequalities

Thomas L. Magnanti and Georgia Perakis

OR 276-93 December 1993

A unifying geometric solution framework and complexity

analysis for variational inequalities *

Thomas L. Magnanti t Georgia Perakis *

February 1993

Revised December 1993

Abstract

In this paper, we propose a concept of polynomiality for variational inequality prob-

lems and show how to find a near optimal solution of variational inequality problems

in a polynomial number of iterations. To establish this result we build upon insights

from several algorithms for linear and nonlinear programs (the ellipsoid algorithm, the

method of centers of gravity, the method of inscribed ellipsoids, and Vaidya's algorithm)

to develop a unifying geometric framework for solving variational inequality problems.

The analysis rests upon the assumption of strong-f-monotonicity, which is weaker than

strict and strong monotonicity. Since linear programs satisfy this assumption, the gen-

eral framework applies to linear programs.

*Preparation of this paper was supported. in part, by NSF Grant 9312971-DDM from the National Science

Foundation.

tSloan School of Management and Operations Research Center. MIT, Cambridge, MA 02139.

· Operations Research Center, MIIT, Cambridge, MA 02139.

1

1 Introduction

In this paper, in the context of a general geometric framework, we develop complexity

analysis for solving a variational inequality problem

VI(f, K) : Find xzpt E K C R ' f(xoPt)t(x - xopt) > O, Vx E K, (1)

defined over a compact, convex (constraint) set K in Rn. In this formulation f : K C Rn D

Rn is a given function and x' pt denotes an (optimal) solution of the problem. Variational

inequality theory provides a natural framework for unifying the treatment of equilibrium

problems encountered in problem areas as diverse as economics, game theory, transportation

science, and regional science. Variational inequality problems also encompass a wide range

of generic problem areas including mathematical optimization problems, complementarity

problems, and fixed point problems. Any linear programming problem

Minep ctx

defined over a polyhedron P can be cast as a variational inequality problem as follows:

VI(c,P) : Find XP t P C Rn : ct(x - x° Pt) > 0, Vx E P. (2)

Therefore, linear programming is a special case of a variational inequality problem (1), with

f(x) = c and with a polyhedron P as a constraint set.

Let MIN(F, K) denote an optimization problem with an objective function F(x) and

constraints x E K. The function f(x) of the variational inequality problem VI(f, K)

associated with the minimization problem MIN(F, K) is defined by f(x) = VF(x). As is

well-known, a variational inequality problem VI(f, K) is equivalent to a (strictly) convex

nonlinear programming problem MIN(F, K) (that is they have the same set of solutions)

if and only if the Jacobian matrix of the problem function f is a symmetric and positive

semidefinite (definite) matrix.

Our goal in this paper is to introduce and study a concept of complexity for variational

inequality problems. We wish to address several questions:

2

* What does polynomial efficiency mean for the general asymmetric variational inequality

problem?

* How can we measure polynomial efficiency for this problem class?

* Using this notion, can we develop efficient (polynomial-time) algorithms for solving general

asymmetric variational inequality problems?

In particular, we establish the following results:

1. We introduce the concept of polynomial efficiency for variational inequality problems.

We propose a notion of an input size and a "near optimal" solution for the general

VI(f, K) problem, extending results from linear and nonlinear programming.

2. Using these notions, we show how to find a "near optimal" solution of the VI(f, K)

problem in a polynomial number of iterations. We achieve this result by provid-

ing a general geometric framework for finding a "near optimal" solution, assuming

a condition of strong-f-monotonicity on the problem function f. We also analyze

some properties of this condition which is weaker than strict or strong monotonicity,

assumptions that researchers typically impose in order to prove convergence of algo-

rithms for VI(f, K). Linear programs, when cast as variational inequality problems,

satisfy neither of these conditions but trivially satisfy strong-f-monotonicity.

3. This general framework unifies some algorithms known for "efficiently" solving linear

programs. As a result, we also show that these algorithms extend to solving variational

inequality problems since they become special cases of this framework. The unification

of these algorithms also provides a better understanding of their common properties

and a common proof technique for their convergence.

4. As a subproblem of our general geometric framework, we need to be able to optimize

a linear objective function over a general convex set. Our analysis also provides

a polynomial-time algorithm for finding a near optimal solution for this problem.

(Lovasz [15] develops a different analysis for essentially the same algorithm for this

problem.)

3

Our approach is motivated by Khatchiyan's [11] ellipsoid algorithm for linear program-

ming. The ellipsoid algorithm, introduced by Shor [261 and Yudin and Nemirovski [231 for

solving convex optimization problems, has certain geometric properties, which we further

exploit in this paper to solve variational inequality problems efficiently. (For a complexity

analysis of the ellipsoid algorithm applied to convex optimization over the unit cube, see

Vavasis [30]). Several geometric algorithms proposed in the literature, primarily for linear

programming problems, and applied in a generalized form to convex optimization problems,

have similar geometric properties. The following algorithms are of particular interest in this

paper:

1. The Method of Centers of Gravity (Levin [14J, 1968).

2. The Ellipsoid Algorithm (Khatchiyan [11], 1979).

3. The Method of Inscribed Ellipsoids (Khatchiyan, Tarasov, Erlikh [121, 1988).

4. Vaidya's algorithm (Vaidya [291, 1989).

Motivated by the celebrity of these geometric algorithms for solving linear programming

problems, in this paper we examine the question of whether similar geometric algorithms will

efficiently solve variational inequality problems. The general geometric framework, which

we describe in detail in Section 3, stems from some common geometric characteristics that

are shared by all these algorithms: they all generate a sequence of "nice" sets of the same

type, and use the notion of a center of a "nice" set. At each iteration, the general framework

maintains a convex set that is known to contain all solutions of the variational inequality

problem and "cuts" the set with a hyperplane, reducing its volume and generating a new

nice set. After a polynomial number of iterations, one of the previously generated centers

of the nice sets will be a near optimal solution to the variational inequality problem.

Our analysis in this paper rests upon the condition of strong-f-monotonicity. Gabay

[5], implicitly introduced the concept of strong-f-monotonicity and Tseng, [281, using the

name co-coercivity, explicitly stated this condition. Magnanti and Perakis ([181, [17] and

[25]) have used the term strong-f-monotonicity for this condition, a choice of terminology

4

that highlights the similarity between this concept and the terminology strong monotonicity,

which has become so popular in the literature. We use the following notation and definitions

throughout this paper.

The argmin of a real-valued function F over a set K is defined as

argminEKF(x) = y E {x* : F(x*) = minxEKF(x).

Definition 1 .

1. f is monotone on K if (f(x) - f(y))t(x - y) > 0 Vx, y E K.

2. f is strictly monotone on K if (f(x) - f(y))t(x - y) > 0 Vx, y E K, x y.

3. f is strongly monotone on K if for some positive constant a, (f(x) - f(y))t(x - y) >

allx- Yll2 Vx, y E K. (In this expression 11.112 denotes the Euclidean distance.)

4. f is monotone (strictly or strongly) at a point x* if (f(x)-f(x*))t(x-x*) > 0 Vx E K

(> 0 Vx x* for strict monotonicity, while for strong monotonicity 3a > 0 such

that > al[x - x*lI2).

If f is differentiable, the following conditions imply monotonicity:

1. f is monotone if the Jacobian matrix Vf is positive semidefinite on the set K.

2. f is strictly monotone if the Jacobian matrix Vf is positive definite on the set K.

3. f is strongly monotone if the Jacobian matrix Vf is uniformly positive definite on

the set K.

We now review some facts concerning matrices.

Definition 2 . A positive definite and symmetric matrix S defines an inner product

(x, y)s = xtSy. This inner product induces a norm with respect to the matrix S via

lxlj2 = x t Sx.

5

This inner product is related to the Euclidean distance since

11Ix!s = ()/ 2 (tSX)l/2 = lS 11/2Xl2.

In this expression, S1/2 is the matrix satisfying S1/25 1/ 2 = S. This inner product, in turn,

induces an operator norm on any operator B. Namely:

IBIls= sup IBxlls.
Ilxlls=l

The operator norms IlBIls and lIBI - 11B11 are related since

lIBIls= sup fIBxls= sup llS'/ 2BxI12=
Ilxlls=1 IIlS/ 2x112=l

= sup IIS1/ 2BS-/2S1/2xII 2 = IIS/2BS-'/211.
IIS"/2x112 =1

So

IIBIls = 15S/ 2BS-/211

and similarly

11BI = lS-'/ 2BS/211s.

Finally, if A is a positive scalar and K is any set, we let K(A) = K be a scaled set defined

as

zxE K if and only if x E K(A).

In this paper we often use the following estimate for the volume of a ball S(z, R) of radius

R about the point z:

~n/2
Rnn- n < vol(S(z, R)) = Rnvol(S(O, 1)) = Rn 2 < R2n

r(n/2 +) -

In this expression, r(x) := f' e-ttx-ldt for x > 0 is the gamma-function with r(n) =

(n - 1)!. See Groetschel, Lovasz and Schrijver [6].

This paper is organized as follows. In Section 2 we define what we mean by the input size

and a near optimal solution for a variational inequality problem. In Section 3 we develop

a unifying geometric framework for solving the general asymmetric variational inequality

6

problem. In Section 4 we examine the assumptions we need to impose on the problem in

order to develop our results. We discuss some properties of strong-f-monotonicity and its

relationship with the traditional conditions of strict and strong monotonicity. In Section

5 we develop complexity results for the general geometric framework and the four special

cases we consider. We show that the geometric framework encompasses the four algorithms

known for solving linear and nonlinear programs. Therefore, these four algorithms solve

the variational inequality problem as well. Our complexity results show that the volume of

an underlying set, known to contain all optimal solutions, becomes "small" in a polynomial

number of iterations (polynomial in the number n of variables and the input size L 1 of the

problem). Moreover, we prove that whenever the problem function satisfies the strong-f-

monotonicity condition, some point in the "small" underlying set is a near optimal solution

to the variational inequality problem. Finally, in Section 6 we summarize our conclusions

and address some open questions.

2 The input size of a VIP

In linear programming we measure the complexity of an algorithm as a function of the size

of the input data given by the problem. In this section we give a definition of the input size

of a variational inequality problem VIP that corresponds to the definition of the input size

of an LP.

In a linear programming problem

minxEp Ctx

the feasible set is a polyhedron

P=({xER: Ax=b, x0},

defined by an m x n integer matrix A = (ai,j)mxn and a vector b = (bi) in Zm.

Definition 3 . The input size of a linear program is the length of the input (c, A, b) when

represented as a sequence of binary digits.

7

When we are interested in solving the feasibility problem (i.e., find a point x E P) the

input size L is defined as

L = mn + [loglrl = mrnn + F[(logajl)] + (loglb)j.
j i i

In this expression r is the product of nonzero terms in A and b and [xl is the integer

round-up of x. Therefore, the input size is bounded by

L < mn([logldata,mll + 1) + m[logldatamazl = O(mnFlogldatama,,ll),

with datamax = maxl<i<m,lj<n}(ai,j, bi). For problems that satisfy the similarity as-

sumption, i.e., datama = O(p(n)) for some polynomial p(n),

L < O(mnlog(n)).

The natural question that arises at this point is,

what is the corresponding definition of L for VIPs defined over general convex sets?

Before answering this question, we state some assumptions we impose and set some

notation and definitions.

ASSUMPTIONS

Al. The feasible set K is a convex, compact subset of R ', with a nonempty interior.

A2. The function f : K C Rn
- R1" of VI(f, K) is a nonzero, continuous function, that

satisfies the condition of strong-f-nmonotonicity.

Definition 4 . A function f K C R n -+ R n is strongly-f-monotone if there exists a

positive constant a > 0 for which

[f(x) - f(y)]t[x - Yl > alIf(x) - f(Y)112 for all x, y E K.

The constant a is the strong-f-monotonicity constant. In Section 4 we will show that for

linear programs any constant a satisfies the strong-f-monotonicity condition.

We will show that assumptions Al and the continuity of f imply that the problem

function f is a uniformly bounded function for some constant M (i.e., f (x) 11 < M Vx E K).

8

Our complexity results will involve this constant.

Section 4 contain a further analysis of these assumptions.

We now define an input size for the feasibility problem.

Definition 5 . L and I are positive constants given as part of the input of the problem that

satisfy the following conditions:

1. The feasible set K is contained in a ball of radius 2L, centered at the origin.

2. The feasible set K contains a ball of radius 2-1.

3. L > logn + 3.

Observe that if we scale K by a factor A E R+, then the radii 2L and 2- l scale by a factor

A as well; that is, if K(A) = K, then the radii 2L(X) and 2-1(X) for the inscribing and

inscribed balls for the set K(A) become 2L(X) = 2 and 2-() 2-1

Without loss of generality, we assume that the feasible set K contains the origin. We

can relax this assumption by replacing Definition 5 with the statement that the feasible set

K is contained in a ball of radius 2L centered at some point ao in K.

The constant L we have defined for a linear program defined over a bounded polyhe-

dron satisfies conditions 1-3 of Definition 5 because the basic feasible solutions of a linear

programming problem (2) are contained in a ball of radius 2L (for a proof of this result,

see Papadimitriou and Steiglitz [24], page 181). Moreover, if the polyhedron P has a

nonempty interior, it contains a ball of radius 2-1 which is related to the input size L by

I = (L - 1)(2n2 + 2n) (see Nemhauser and Wolsey [22J). In analyzing linear programs,

researchers typically assume that the underlying data are all integer. Therefore, in this

setting scaling (see the comment after Definition 5) is not an issue.

For the general variational inequality problem, there is no prevailing notion of input size

as defined in linear programming. Definition 5 provides a definition for the feasibility part

of the problem. Clearly, L and I depend on the feasible set K, i.e., L = L(K) and l(K),

and are part of our input data.

9

At this point we might observe that even for variational inequality problems that have

an equivalent nonlinear programming formulation, with a convex, Lipschitz continuous ob-

jective function, there is no finite algorithm for finding the global optimum exactly (see

Vavasis [301). Nonlinear programming algorithms find near optimal solutions. Similarly,

our goal in solving a variational inequality problem is to find a near optimal solution de-

fined in the following sense, which generalizes Vavasis notion of an "e-approximate" global

optimum for nonlinear programming problems in [30].

Definition 6 . Let e > 0 be a given constant; an E-near optimal solution is a point x* E K

satisfying the following system

f(x*)t(x - x*) > -2- 1 Ml Vx E K.

We will refer to as the nearness constant. Observe that if equals zero then x* is an

optimal solution xOpt of VI(f, K).

When a VI(f, K) has an equivalent convex programming formulation, an e-near optimal

solution in the sense of Definition (6) is also an "-approximate" solution as defined in [30],

since

F(x) - F(x*) > f(x*)t (x - x*),

and so x* is a near optimal solution, in objective value, to the problem minXEKF(x).

So far we have defined the constants L and I solely in terms of the feasible set K: these

definitions do not depend on the problem function f. We now define a positive constant L 1

to account not only for the feasible set, but also for the problem function f.

Definition 7 . The size of a variational inequality (describing both its feasible set as well

as its problem function f) is a positive constant L1 with the value

9.2 4L+31
L1 = log()

Note that the constant L1 depends on the nearness constant , the strong-f-monotonicity

constant a, the uniform boundedness constant M, and the constants L and I defined previ-

ously.

10

Proposition 2.1

The nearness constant e as defined in Definition 6, and the constant L 1 as defined in Defi-

nition 7 are scale invariant.

Proof:

Suppose that we scaled the feasible set K by a scalar A. Definition 5 implies that 2L(A) = 2

and 2-"(X) -2-wand 2-1(A) -= 2 The strong-f-monotonicity constant a(A) = . The uniform boundedness

constant is scale invariant since

M(A) = supYEK(A)If(Ay)II = SUPXEK[If(X)l = M.

Moreover, we can easily see that the nearness constant of Definition 6 is scale invariant

(i.e., (A) =), since

x* E K satisfies f(x*)t(x - x*) > -2- 1 M for all x E K X

2-l
y* E K(A) satisfies f(Ay*)t(y - y*) > - -M for all y E K(A).

Then9 =2 4L+3' 92 ,3231 . 24L()+3(X)Then L = log(' a) = log() = Iog(e()z2M(i)a(A)). Finally, if we scaled the

problem function f, then would still be scale invariant, since Definition 6 involves f in

both sides of the inequality (through the uniform boundedness constant M on the righthand

side). Q.E.D.

In closing this section, we might note that we could define an e-near optimal solution as

follows

Definition 8 . An e-near optimal solution is a point x* E K satisfying the condition

f(x*)t(x- x*) > -e Vx E K.

In this case the nearness constant e is not scale invariant, since if we scale the feasible set

K by A, the constant becomes . However, in this case if we define

9M 9M2 4 L+I
L1 = 4L + + log(-) = log(2),

a E a

11

then it is easy to see, as in the analysis of Proposition 2.1, that L 1 is scale invariant.

The algorithms that we present in this paper compute an e-near optimal solution in a

polynomial number of iterations (in terms of n and L 1). For notational convenience, in our

analysis we use Definition 8. However, if we replace E by 2-1 M and the constant L 1 by

Li = og(924ia) throughout, the analysis remains the same, so the results apply to the

scale invariant version of the model (that is, Definition 6).

Remarks:

1. Our definition of L and I are geometric. We could also provide algebraic definitions.

Namely, for some fixed point ao E K (which we have assumed as the origin)

L = log (argmaxyeKIly - ao I).

To avoid a specific choice of ao we could define

L = log (argminxEK[maxyEKlly - xjl])-

2. Suppose that the constraints of the feasible set K are given explicitly by convex functions

gj for j = 1, ... m in the sense that K = {z E Rn: gj(x) 0 j = 1, ..., m}. Suppose that

we are given points xj for j = 1,.., m satisfying the conditions gj(xj) = 0 and gi(x) < 0.

The polyhedron P = {x e R : Vgj(x)(x - x*) < 0, j = 1, ..., m} contains the feasible

set K and its faces are tangent to the constraints of the feasible set K. We could define

the constant L for the variational inequality problem to be the input size L (as defined in

Definition 3) of this polyhedron P. When the feasible set K is a polyhedron, the problem

is linearly constrained and therefore its input size (as defined here) for the set K coincides

with Definition 3 of the input size in the linear case.

3. Observe that in the previous definitions we did not specify any restrictions on the choice

of the nearness constant . For linear programs we can set in Definition (8) equal to 2 -L

in order to be able to round an -near optimal solution to an exact solution. For general

variational inequality problems rounding to an exact solution is not possible in finite time.

12

Nevertheless, we could still express the input size L 1 in terms of only L, M, and a (and as

O(L)) if we select e = 2-L in Definition (8) and let I = (2n 2 + n)(L - 1).

3 A general geometric framework for solving the VIP effi-

ciently

In the introduction we mentioned four known algorithms for solving linear programming

problems in a polynomial number of iterations. For linear programs, when the algorithms

have converged (in the sense of the shrinking volume of the underlying set), the algorithms'

iterate is a "near" optimal solution to the problem. We would like to establish a similar

result for variational inequalities. In this section we describe a general class of polynomial-

time algorithms for solving variational inequalities that includes these four algorithms as

special cases. For any algorithm in this class, we show that if the problem function satisfies

the strong-f-monotonicity condition, assumption A2, then the final point encountered is

a near optimal solution. The next (well-known) lemma describes the key property that

underlies these four algorithms for the VIP.

LEMMA 3.1: If the problem function f is monotone, then for any y E K the set Ky

{x E K : f(y)t(y - x) > O} contains all optimal solutions of the variational inequality

problem.

Proof:

Let y E K. An optimal solution zxpt of VI(f, K) belongs in the feasible set K and satisfies

(1), that is, f(x°Pt)t(x -_ pt) > 0 Vx E K. Since y E K, the monotonicity of f shows that

f(y)t(y - xopt) > f(xoPt)t(y - oPt) > 0, and therefore, xPt E Ky. Q.E.D.

For any y E K, we refer to the inequality f(y)t(y - x) > 0 as an optimality cut because

it retains all (optimal) solutions of the variational inequality problem. As we noted in the

introduction, all four algorithms generate a "nice" set, with a "center". They perform one

of the following two computations:

A feasibility cut. Given the "center" of a "nice" set, if the "center" does not lie in the

feasible set, we 'cut" the "nice" set at the center with a separating hyperplane, therefore

13

separating the center from the feasible set and moving towards feasibility.

An optimality cut. If the center is feasible but not a (near) optimal solution, we "cut" the

given "nice" set at its center with an optimality cut therefore separating the center from

the set of the optimal solutions and moving closer to an optimal solution.

Let OC C (1, 2, ..., } denote the set of iterations for which we make an optimality cut

and for any k, let OC(k) denote the set of iterations, within the first k, for which we make

an optimality cut, i.e., OC(k) = OC n {1, 2,..., k}.

Table I shows the definitions of the "nice" sets and "centers" (that we define for a general

framework Section 3.1) for these four algorithms. In Section 3.2 we provide more details

concerning the "nice"sets and "centers" of each algorithm.

Table I: "Nice" sets and "centers".

Algorithm "Nice" Set Pk "Center" xk

General framework General "nice" set General "Center"

Method of centers of gravity Convex, compact set Center of gravity

Ellipsoid Method Ellipsoid Center of the ellipsoid

Method of inscribed ellipsoids Convex, compact set Center of maximum inscribed ellipsoid

Vaidya's algorithm Polytope Volumetric center

3.1 The General Geometric Framework

In this section we describe a general geometric framework that incorporates an entire class

of geometric algorithms that share the common characteristics mentioned in the last section.

COMMON CHARACTERISTICS - DEFINITIONS

Definition 9 . "Nice" sets {Pk}k=O are a sequence of subsets of Rn satisfying the following

conditions:

1. The sets Pk are compact, convex subsets of R", with a nonempty interior.

14

2. The sets Pk belong in the same class of sets (ellipsoids, polytopes. simplices, convex

sets).

3. These sets satisfy the condition Pk+1 D Pk n H2, for a half space H.C defined by a

hyperplane Hk.

4. We choose the set Po so that it contains the set K and has a volume no more than

2n(2L+l)

Definition 10 . 4 sequence of points {x}k=o C Rn is a sequence of centers of the "nice"

sets {Pk}k=o if

1. x k E interior(Pk).

2. Pk 2 Pk-1 n Hk_1 = Pk-1 n {x E R :· c _ c 1 xk- l } for a given vector ck-1.

3. vol(Pk) < b(n)vol(Pk_1), or vol(Pk) < [b(n)]k2n(2L+l) for a function b(n),

0 < b(n) < 1, of the number n of the problem variables.

These conditions ensure that the algorithm makes sufficiently deep cuts of the "nice"

sets at each iteration, and so produces a substantial reduction in their volumes.

To initiate this algorithm, one possibility is to choose Po as a simplex Po = {x E

Rn: Eil xi < n2L, xi > -2L, i = 1, ... ,n}. In this case, Po C S(0, n2L) whose volume

is no more than nn2nL2n = 2 nL+n+nlogn < 2 2nL+n

We are now ready to describe the general geometric framework for solving the VIP in

polynomial-time.

THE GENERAL GEOMETRIC FRAMEWORK

ITERATION 0:

Start by constructing an initial "nice" set Po D K 0 = K. Find its center x °0. Set k = 1.

ITERATION k:

Part a: (Feasibility cut: cut toward a feasible solution.)

If x k - 1 E K, then go to part b.

15

If xk - I , K, then choose a hyperplane through xk- 1 that supports K (that is, one halfspace

defined by the hyperplane contains K) .

An oracle returns a vector c for which: ctx > ctx k - 1 for all x E K.

Update the "nice" set Pk-1 by constructing a new "nice" set:

Pk D Pk-l n {x E R ' : ctx > ctxk - l} and the set Kk := Kk-1. Find the center xk of Pk.

Set k - k + 1 and go to iteration k.

Part b: (Optimality cut: cut towards an optimal solution).

Let c = -f(x k- l) and set Kk = Kk-1 n {x E Rn : CtX > ctk-l}. Construct the new "nice"

set Pk D Pk-1 n { E R n : ctx > ctxk - l} and find its center xk. Set k k + 1 and repeat

iteration k.

STOP in k* = O(nL1) iterations of the algorithm. Find an -near optimal solution

y(i) to the problem minyEKf(xi)t(y - xi). The proposed solution to the VIP is x* =
2

with j = argmaxiEOc(k,)[f(xi)t(y i) - xi)].

As we will see in Section 5, within k* iterations, this geometric algorithm will determine

that one of the points xi for i E OC(k*) is an e-near optimal solution. To ascertain which

of these ponts is a near optimal solution, we need to solve a series of optimization problems,

namely, for each i E OC(k*), find an -near optimal solution to minyeKf (Xi)t(y- xi).

That is, we need to be able to (approximately) optimize a linear objective function over the

convex set K. Since this problem is also a variational inequality problem with a constant

f(x i) as a problem function, we can apply the geometric algorithm to it as well. In this

special case, as we will show, it is easy to determine an -near optimal solution: it is the

point yk(i) from the points yJ for j E OC(k(i)) that has the minimum value of f(xi)tyj.

Alternatively, we can apply a stopping criterion at each iteration and terminate the

algorithm earlier. We check whether

maziEc(ki)[(f(x) ()t (i) - i)J) >

Then the general framework terminates with the knowledge that one of the points xi is an

e-near optimal solution. in at most k* = O(- L) iterations. We will establish this result

16

in Theorem 5.1 and Theorem 5.2.

In Section 5 we show that if the problem function f satisfies the strong-f-monotonicity

condition, then the point x* is indeed a near optimal solution.

To help in understanding this general geometric framework, in Figure 1 we illustrate

one of its iterations.

Figure 1: The general geometric framework

4 Assumptions for convergence of the general framework

to a near optimal solution

In this section we analyze assumptions Al and A2 that we introduced in Section 2 and

that we impose on the variational inequality problem in order to prove convergence of the

general framework (and its four special cases) and establish complexity results. We intend

to show that these assumptions are quite weak. For convenience, we repeat the statement

of these assumptions.

Al. The feasible set K is a convex, compact subset of R n , with a nonempty interior.

(Therefore for some positive constants L and 1, K C S(O, 2L) and K contains a ball of radius

2- 1. These constants are given as an input with the feasible set. We assume L > logn + 3).

17

A2. The function f : K C Rn _ Rn of VI(f, K) is a nonzero continuous function,

satisfying the strong-f-monotonicity condition: There exists a positive constant a > 0 for

which

[f(x) - f(y)]t[x - y] > allf(x) - f(y)112 Vx, y E K.

Assumptions Al and A2 guarantee that the general geometric framework is (globally)

convergent to a VIP optimal solution. Moreover, these assumptions enable us to prove

complexity results for the VIP. Namely, the geometric framework that we introduced in

Section 3 (including, as special cases, variational inequality versions of the four algorithms

we have mentioned) computes an e-near optimal VIP solution in a polynomial number of

iterations.

We now examine the implications of these assumptions.

1. Compactness and Continuity

If the problem function f is continuous on the compact feasible set K, then Weier-

strass' Theorem implies that f is also a uniformly bounded function on K, i.e.,

Ilf(x)ll = 11f(x)112 < M. We need an estimate of the constant M for the complexity

results we develop. Let I1.11 denote the operator norm defined as Iffl = supXfo f

Since by assumption, K is a bounded set (included in a ball of radius 2 L centered at

the origin), the operator norm inequality implies that If(x) II for x E K is, in general,

uniformly boundedby the constant M = f112 L. When f(x) = c, the VIP becomes an

LP problem with M = WIcll. For affine VIPs with f(x) = Qx - c, M = IIQ112L + Ilctl.

2. Nonempty Interior and Boundedness of the set K

Let z E K and let R be a given positive constant. For the convergence results we

introduce next, we need to estimate the volume of the set S(x ° pt, R) n K. The lemma

we present next gives us the estimate

vol[S(xaPt , R) n K] > (n2L+t+)"
n2L+Il

18

LEMMA 4.1:

Let K be a convex set that (i) is contained in a ball of radius 2L about the origin, and

(ii) contains a ball S' of radius 2-'. Then if B is a ball of radius R < 2 L+1 about any

point P in K (i.e., B = S(P, R)),

vol[B n K] > (2L+R+)n.

Proof:

Since K is contained in a ball of radius 2L about the origin, the ball S(P, 2 L+1) must

contain the set S'. Let A = R and consider the one-to-one transformation T of S'

defined by

y = T(y') = Ay'+ (1 - A)P for any y' E S'.

Let z' be the center of the ball S' and z = T(z'). Note that for any y E S = T(S'),

IlY - zl[= IIA(y' - z')ll = IIIly' - z'll.

Therefore, Ily - zil < A2- l if and only if Ily' - z'fl < 2-1 and so S = T(S') is a ball

with radius A2- 1 about z = T(z'). Note further that if y E S, then

ly - pll = IlA(y' - P)II < A(2L + 1) = R.

So S C B. Moreover, by convexity, S C K. Consequently,

vol[B n K] = vol(S(P, R) n K) > vol(S) > [A2-]nn-n > (2)n.

Q.E.D.

3. Monotonicity

When the function f is a monotone, continuous function (which assumption A2 im-

plies) and the feasible set K is a convex, closed set (assumption Al), then the following

problem formulations are equivalent:

19

a. Find xop t E K C R : f(xopt)t(x - XOpt) 0, Vx E K VI(f, K).

b. Find X opt E K C R n : f(x)t(x - xOpt) > 0, Vx E K

(See Auslender [1]).

4. Asymmetry

The general framework applies to asymmetric VPs. We do not assume that the

Jacobian matrix Vf exists, or that if it does, that it is symmetric.

5. Strong-f-monotonicity

Let us now examine the condition of strong-f-monotonicity, introduced in assumption

A2.

Definition 11 . The generalized inverse f-1 of a problem function f is the point to

set map

f-l: f(K) C R 2K,

defined by f-'(X) ={x K: f(x) =X}.

Definition 12 . A point to set map g: R - 2Rn is strongly monotone if for every

x E g-'(X) and y E g-l(Y) there is a constant a > 0 satisfying,

(x - y) t (X - Y) > alX - yll2I

Proposition 4.1:

The problem function f is strongly-f-monotone, if and only if its generalized inverse

f- 1 is strongly monotone in f(K).

Proof:

If x E f-l(X) and y E f-'(Y) then f(x) = X, f(y) = Y, and the strong-f-

monotonicity condition

[f(x) - f(y)]t [x - yj > af(x) - f(y)l12, Vx,y i K

20

[x - yJt [X - Y] > allX - YlI, VX,Y E f(K),

which coincides with the strong monotonicity condition on the generalized inverse

function f-l. Q.E.D.

Gabay [5] used strong monotonicity of f - and Tseng [281 referred to this concept as

co-coercivity.

We now examine the relationship between strong-f-monotonicity and strict, strong

and usual monotonicity.

Proposition 4.2:

a. If f is a strongly monotone and Lipschitz continuous function, then f is strongly-

f-monotone.

b. If f is a one-to-one and strongly-f-monotone function, then f is also strictly mono-

tone.

c. If f is a strongly-f-monotone function, then f is a monotone function.

Proof:

a. The function f is strongly monotone when

3b > 0 such that: [f(x) - f(y)]t[x -y] > bllx - Yll Vx, y 2 K.

The function f is Lipschitz continuous when

3C > 0 such that: lf(x) - f(Y) 112 < Clx - Yl12 Vx, y E K.

Combining these conditions, we see that

[f(x) - f(y)]t[x - y > bllx - y2 C2 x- y2
b
- ilf(x) - f(y) Il22'

21

becomes

So we conclude that f is strongly-f-monotone with a defining constant a = b > 0.

b. When f is a one-to-one function f(x) f(y) whenever x y. Then the strong-f-

monotonicity property implies that

[f(x) - f(y)]t[x - y] > allf(x) - f()112 > 0 Vx,y E K, with x # y.

So [f(x) - f(y)lt[x - y > 0 Vx, y E K, with x y which implies that f is strictly

monotone.

c. Strong-f-monotonicity property implies that

[f(x) - f(y)]'[x - yl > alf/(x) - f(Y)112 > Vx, y E K.

So [f(x) - f(y)]t[x - yj > 0 Vx. y E K and, therefore, f is monotone. Q.E.D.

Next we show how we can determine whether function f satisfies the strong-f-monotonicity

property. We then illustrate this result on some specific examples.

Proposition 4.3:

When the Jacobian matrix of f satisfies the property that

Vf(x)t - aVf(x')tVf(y') is a positive semidefinite matrix Vx', y' E K and for some

constant a > 0, then f is a strongly-f-monotone function.

The converse is also true in the following sense, on an open, convex subset Do C K of

the feasible set K, for each point x' E Do, for some point y' E Do and constant a > 0,

Vf(x)t - aVf(x')tVf(y') is a positive semidefinite matrix.

Proof:

Let J: [0, 1] -+ R be defined as:

0(t) = [f(tx + (1 - t)y)]t[(x - y) - a(f(x) - f(y))].

When applied to the function , the mean value theorem, that is,

3t E [0, 1 such that: (1) - (0) = d(tt=
dt

22

implies that

[f(x) - f(y)]'t [x-y] -a lf(x) -f(y)ll2 = (x-y)t[Vf(x')] t [(x-y)-a(f(x)- f(y))] (3)

with x' = t'x + (1 - t')y.

Now define 01 : [0, 1 -| R as

0l(t) = (x - y) t [Vf(x')]t[(tx + (1 - t)y) - a(f(tx + (1 - t)y)).

When applied to the function 1, the mean value theorem states that

3t" E [0,1] such that: 51(1) - 01(0) = d- t=t

and so, when combined with (3),

[f(x) - f(y)lt[x - yJ - allf(x) - f(y)2 =

= (x - y) t[Vf(x')]t[(x - y) - a(f(x) - f(y))] = (x - y) t [Vf(x')]t [I - aVf(y')(x - y),

with y' = t"x + (1 - t")y.

The last expression implies that if [Vf(x)t[I - aVf(y') is a positive semidefinite

matrix, for some a > 0, then f is strongly-f-monotone.
,, ,,

If f is a strongly-f-monotone function then, as shown above, for some a > 0 and for

all x, y E Do C K

[f(zx) - f(y)] t [- y] - allf(z) - f(y)[2 =

(x - y) t[Vf(z')lt[(x - y) - a(f(x) - f(y))] =

(with x' = t'x + (- t')y for some t' E [0, 1])

(x - y)t[Vf(x') t [I - aVf(y')](x - y) > 0,

with y' = t"x + (1 - t")y for some t" [0, 11.

Since x, y - Do, which is an open, convex set, we conclude that for each point x' E Do,

23

some point y' E Do and some constant a > 0 satisfies the condition that [Vf(x')]tI -

aVf(y')l is a positive semidefinite matrix. Q.E.D.

Remark:

Note that if [Vf(x')]t[I - aVf(y')] is positive definite, then f is "strictly" strongly-f-

monotone, that is, whenever f(x) # f(y)

[f(x) - f(y)]t[x - y] > allf(x) - f(y)l2.

EXAMPLES:

(a) The linear programming problem:

minxEK ctx, defined over a polytope K, trivially satisfies the strong-f-monotonicity

condition. As we have noted, LP problems can be viewed as variational inequal-

ity problems with f(x) = c. The problem satisfies the strong-f-monotonicity

condition since

0 = (c - c)t(x - y) > allc - 2 = 0,

for all constants a > 0 (therefore we could choose a = 1). LP problems do not

satisfy strong or strict monotonicity properties.

(b) The affine variational inequality problem:

In this case

f(x) = Mx - c

the condition of Proposition 4.3 becomes:

check whether for some a > 0, the matrix

Vf(x)t - aVf(x')tVf (y') = Mt - aMtM,

is positive semidefinite.

g, 0 ... 0
X1 e1

(c) Let f(x) = 0 2 .' + ' | for some constants gi and ci.

0 0 ... gn

24

Then Vf =

gl 0 ... 0

o g2 ... 0

O O0 ... gn

and Vft(I - aVf) =

gi - ag,

0

0

0

g2 - ag2

0

... 0

0

.n.. gn- a
If gi > O, for i=1,2,...n and a < a 1 g, then Vf is a positive semidefinite

matrix.

If gi = 0 for every i = 1...., n, then Vft(I - aVf) = O, which is (trivially) a

positive semidefinite matrix.

0 0 0 x 1

0 2 1 2 + 1 .

0 2 X3 3
This function f does not satisfy strict or strong monotonicity assumptions.

000

result is easy to check since the Jacobian matrix Vf = 0 2 1 is not po

002

This

)sitive

definite (the first row is all zeros). Nevertheless the matrix

Vft(I - aVf) = I 0 0 0

0 2 - 4a -2a is positive

0 1-2a 2-5a

semidefinite for all 0 < a <

1/4. Therefore, the problem function f satisfies strong-f-monotonicity.

Remark: Further characterizations of the strong-f-monotonicity condition can be found in

[17], [181 and [19].

25

(d)

5 Complexity and convergence analysis of the general geo-

metric framework

In this section we show that the general geometric framework we introduced in Section 3,

and the four special cases that we examine in Section 5.3, converge to an e-near optimal

solution (see Definitions 8 and 6) in O(- -) iterations. Furthermore, when the volumes

of the "nice" sets decrease at a rate b(n) = 0(2-po-r), the framework converges in a

polynomial number of iterations, in terms of L 1 and n.

5.1 Complexity analysis for the general geometric framework

We begin our analysis by establishing a complexity result for the general framework.

THEOREM 5.1.:

Let L 1 = 4L + I + log(w). After (-) iterations, the volume of the "nice" sets Pk

is no more than 2 -nL

Proof:

Since voIPk < b(n)volPk_l, voIPk < (b(n))kvolPo , where 0 < b(n) < 1.

Moreover, volPo < 2n(2L+1).

Consequently, volPk < [b(n)]k2n(2L+1) = 2 klogb(n)+2nL+n

Therefore in k* = O(- L) iterations, with L 1 = 4L + I + log(M),

volPk. < 2- L

Q.E.D.

In Theorem 5.2 we will show that in at most k* = O(-T L) iterations when the vol-

ume of the set Pk is no more than 2
-nL at least one of the points xj, for j E OC(k*)

k(i)
is an -near optimal solution. Using this fact, in Theorem 5.3, we show that if yi)

2is an 2-near optimal solution of minxEKf(xi)t (x- xi), then the point x i satisfying j =

argmnaxiEoc(k*) [f(xi)t(yTI(i) - xi)] is an 6-near optimal solution.

Remarks:

1. Since 0 < b(n) < 1 implies that logb(n) < logl = 0, -ogn > 0, so it makes sense to

26

write k = o(-o b) since this quantity is positive.

2. In order for any realization of the general geometric framework to be a polynomial

algorithm, we need the volumes of the nice sets to decrease at a rate b(n) = 0(2- p(n)

for some polynomial function pol(n) of n. Then 0(-I) = O(pol(n)L-), with

L 1 = 4L + I + log(x). Within O(pol(n)L1) iterations the volume of Pk becomes no

more than 2
-nLi (this is true because when b(n) = 0(2-Po n), log b(n) = -(r)

implying that pol(n) = -(logn)) so k* = O(pol(n)LI)).

5.2 The general convergence theorem

We prove the general convergence theorem for problems that satisfy assumptions Al and

A2. We first show that within at most k* = (-1o-) iterations at least one point

x* = x j , j OC(k*), solves the VIP. This point also satisfies the property that

0 < f(x*)t(x* - pt) < Y. (4)

We define y1 /2 as - +, with d = (2L+2)1/2. Therefore -y depends on the nearness

constant , the strong-f-monotonicity constant a, and the constant L. We first establish an

underlying lemma and proposition.

LEMMA 5.1:

Suppose the variational inequality VI(f, K) satisfies assumptions Al and A2. If

f(zk)'t(xk - ° Pt) > y

y > 0, then

S(x',M) n K C {x E K: f(k)t(k _ x) > 0}.

Proof:

If x E S(x °pt, A) K, then

x EK and lx- x°Pt l < -
M

27

Since xk E K and f(xk)t(xk _ XApt) > y by assumption, the uniform boundedness of f and

Cauchy's inequality imply that

f(xk)t(xk _ x) = f(xk)t(xk - xOPt) + f(xk)t(xPt - x) >

_lf(Xk) lll : _ zOpt >M =
- If k I - f x x° tI > - M~= y - Y = 0.

Consequently, x E {x E K f(xk)t(xk _) > 0}. Therefore, any point in S(X °Pt, M) K

also belongs to x E K : f(xk)t(xk - x) > 0}. Q.E.D.

Proposition 5.1:

Suppose the variational inequality problem VI(f, K) satisfies assumptions Al and A2. Let

xOpt be an optimal solution of VIf(f, K). The general framework computes at least one point
x* E K (encountered within at most k* = O(->) iterations of the general framework)

that satisfies the following inequality

o < f(z*)t(zx* - xOpt) < % (5)

In this expression 1/ 2 = , e is a small positive constant, and 3 = (2 2)1/ 2 .

Remark:

Note that if 32 > 2e, then < -y/2 < To establish this result, we multiply the

numerator and denominator of the expression defining 71/ 2 by 3 + Ir/2 + 2e, giving

71/2 = e

Since 2e > 0, 2e < 32 and 1 + v2' < 3, this expression implies the asserted bounds.

Proof:

In Theorem 5.1 we showed that within k* = O(-1 L)) iterations the volume of Pk-logb(n)) i ro t he v leoP

is no more than 2
- nL1 . Therefore, the general framework encounters at least one point xj

that lies in K (we have performed at least one optimality cut) since the VIP has a feasible

solution (see assumption Al).

Assume that within k* = °(- 1,g()) iterations of the general framework, each point

xj , j E OC(k*) satisfies the property

f(xJ)t(X j _xapt) > Y/ for all j OC(k*).

28

The construction of the nice sets Pk, implies that njEoc(k){ E K : f(xj)t(xj - x) >

0} C Pk. In the final iteration of the algorithm, the set Pk. has volume no more than 2 -nL1

(see Theorem 5.1), so the set njEoc(k*){x E K f(xJ)t(xj - x) > O} has volume at most

2-nL. This result and Lemma 5.1 implies that:

S(xQzt,) n K . njEoc(k*){X E K: f(xi)t(xi - x) > O} C Pk..

Note that njEoc(k){X E K: f(xj)t(x j - x) > 0} C Pk because each Pk is defined by both

optimality and feasibility cuts and each feasibility cut contains K. Thus

S(xPt, R) n K C Kk' C Pk.,

with fRt 7 > = M2 L±2. So the set S(XoPt, 9ME22L+ 2) n K is contained in Pk*.

Moreover, since L 1 = 4L + I + log('-), the final set Pk has volume at most 2 -nL =

2 -n[4L++lIog(-)] But as shown in Lemma 4.1, since R < 2L+1,

R
vol[S(x° pt, R) n K] > (n2+1+ 1)

Therefore, the volume of S(xoPt, R) n K is at least

2 -nlogn+nlogR-n(L+l+ 1) > 2 -nlogn-n(1+L+1)-2n-2nL-nlog(9)

But since the volume of Pk is at most 2 -n[4L+1+log(m)l and

2 -n(4L+)-nlog(_L) < 2-nlogn-n(L+l+1)-2nL-2n-nlog(9M)

the set S(xpt,) K is contained in Pk* , which, as shown above, has a smaller volume.

This contradiction shows that our initial assumption, that f(xi)t(xj - xPt) > y for all

j OC(k*) is untenable. So we conclude that in at most k = (- L) iterations, at

least one point xi = x* satisfies the condition

f(x*)t(x* - xzPt) <^1

Since x* E K, the equivalent VIP formulation implies that f(x*)t(x* - xa Pt) > O. There-

fore, 0 < f(x*)t(x* - x° Pt) < y. Q.E.D.

29

Now we are ready to prove the main convergence theorem.

THEOREM 5.2:

For variational inequality problems that satisfy assumptions Al and A2, within at most

k* = O(-l -)) iterations of the general framework, at least one of the points x for

j E OC(k*) is an -near optimal solution of VI(f, K). In the special case in which f(x) = c,

a constant, the point xi with i = argminjEOc(k)ctxj is an -near optimal solution.

In general, k* = O(pol(n)L 1) when b(n) = 0(2-poi -n) and so, in this case, the algorithm is

polynomial.

Remark: As we show in Tables II and III each of the algorithms that we consider in Section

5.3 satisfies the final condition of this theorem and, therefore, is polynomial.

Proof:

In Proposition 5.1, we have shown that the general framework determines that for some

O < j < k, the point x* = xj satisfies f(x*)t(x* - x Pt) < ?y with y'/2 = - + and2

3 = (2 L+)1/2. Moreover, since x pt is a VI(f, K) solution, x* E K, and the problem

function f satisfies the strong-f-monotonicity condition (assumption A2), we see that

a > f(x*)t(x* - pt) > [f(x*) - f(xOPt)]t[x* - x°P t] > allf(x*) - f(x°P
t)[[2 > 0.

So

Illf(x*) - f(XPt)l12 ()1/2 (6)a

Now observe that by adding and subtracting several terms, for all x E K

f (x*)t(x - *) =

[f(x*)-E(xPt)t[x-x*]+f(x°pt)t(x-xpt)+[f(x°pt)- f(x*)]t[xt-x*+f (x*)t(X°pt-x*).

The last summation has four terms:

(i) The first term

[f(x*) - f(x°Pt)lt[x - x*1 ' -llf(x*) - f(xapt)ll.llx - x*II,

30

by Cauchy's inequality.

(ii) The second term f(x°Pt)t(x - XQPt) > O Vx E K since xOp t solves VI(f, K).

(iii) The third term [f(xOpt) - f(x*)It[xOPt - x*] > 0 since strong-f-monotonicity implies

monotonicity (see Proposition 4.2c.).

(iv) The fourth term f(x*)t(x °Pt - x*) > -y from Proposition 5.1.

Putting these results together, we obtain:

Vx E K: f(x*)t(x - x*) > -lf(x*) - f(x°Pt)JJ.jx - x*11 - (7)

Definition 5 of L shows that K C S(O, 2L), which in turn implies that

IIx - x'* < 2L+. (8)

Combining inequalities (6), (7) and (8) shows that

Vx E K : f(x*)t(x - x*) > - - () 1/2
a

Setting = -(2 L+2)/ 2 and choosing ^ so that 0 < .1/ 2 _p+ , we see that

- (2a+ 2)1/2 =-2 . Q.E.D.

Note that we have shown that any point x j , j E OC(k*), that satisfies the condition

f(xj)t(x - x° Pt) < is an -near optimal solution. In the special case that f(x) is a

constant, i.e., f(x) = c, this condition becomes ctxi < -y + ctx °pt. Therefore, in this case if

we select x* as a point minimizing {ctxj : j OC(k*)}, then x* is an e/2-near optimal

solution.

Lovasz [15], using a somewhat different analysis, has considered the optimization of a

linear function over a convex set. Assuming that the separation problem could be solved

only approximately, he showed how to find an -near optimal, near feasible solution: that

is, the solution he generates is within e of the feasible solution and is within e of the optimal

objective value.

31

Theorem 5.2 shows that one of the points x i, i E OC(k*), is an -near optimal solution.

Except for the case in which f(x) is a constant, it does not, however, tell us which of these

points is the solution. How might we make this determination? The next result provides

an answer to this question.

THEOREM 5.3:

Let xi denote the points generated by the general framework in k = 0(-o() steps,

and let yk(i) be an -near optimal solution to the problem minyEKf(xi)t y. Then the point
2

x* = x j with

j = argmax{(iEc(k,)} f(xi)t (y i) _ x

is an e-near optimal solution to VIP.

Proof: In Theorem 5.2 we showed that if the general framework generates the points x i in

k = O(-onL) steps, then at least one point xi satisfies the condition f (xi)t(x - i) > -

for all x E K. Therefore, the point xi = x* with

j = argmax{iEoc(k*)}f(xi)t(y -i),
2

satisfies

f(xJ)t(y(
)

- xi
)

>_ (9)2
k(j)

Furthermore, since yi) is an I-near optimal solution to the problem minyEKf(xJ) ty then
2

f(xj)t(X - yk(i)) > -] Vx E K. (10)
2 2

Adding (9) and (10), we conclude that xj = xz with j = argmax{iEoc(k)}(xi)(y(i) x

is indeed an -near optimal solution, that is

f(xj)t(x-- j) > - Vx E K.

Q.E.D.

Remark:

When the Jacobian matrix of the variational inequality problem is symmetric, then some

corresponding objective function F satisfies VF = f. The VIP is now equivalent to the

32

nonlinear program minzEKF(x). Proposition 5.1 implies that for some 0 < j < k, the point

xz satisfies the inequality

VF(xj)t(xi - xOPt) = f(xJ)t(xj - xoPt) <

The convexity of the objective function F implies that

F(x j) - F(xPt) < VF(xJ)t (x' -_ xPt) <

Therefore,

miniEoc(k)F(xi) < F(x t) + y.

The point xz = argminieoc(k)F(x') is within y of the optimal solution, i.e.,

F(xJ) < F(x) + a Vx E K.

Note that in this case, the near optimal solution xi need not be the last iterate that the

algorithm generates.

5.3 Four geometric algorithms for the VIP

In closing our analysis, in this section we show how four algorithms for solving linear pro-

gramming and convex programming problems can also efficiently (i.e., in a polynomial

number of iterations) solve variational inequality problems and are special cases of the gen-

eral framework. In particular, we examine the method of centers of gravity, the ellipsoid

algorithm, the method of inscribed ellipsoids, and Vaidya's algorithm, as applied to the

VIP.

The method of centers of gravity for the VIP

The method of centers of gravity was first proposed for convex programming problems,

in 1965, by A. Ju. Levin (see [14]). In order to extend this algorithm to a VIP we use the

following definition:

33

Definition 13 . If K is a compact, convex set, with a nonempty interior, then its center

of gravity is the point:

X - fK ydy
fK dy

From a physical point of view, x represents the center of gravity of a mass uniformly

distributed over a body K.

For a general convex, compact set K, the center of gravity is difficult to compute: even

computing fK dy = vol(K) is difficult. Recently Dyer, Frieze and Kannan [4] proposed

a polynomial randomized algorithm for computing vol(K). If K is a simplex in R ' with

vertices x °, xl,..., xz, the center of gravity x is given by
°0 + 1 +... + n

_

n+1

We now extend the method of centers of gravity for the VIP.

Algorithm 1:

ITERATION 0:

Find the center of gravity x°0 of Po = K. Set k = 1.

ITERATION k:

Let k - -f(k-l). "Cut" through xkz- with a hyperplane Hk = {x E R : C x = C xk- l}

defining the halfspace Hk = {x E Rn: c4x > Cxk-1}. Set Pk = Pk-1 n Hk and find the

center of gravity xk of Pk. Set Kk = Pk. Set k +- k + 1 and continue.

STOP in

O(nL1) = O(n(4L + I) + nlog(29M))
ea

iterations of the algorithm.

If yk(i) is an 2-near optimal solution of minEKf(x)t(x - xi), the proposed solution is

x* = xj , with j = argmaxiEOc(k)[f(x)t(y(i - xi)J.

The ellipsoid algorithm for the VIP

We now extend the ellipsoid algorithm for the VIP. This algorithm was originally de-

veloped for linear programming problems by Leonid Khatchiyan in 1979. H.-J. Luthi has

34

studied the ellipsoid algorithm for solving strongly monotone variational inequality prob-

lems (see [16]). He showed that the ellipsoid algorithm, when applied to strongly monotone

VIPs, induces some subsequence that converges to the optimal solution (which in this case

is unique).

Algorithm 2:

ITERATION 0:

Start with x° = 0, Bo = n222LI, Ko = K, and an ellipsoid Po = {x E R h : (x -

O)t(Bo)-l(x - x°0) < 1}. Set k = 1.

ITERATION k:

Part a: (Feasibility cut: cut toward a feasible solution.)

If x k-1 E K then go to part b.

If x k -l K, then choose a hyperplane through xk- l that supports K (that is, one halfspace

defined by the hyperplane contains K).

An oracle returns a vector c satisfying the condition ctx > ctzk - l, Vx E K.

Set 'kC = It,(k-1 We update xk = x k- 1 I Bk-lc n2 [B 2 (Bk-lc)(Bk-lc)1 in+1 B, Bk ' n---- n+l ctBk-lc

Pk = {x E R' : (x - k)t(Bk)-l(x - k) < 1},

this new ellipsoid is centered at x k

Set k k + 1 and repeat iteration k.

Part b : (Optimality cut: cut towards an optimal solution)

Kk = '-1 n {x E R : (-f(xk-l))tx > (f(xk-1))txk-1}.

(We cut with the vector c = -f(xk-l)).

Then set x k = x k - l _ Bk-1
n+1l ctB c

Bk n2 k- _ 2 (Bk-lc)(Bk-lC) t

k fn7 Bk-- l n+l ctBkl

Pk {x E Rn : (xx _ k)t(Bk)-l(- xk) < 1}.

Set k - k + 1 and repeat iteration k.

STOP in

O(n2 L 1) = O(n2 (4L + 1) + n2log(2a))

iterations of the algorithm.

35

If yk(i) is an -near optimal solution of min Kf(xi) t (x - x i), the proposed solution is

x* = x j , with j = argmaxiEOc(k)[f(xi)t(yi X - xi)].
2

The method of inscribed ellipsoids for the VIP

We now extend the method of inscribed ellipsoids for the VIP. This algorithm was

originally developed for convex programming problems, in 1988, by Khatchiyan, Tarasov,

and Erlikh. In order to develop this algorithm for the VIP, we first state the following

definition:

Definition 14 . Let K be a convex body in R ' . Among the ellipsoids inscribed in K, there

exists a unique one of maximal volume (see Khatchiyan, Tarasov, and Erlikh, 12!). WVe

will call such an ellipsoid E* = Eat maximal for K and let vol(K) = max{volE: E is an

ellipsoid E C K} denote its volume as a function of K. We will refer to the center x* of

the maximal ellipsoid as the center of K.

Algorithm 3:

ITERATION 0:

Find the center x° of Po = K (see definition above). Set k = 1.

ITERATION k:

Set ck-l -f(xk-l). "Cut" through xk- l with a hyperplane Hk = {x E R : c_lx =

c_ x k 1}, defining a halfspace H. = {x E R n : c4_X > C_ 1 x k- 1}. Set Pk = Pk- n Hc

and find the center xk of Pk. Set Kk = Pk.

Set k -- k + 1 and repeat iteration k.

STOP in

O(nL 1) = O(n(4L +) + nlog(2 9M))
60,

iterations of the algorithm.

If yk(i) is an -near optimal solution of minxEKf(Xi) t (x - xi), the proposed solution is

x* = xi, with j = argmaxiEoc(k)[f(x)t(y - Xi)].

36

-~ ~ ~ _

Vaidya's algorithm for the VIP

Let P = {x E R : Ax > b} be a polyhedron defined by a matrix A E R Tm and a column

vector b E Rm . Let a be the ith row of matrix A. For any point x E Rn, the quantity

si = a x-bi denotes the "surplus" in the ith constraint. Let H(x) = =l a) denote

the Hessian matrix of the log-barrier function, which is the sum of minus the logarithm of

the surplus; that is, l (- log(atx - bi)).

Definition 15 . (Volumetric center):(Vaidya 29]) Assume P = {x E R n : Ax > b} is a

bounded polyhedron with a nonempty interior. Let F(x) = log(det H(x)). The volumetric

center w of the polytope P is a solution of the optimization problem minepF(x).

To further understand this definition and motivate Vaidya's algorithm for the VIP, we offer

the following remarks.

Remarks:

1. Let us see why we call w, as defined above, the "volumetric" center of polytope P.

If x E P, the ellipsoid E(H(x), x, 1) = {y E R n : (y - x)tH(x)(y - x) < 1} lies

within P. To establish this result, we argue as follows. If y E E(H(x), x, 1), then

(y - x)tH(x)(y - x) < 1. For all i = 1, 2, ... , m, (aa) is a positive definite matrix.
(ata ba)2

Substituting L=l O for H(x), we obtain

(Y _ X)t l _(y _ ,,) < Dy X)t (aiali (y-X)=
(Y t(ax - bi)2(- y-x)(ax - bi)2(Y - x) =

[a(y- X) 2 < 1, for i = 1, 2,...m.
j=1 (a~x - bi) 2

-

Then [at(y - x)12 < (atx - bi) 2 for i = 1, 2, ..., m , which implies that

(a y)22-2ayaix-(bi)
2 +2biaix < 0 for i = 1, 2, ... m and so (a y-bi)(a y +bi-2aix) <

0, i = 1, 2, ... , m. Now suppose that y , P; then aty < bi for some i = 1, 2, ... , m.

The previous inequality implies that ay + bi > 2atx. Since x P (so atx > bi), we

can conclude that ay > bi, contradicting the fact that aty < bi. So y E P.t I~~~~~~~~~I1 ~~ t J J~

37

We might view the ellipsoid E(H(x), x, 1), which is inscribed in P and is centered

at a point x E P, as a local quadratic approximation of P. Among all the ellipsoids

E(H(x), x, 1), Vx E P, we select the one that is the best approximation to P. There-

fore, we select the ellipsoid E(H(w), w, 1), w E P, that has the maximum volume. If

V, denotes the volume of the unit ball in R ' ,

vol(E(H(w),w, 1)) = (det H(x)) -lV,

(see Groetschel, Lovasz and Schrijver [6]). So the algorithm computes w by solving

the optimization problem

mazEp volE(H(x), x, 1) = maxEp [log(det H(x))-1/ 2 Vnj,

or equivalently, minxEp 1/2 log(det H(x)) = minxEp F(x).

Since a hyperplane through w divides E(H(w), w, 1) into two parts of equal volume

(E(H(w), w, 1) is a good inner approximation of polyhedron P), a hyperplane through

w also "approximately" divides P into two equal parts. Therefore, we obtain a good

rate of decrease of the volume.

2. Note that the definitions of the volumetric center of a polytope, Definition 15, and

of the center as defined in the method of inscribed ellipsoids (i.e. the center of its

maximal inscribed ellipsoid), Definition 14, are closely related. In the definition of

the volumetric center of a polytope, we consider a class of inscribed ellipsoids (the

local quadratic approximations to P), and select the one with the maximal volume,

its center is the volumetric center. On the other hand, in the method of inscribed

ellipsoids, we consider all the inscribed ellipsoids and select the one with the maximal

volume; its center is what we define then as "center".

3. The volumetric center is, in general, difficult to compute. Nevertheless, once we man-

age to compute the volumetric center of an "easy" polytope, we can then find an

"approximate" volumetric center of a subpolytope (of the original simplex), through

a sequence of Newton-type steps. Thus, although it is difficult to compute the exact

38

volumetric center of a polytope, it is much easier to compute its "approximate" volu-

metric center. A similar idea can be applied in the method of inscribed ellipsoids (see

L.G.Khatchiyan, S.P.Tarasov, I.I. Erlikh, [12]).

We now describe Vaidya's algorithm for the VIP.

Algorithm 4:

ITERATION 0:

Start with the simplex Po = {x E R ' : xj > -2L,j = 1, 2,..., n, =lxj < n2L}.

Set Ko = K C Po. Compute the volumetric center w ° of P0 and set it equal to x °. Set

k= l.

(REMARK: Any polytope, whose volumetric center is easy to compute, would be a good

choice here.)

ITERATION k:

Part a: (Feasibility cut: cut towards a feasible solution)

Let 6, e be small positive constants satisfying 6 < 10- 4 ,e < 10-36. Let Q(x) be an

approximation of V 2F(x), namely Q(x) = (El ai with i = (a -b)2) Let,s , i (alxza-bi)2

m(x) be the largest A for which V E R: tQ(x)~ > A tH(x)~. At the beginning of each

iteration, we have a point xk-1 satisfying the condition that

F(xk- 1) - F(wk- 1) < 4 m(wk-1).

Case 1: If minl<i<, ri(xk- l) > e, add a plane to the previous polytope Pk.-.

Call an oracle with the current point x k- l as its input.

If x k - l E K, then go to part b.

If xk - 1 0 K, then the oracle returns a vector c for which, for all x E K, ctx > ctxk - l

(The hyperplane through xk- l, defined by c, supports K).

Choose such that ctxk- > ,B and C(H(k-l)-lc_ = ()(ctk1~l~3). 2

39

Let A and b and set A , b _ b, Pk-l - {x E R n : Ax > b}.

We have now added a plane to the polytope. The volumetric center of the new polytope

will shift and so will its "approximate" volumetric center (we are computing "approximate"

volumetric centers throughout this algorithm). We now compute the new "approximate"

volumetric center via a sequence of Newton-type steps as follows:

Let x j-' = xk- l. For j = 1 to J = [30 log(2e-4 5)] (where [.1 denotes the integer part of

a number), do x j- '1 x j- 1 - 0.18Q(x-1)-lVFnw(xj-l). Let x - 1 = xk- 1.

Then set xk x k - l, Kk = Kk-1 and Pk - {x E R : Ax > b} as found above, set k - k + 1

and repeat iteration k.

Case 2: If minl<i<m ai(xk- l) < e, then remove a plane from Pk-1.

Without loss of generality, suppose that minl<i<m ai(xk - l) = ,m(Xk - l)

Let am = c, bm , A = [] andb= [j and set A A, b b, Pk_l- {x E Rn

Ax > b}. Since the volumetric center shifts, due to the removal of a plane, we will perform a

sequence of Newton-type steps to move closer to the new "approximate" volumetric center

as follows:

Let x j - 1 = k - 1 . For j = 1 to J = [30 log(4e- 3)], do x -' - x-1- 0.18Q(xj-l)- lVFnew (x-l)

Let xk- 1 = xJ-1

If x k- l E K, then set xk - x k- l, Kk = Kk-1 and Pk {x R n : Ax > b} as found above,

set k - k + 1 and repeat iteration k.

If x k -1 ~ K, then set xk - k - l , Kk = KI-l and Pk {x R n : Ax > b} as found above,

set k k + 1 and repeat iteration k.

Part b: (Optimality cut: cut towards an optimal solution)

Let c = -f(xk 1), define k-1 so that ctxk 1 > 3k-1 and (-k- (6E)k/_1) 2 S= et

Kk = Kk-1 n {x E Rn : (-f(Xk-l)tx > 3k-1}.

Let Pk = {x E R n : ctx > -I} n P-.

40

I I

In order to find the new "approximate" volumetric center of Pk, we execute the following

steps

Let xk = zj then for j = 1 to J = [30 log(2-4 5)], do xj xij - 0.18Q(xi)-lVFneW(xi).

Set xk = XJ .

STOP in

O(nL1) = O(n(4L +) + nlog(9))

iterations of the algorithm.

If yk(i) is an -near optimal solution of minEKf(xi)t(x - xi), the proposed solution is

x* = xi, with j = argmaxiOC(k)[f(xxi)t(y (i) -xi)]. Next we attempt to obtain a better

understanding of the four algorithms.

Remarks:

1. To select the proposed near optimal solution x* = xi, in all four algorithms we find an

2-near optimal solution of a linear objective optimization problem (which is solvable

in polynomial time as shown in the end of Subsection 5.2).

Alternatively, we can apply a stopping criterion at each iteration and terminate the

algorithms earlier. We check whether

maxiEO(k)[(f (xi)t(y() - xi)>) >.
'2 2

Then the algorithm terminates in at most k* = (-lob) iterations (the complexity

for each of the four algorithms is given explicitely in Tables II and III).

In Section 5.2 we have shown that if the problem function f satisfies the strong-f-

monotonicity condition, then the point x* is indeed a near optimal solution.

2. All the points xk generated by algorithms 1 and 3 are feasible, i.e., xk E K. This is

true because Pk = Pk-1 n Hk = (K n Ho n H~ n ... N H _l) n H C_ K, so the center

of gravity and the center of of the maximum inscribed ellipsoid xk of Pk respectively,

always lie in K. A drawback to algorithm 1 and 3 is that computing the center

of gravity and the center of of the maximum inscribed ellipsoid xk of an arbitrary

convex, compact body is relatively hard. As we mentioned, a randomized polynomial

41

algorithm (see [41) will find the center of gravity.

Algorithms 1 and 3 use no feasibility cut because the sequence of points xk (which are

centers of Pk) always lies in the feasible set K. Alternatively, we could have chosen an

initial set as P0 D K, the center, or an "approximate" center of which, would be easy

to compute. This center, would not necessarily lie in the feasible set K. Step k of

algorithms 1 and 3 would include "a feasibility cut" (as in algorithm 2, the ellipsoid).

We would "cut" P with the help of an oracle (as in part a of the ellipsoid algorithm)

so that the feasible set K belongs in the new set P1, and continue the algorithm by

moving to the new approximate center of this set P1 . When the center lies in K, we

would continue with Part b (the optimality cut), as described in step k of algorithms

1 and 3.

3. In a linear programming problem

MinEP ctx

the coefficient ck = -f(x k -1) = -c is a constant. Then the hyperplanes Hk = {x E

Rn: (-C)tx = (-C)tx k - l } that cut Pk always remain parallel. This way algorithms 1

always preserves the "shape" of Pk = Pk-l Hk. In other words if after the first cut

P1 is a simplex then so is Pk, k = 2, 3, ... As mentioned before, the center of gravity
k k k

of a simplex Pk, with vertices x , , is explicitly given by xk - _+ +..+,

This idea gives rise to the "method of simplices" introduced in 1982 by Levin and

Yamnitsky for solving the problem of finding a feasible point of a polytope. Using

the previous remark, we can use an implementation of this method to solve linear

programs (see Levin and Yamnitsky [31]).

The general geometric framework for the VIP and its four special cases described in this

section, choose at the kth iteration either a feasibility or an optimality cut so that the

volume of the "nice" set becomes smaller by a factor b(n). In Table II and III summarizes

the complexity results for the four algorithms and the general framework.

42

Table II: Reduction Lemmas.

Table III: Complexity results and reduction constants.

Proofs of the reduction inequalities can be found in B.S. Mityagin [21], Yudin and Ne-

mirovski [23], and Levin [14] for algorithm 1, Khatchiyan [11], Papadimitriou and Stei-

glitz [24], Nemhauser and Wolsey [22], and Vavasis [30] for algorithm 2, L.G.Khatchiyan,

S.P.Tarasov and I.I. Erlikh, [121 for algorithm 3 and, finally, in Vaidya [29] for algorithm 4.

More details on the complexity results for the four algorithms when applied to linear and

convex programs can be found in these references and, when applied to variational inequal-

ities, in [25].

Remarks:

1. Each iteration of algorithm 2 (the Ellipsoid Method for VIPs) requires O(n3 + T)

arithmetic operations (or O(n2 + T) operations using rank-one updates) because of

43

Algorithm Reduction Inequality

General framework vol(Pk+ l) < b(n)vol(Pk)

Method of centers of gravity vol(Pk+l) < vol(Pk)
1

Ellipsoid Method vol(Pk+1) < 2-2(-+1)vol(Pk)

Method of inscribed ellipsoids vol(Pk+1) < 0.843vol(Pk)

Vaidya's algorithm vol(Pk+) < const vol(Pk)

Algorithm Reduction Constant Complexity

General framework b(n) o(n in

Method of centers of gravity constant= e-1 O(nL1)

Ellipsoid Method 2 ° () = 2-2(n+) O(n2L)

Method of inscribed ellipsoids constant= 0.843 O(nL1)

Vaidya's algorithm constant O(nL1)

the matrix inversion, performed at each iteration and the cost T required to call an

oracle (that is, to solve the separation problem). Overall, the ellipsoid algorithm for

the variational inequality problem requires a total of 0(n5 L 1 + n2 L1T) operations (or

O(n4 L 1 + n 2L 1T) using rank-one updates).

2. Each iteration of algorithm 4 (Vaidya's algorithm) requires O(n3 + T) arithmetic

operations.

Consider the kth iteration:
(afH(x)-laj)(1) Since ai = (a(ix-)2 for 1 i < nk, and the number mk of constraints of Pk is

mk = O(n), we can evaluate ai in O(n3) arithmetic operations.

(2) Each iteration executes 0(1) Newton steps.

(3) At each Newton step, we need to evaluate

VF(x) =- m=1 ri(x), Q(x) = E=l ai() (ai a,. Consequently, if ai(x) for

i = 1, 2, ..., m are available, then we can evaluate VF(x), Q(x), Q(xz) - in O(n 3)

operations.

(4) The oracle is called once at each iteration and costs T operations.

(5) Computing 3 so that (H(k-)2 = (6)/ requires O(n3) operations.

As a result of (1)-(5), each iteration requires O(n3 + T) operations (or as in algorithm

2, O(n2 + T) using rank-one updates). Overall, Vaidya's algorithm for the variational

inequality problem requires a total of O(nLl(n3 + T)) = O(n 4L 1 + TnL1) arithmetic

operations (or O(n3 L 1 + TnL 1) using rank-one updates) .

3. The complexity of the algorithms we have considered in this paper depends on the

number of variables. Thus these algorithms are most efficient for problems with many

constraints. but few variables. Furthermore, the use of an oracle (which establishes

whether a given point lies in the feasible set or not) permits us to deal with problems

whose constraints are not explicitly given a priori.

4. The method of centers of gravity, the method of inscribed ellipsoids, and Vaidya's algo-

rithm have a better complexity (require fewer iterations) than the ellipsoid algorithm.

44

One intuitive explanation for this behavior is because when it adds a hyperplane

(characterized by a vector c, which is given either by an oracle or by c = -f(x)),

the ellipsoid algorithm generates a half ellipsoid which it immediately encloses in a

new ellipsoid, smaller than the original one. The subsequent iterations do not use

the vector c. Consequently, we lose a considerable amount of information, since the

ellipsoids involved at each iteration are only used in that iteration. On the other hand,

the other three algorithms use the sets involved at each iteration (polytopes, convex

sets) in subsequent iterations.

5. Vaidya's algorithm not only adds, but also eliminates hyperplanes from time to time.

This tactic provides a better complexity (i.e., O(nL,) number of iterations). If we

altered the algorithm so that it only added hyperplanes (i.e., we discard case 2), the

algorithm would require O(n2L2) iterations to decrease the volume of the polytopes

Pk to 2 -nL

6. From Theorem 5.1 and Tables II and III we conclude that the best complexity result we

can achieve with a geometric algorithm that fits in the general framework is O(nL1),

since the reduction constant b(n) can become at best a constant.

The analysis in this paper shows that the general geometric framework we introduced

for solving the VI(f, K) problem finds an -near optimal solution in polynomial number of

iterations. If we were not interested in examining whether the algorithm is polynomial, then

a similar analysis (without the assumption b(n) = 0(2-o-n-) would lead us to conclude

that some subsequence of the points {(k}=l 1 generated by the general geometric framework

converges to a VI(f, K) solution xOpt. The analysis would work under assumptions Al and

A2. The steps we would conduct for establishing this convergence analysis would be similar

to the ones we used, namely,

a. We would show that the volume of the nice sets Pk converges to zero (due to the rate

of decrease of volume: volPk b(n)volPk_l) using an analysis similar to Theorem 5.1.

b. We would show that the subsequence of {xkl}- converges to a point x* satisfyingk= lk--

45

the condition

f(x*)t(x* - xopt) = 0

(using an analysis similar to Lemma 5.1 and Proposition 5.1)

c. We would show that the point x* is indeed an optimal solution (using an analysis

similar to the one used in Theorem 5.2).

6 Conclusions and open questions

In this paper we considered the variational inequality problem VI(f, K):

Find x pt E K C Rn : f (xpt)t(x- x p t) > 0, Vx E K

defined by a problem function f : K C R - Rn.

We viewed linear programming problems as variational inequalities VI(c, P):

xz p t E P C Rn : ct(x - xzpt) > 0, Vx E P,

defined by a constant problem function f(x) = c and by a polyhedral ground set P. We

developed theoretically efficient algorithms for solving the VI(f, K) problem by extending

theoretically efficient algorithms for linear programming problems. Moreover, we unified

these algorithms in a general geometric framework by exploiting the common geometric

characteristics of these algorithms. We introduced complexity results and the notion of

polynomiality for the VI(f, K) problem. The question we addressed here was: can we

find a "near" optimal solution in "polynomial-time". The convergence analysis used the

condition of strong-f-monotonicity, which is weaker than strict and strong monotonicity.

Linear programs satisfy this new assumption, so the general geometric framework introduced

in this paper also applies to linear programs.

We now address some open questions:

1. In the four geometric algorithms, as well as in the general framework,

can we relax the stopping criterion?

46

Currently, the algorithm would terminate in at most k = O(-og') iterations when
maxi~~~oc~k)[f~~x)(ye) r~'"~1 ->'~

maxiEOc(k) [f(xi)t(y,! (- xi)] >-.

2In this expression, yke(i) is an 2-near optimal solution of the linear optimization problem
minxK[f(xi) t (x - xi)]. Verifying this criterion requires that we find an -near optimal

solution of a linear optimization problem at the end of each iteration which, as we have

shown, is solvable in polynomial-time.

Can we use a stopping criterion that is easier to check ?

2. Can we relax the definition of the center of a nice set further?

Can we replace condition 3, volPk b(n)volPk_l, by a condition that would imply the

conclusion of Theorem 5.2.

3. Can we define new types of "nice" sets and their corresponding centers so that we would

design new geometric algorithms for solving VIP as well as LP problems? These new al-

gorithms would also be special cases of the general geometric framework.

Acknowledgments: We are grateful to Robert Freund for several suggestions that

improved the technical content of this paper and to a referee whose probing questions helped

us to improve and clarify several points. The second author also wishes to acknowledge the

Applied Mathematics Department at Brown University. Part of this work was completed

while she was a student there.

References

[1] A. Auslender (1976), Optimisation: Methodes Numeriques, Mason, Paris.

[2] C. Baiocchi and A. Capelo (1984), Variational and Quasivariational Inequalities: Ap-

plication to Free Boundary Problems, Wiley, New York.

[31 R.G. Bland, D. Goldfarb and M. Todd, (1981), "The ellipsoid method: A survey",

Operations Research, 29, 1039-1091.

47

_ _1111__1____11__1____

[4] MH. Dyer, A. Friesz and R. Kannan (1989), "A random polynomial time algorithm for

approximating the volume of convex bodies", Proc. 21st Annual ACM Symposium on

Theory of Computing, 375-381 (full paper will appear in J. ACM).

[5] D. Gabay (1983), "Applications of the method of multipliers to variational inequali-

ties", in M. Fortin, R. Glowinski, eds., Augmented Lagrangian Methods: Applications

to the Numerical Solution of Boundary-Value Problems, North-Holland, Amsterdam.

[61 M. Groetschel, L. Lovasz and A. Schrijver (1988), Geometric Algorithms and Combi-

natorial Optimization, Springer-Verlag, Berlin.

[7] J.H. Hammond (1984), Solving Asymmetric Variational Inequality Problems and Sys-

tems of Equations with Generalized Nonlinear Programming Algorithms, Ph.D. disser-

tation, Department of Mathematics, M.I.T., Cambridge M.A.

[8] J.H. Hammond and T.L. Magnanti (1987), "Generalized descent methods for asym-

metric systems of equations", Mathematics of Operations Research, 12, 678-699.

[9] J.H. Hammond and T.L. Magnanti (1987), "A contracting ellipsoid method for varia-

tional inequality problems", Working paper OR, 160-87, Operations Research Center,

M.I.T.

[101 P.T. Harker and J-S Pang (1990), "Finite-dimensional variational inequality and non-

linear complementarity problems: a survey of theory, algorithms and applications",

Mathematical Programming, 48, 161-220.

[11] L.G. Khatchyian (1979), "A polynomial algorithm in linear programming", Doklady

Akad. Nauk USSR, 244, 1093-1096. Translated as Soviet Math. Doklady, 20, 191-194.

[12] L.G. Khatchyian, S.P. Tarasov, and I.I. Erlikh (1988), "The method of Inscribed El-

lipsoids", Soviet Math. Doklady, vol 37, no 1, 226-230.

[13] D. Kinderlehrer and G. Stampacchia, (1980), An introduction to variational inequalities

and their application, Academic Press, New York.

48

*� I_ ___ __�

[141 A.L. Levin (1965), "On an algorithm for the minimization of convex functions", Dok-

lady Akad. Nauk USSR, 160, 1244-1247. Translated as Soviet Math. Doklady, 6, 286-

290.

[15] L. Lovasz (1986) An algorithmic theory of numbers, graphs and convexity, CBMS-NSF

Regional Conference Series in Applied Mathematics, Society for Industrial and Applied

Mathematics, Philadelphia, Pennsylvania.

[161 H.-J. Luthi (1985), "On the solution of variational inequalities by the ellipsoid method",

Mathematics of Operations Research, 10, 515-522.

[17] T.L. Magnanti and G. Perakis (1993), "On the convergence of classical variational

inequality algorithms", Working paper OR 280-93, Operations Research Center, M.I.T.

[18] T.L. Magnanti and G. Perakis (1993), "Convergence conditions for variational inequal-

ity algorithms", Working paper OR 282-93, Operations Research Center, M.I.T.

[19] P. Marcotte and D. Zhu (1993), "Co-coercivity and its role in the convergence of iter-

ative schemes for solving variational inequalities", Centre de Recherche sur les Trans-

ports, Universite de Montreal, preprint.

[201 M. Minoux (1986), Mathematical programming: theory and algorithms, Wiley, New

York.

[21] B.S. Mityagin (1969), "Two inequalities for the volume of convex bodies", Mathematical

notes of the Academy of Sciences USSR, 5, No 1, 61-64, Plenum, New York.

[22] G.L. Nemhauser and L. Wolsey (1988), Integer and combinatorial optimization, Wiley,

New York.

[23] A.S. Nemirovski and D.B. Yudin (1983), Problem complexity and method efficiency in

optimization, Wiley.

[24] C.H. Papadimitriou and K. Steiglitz, (1982), Combinatorial Optimization: Algorithms

and Complexity, Prentice-Hall, New Jersey.

49

[25] G. Perakis (1992), Geometric, interior point, and classical methods for solving finite

dimensional variational inequality problems, Ph.D. dissertation, Department of Applied

Mathematics, Brown University, Providence R.I.

[26] N.Z. Shor (1977), "Cut off methods with space extension in convex programming prob-

lems", Cybernetics, 13, 94-96.

[27] N.Z. Shor (1977), "New development trends in nondifferential optimization", Cyber-

netics, 13, 881-886.

[28] P. Tseng (1990), "Further applications of a matrix splitting algorithm to decomposition

in variational inequalities and convex programming", Mathematical Programming, 48.

249-264.

[29] P.M. Vaidya (1990), "A new algorithm for minimizing convex functions over convex

sets", Preprint, AT&T Bell Labs., Murray Hill, New Jersey.

[30] S. Vavasis (1992) Nonlinear optimization; Complexity issues, Oxford Science Publica-

tion, New York.

[31] B. Yamnitsky and L.A. Levin (1982), "An old linear programming algorithm runs in

polynomial time", Proceedings of IEEE, 327-328.

50

_ ·I_

