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Abstract

In this paper, we establish global convergence results for projection and

relaxation algorithms for solving variational inequality problems, and for the

Frank-Wolfe algorithm for solving convex optimization problems defined over

general convex sets. The analysis rests upon the condition of f-monotonicity,

which we introduced in a previous paper, and which is weaker than the tradi-

tional strong monotonicity condition. As part of our development, we provide

a new interpretation of a norm condition typically used for establishing conver-

gence of linearization schemes. Applications of our results arize in uncongested

as well as congested transportation networks.
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1 Introduction

In this paper we consider the variational inequality problem

VI(f, K) : Find xOp t E K C R' : f(xoPt)t(x - 1xpt) > 0, VxE K, (1)

defined over a compact, convex (constraint) set K in R n . In this formulation

f : K C Rn - Rn is a given function and x ° p t denotes an (optimal) solution of the

problem. Variational inequality theory provides a natural framework for unifying

the treatment of equilibrium problems encountered in problem areas as diverse as

economics, game theory, transportation science, and regional science. Variational

inequality problems also encompass a wide range of generic problem areas including

mathematical optimization problems, complementarity problems, and fixed point

problems.

Let MIN(F, K) denote an optimization problem with an objective function

F(x) and constraints x E K. The function f(x) of the variational inequality prob-

lem VI(f, K) associated with the minimization problem MIN(F, K) is defined by

f(x) = F(x). As is well-known, a variational inequality problem VI(f, K) is

equivalent to a (strictly) convex nonlinear programming problem MIN(F, K) (that

is they have the same set of solutions) if and only if the Jacobian matrix of the

problem function f is a symmetric and positive semidefinite (definite) matrix.

The literature contains a substantial number of algorithms for the numerical

solution of the variational inequality problem. The Ph.D. thesis of Hammond [16]

and the review paper of Harker and Pang [19] summarize and categorize many

algorithms for the problem.

Projection and relaxation algorithms have been among the most popular, clas-

sical algorithms for solving the variational inequality problem (1). Goldstein [15],

and independently by Levitin and Polyak [34], first proposed projection algorithms

in the context of the nonlinear programming problem. Several authors, including

Sibony [35], Bakusinskii and Polyak [5], Auslender [2] and Dafermos [12], have stud-

ied projection algorithms for variational inequalities while Dafermos [10], Bertsekas
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and Gafni [6] and others have studies these algorithms for the traffic equilibrium

problem. The projection algorithms can be viewed as special cases of the lineariza-

tion algorithms developed by Chan and Pang [32] (for an affine problem function

f see also the contracting ellipsoid algorithm introduced by Hammond and Mag-

nanti [18]). Ahn and Hogan developed relaxation algorithms for solving economic

equilibrium problems (the PIE:: algorithm [1]) and Dafermos considered this algo-

rithmic approach for the general VIP, as well as the traffic equilibrium problem

[12], [11]. All these algorithms are special cases of a general iterative framework

developed by Dafermos [12]. Researchers have established the convergence of pro-

jection algorithms under the condition of strong monotonicity, and the convergence

of the linearization algorithms, and the generalized contracting ellipsoid methods

under a norm condition implying strong monotonicity. Relaxation algorithms con-

verge under a stronger norm condition that also implies strong monotonicity. All

these methods generate a sequence of points {xk}k=o in the feasible set K, whose

convergence to an optimal solution follows from a contraction estimate of the form:

IIxk+1 - XkllG < allXk - Xk-lllG, 0 < a < 1.

In this expression, Ill.lG denotes the fixed norm in R n induced by a symmetric,

positive definite matrix G as II11XG = (tGx)1 2 .

Another classical algorithm for solving convex programs is the Frank-Wolfe algo-

rithm. The Frank-Wolfe algorithm, when applied to convex programming problems

defined over polyhedra, is a linear approximation method that iteratively approxi-

mates the objective function F(x) by Fk(x) = F(xk) + vF(xk)t(x - xk). On the

(k+l)th iteration, the algorithm determines a vertex solution yk+1 to the linear

program

minxEK Fk (x),

and then chooses as the next iterate the point xk+ l, that minimizes the objective

function F over the line segment [xk; yk+l]. Frank and Wolfe [13] originally pro-

posed this algorithm for solving quadratic programming problems. The 1975 book
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of Martos [28] and the Ph.D. thesis of Hammond [16] illustrate the method's perfor-

mance on several examples and discuss its convergence properties. This algorithm

is particularly effective for solving large-scale traffic equilibrium problems; see [8],

[21], [14] for further details. In the context of the traffic equilibrium problem, the

linear programming component of the algorithm decomposes into a set of shortest

path problems, one for each origin-destination pair. Therefore, the Frank-Wolfe

algorithm applied in the traffic equilibrium example, first solves a set of shortest

path problems and then a one-dimensional minimization problem. The algorithm is

known to converge if the objective function F is pseudoconvex and the feasible set

K is a bounded polyhedron (see Martos [28]).

Our goal in this paper is to study the convergence behavior of these classical

algorithms. Our principal objective is to establish their convergence under assump-

tions on the given problem function f that are weaker than the existing ones (strong

monotonicity, the norm condition) or that extend the applicability of the algorithm

(to general convex sets for the Frank-Wolfe algorithm). We also want to establish

global convergence proofs for these algorithms that do not depend on the neigh-

borhood in which we initiate the algorithms. In our convergence proofs we obtain

nonexpansive estimates (rather than contractive one) of the form

IIXk+1 - XkllG _< jlEk - Xk-lllG.

We use an f-monotonicity condition on the problem function f, that we introduced

in [26] and [33]. We say that the problem function f is f-monotone if there exists a

positive constant a > 0 such that

[f(x)- f(y)]t [x- y] > aIIf(x)-f(Y)li2 Vx, y E K.

Finally, we want to provide a better understanding of existing conditions such as

Chan and Pang's norm condition, and show that there is some "equivalency" be-

tween this norm condition (imposed on the algorithm function) and the f-monotonicity

condition imposed on the problem function.
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This paper is organized as follows. In Section 2 we review some properties of

the f-monotonicity condition. We also show the relationship between this condi-

tion and the norm condition used by Chan and Pang for the convergence of the

linearization algorithms [32] and by Hammond and Magnanti for the convergence of

the generalized contracting ellipsoid algorithm [18]. In Section 3, we establish the

convergence of the sequence of averages induced by the projection algorithm for the

VIP (1), under the condition of f-monotonicity. To achieve this result, we use an

ergodic theorem for nonlinear nonexpansive maps due to Baillon [3]. Furthermore,

we show that every accumulation point of the projection algorithm sequence solves

the variational inequality problem, without a boundedness assumption imposed on

the feasible set K. In Section 4 we demonstrate the convergence of the sequence of

averages induced by the relaxation scheme for the VIP (1), under a suitable norm

condition. We again use Baillon's ergodic theorem. The results in Section 3 and

4 depart from the literature in two ways: (i) we obtain global convergence results,

and (ii) we impose weaker assumptions than those required in prior results. For re-

laxation algorithms, our convergence results are weaker than those in the literature,

however, since they apply to the sequence of averages rather than for the sequence

itself. In Section 5 we establish the convergence of the Frank-Wolfe algorithm for

convex optimization problems over arbitrary compact, convex sets, when the gra-

dient of the objective function satisfies the f-monotonicity condition. To the best

of our knowledge, this is the first convergence proof for the Frank-Wolfe algorithm

for general convex sets (instead of polyhedra). In Section 6 we examine applica-

tions of these results for equilibrium problems in congested as well as uncongested

transportation networks.

One motivation for this research is the desire to model and solve large transporta-

tion networks, in which some links are uncongested. Our condition of f-monotonicity

gives us this possibility, while strict and strong monotonicity do not. Moreover, we

show that if we impose the f-monotonicity condition on the link cost function then
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this condition applies to the path cost function as well. Therefore, the projection

algorithm can be applied directly in the space of path flows which is advantageous

because it is much easier to perform projection operations efficiently in the space

of path flows than in the space of link flows. Another main advantage of our de-

velopment is that linear programs, when modeled as variational inequalities, have

f-monotone problem functions. Therefore, our results apply to linear programs.

Finally, in Section 7, we offer some concluding remarks and raise some open

questions. To conclude these introductory remarks, we review some facts concerning

matrices.

Definition 1 . A positive definite and symmetric matrix S defines an inner product

(x, Y)s = xtSy. The inner product induces a norm with respect to the matrix S via

11lxls = x'Sx.

Recall that every positive definite matrix S has a square root, that is a matrix S1/2

satisfying Sl/2S1/2 = S. This inner product (x,y)s is related to the Euclidean

distance since

aIlls = (,X)1'/ 2 = (xtSx)1/2 = IIS1/2x112

This norm, in turn, induces an operator norm on any operator B. Namely,

JIBlls = sup IBxlls.
Ills=l1

The operator norms IIBIls and IBII IBII are related since

iBIls = sup lBxJls = sup llS/ 2Bx1I 2 =
Ilzlls=l lls'/2x12 =1

= sup llS1/ 2 BS-/2S' / 2 x112 = IIS 1/2 BS - 1/ 2 1.
lII/2 X112=1

So,

IIBuls = IIS1/ 2 BS - 1/ 211

and, similarly,

IBIJ = IIS- "12BS /2l ls.
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The argmin of a function F over a set IK is defined as

argmin=eKF(x) = y E {x': F(x') = min:EKF(x)}.

2 On the condition of f-monotonicity

2.1 Monotone functions

In the past, researchers have found several different forms of monotonicity to be

useful in developing underlying theory and analyzing algorithms for variational in-

equality problems. Table I shows five different definitions of monotonicity and a dif-

ferential condition for each situation (when the problem function f is differentiable).

Whenever the function satisfies any one of these definitions and f is differentiable,

f satisfies the corresponding differential condition. When the set K is open and f

is differentiable, each definition is equivalent to the corresponding differential con-

dition. For monotone, strictly monotone, and strongly monotone functions, these

results are standard (for example, see [31]); for f-monotone and strictly f-monotone

functions, the results are due to Magnanti and Perakis [26].

Type of monotonicity imposed upon Definition* Differential condition'

monotone on K If() - f(Y)(x - ) > 0 Vf(x) p.s.d.+

f-monotone on K 3a > 0, [(x) - f(y)l(x - ) > a II f(r) - (Y) 112 3a > 0 O, [Vf()t - aVf(x)tV7f(y) p.s.d,+

strictly f-monotone on '* 3a > 0, [f(x) -f(y))(x - y) > a I f(s) -- f(y) 112 3a > 0, [7 f(x)t - aVj(x)tV(y) p.d.++

strictly monotone on I' [1(x) - f(y)J]( - y) > 0 vf(x) p.d.++

strongly monotone on K** 3a > o, f() - f(y)( - ) > a II X - y 112 vf(m) uniformly p.d.++

* Definition holds for all x, y E K¢ or all E K

e Condition holds for xr y

** Condition holds for f(z) f(y)

+ p.s.d. means positive semidefinite

++ p.d. means positive definite

Table I, Several types of monotonicity

Clearly, any f-monotone function is monotone and any strictly f-monotone function

is strictly monotone. As shown by Magnanti and Perakis [26], (i) if f is one-to-one,

then f-monotonicity implies strict monotonicity, and (ii) if f is Lipschitz continuous,

then strong monotonicity implies f-monotonicity. Therefore, for the class of Lipschitz
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continuous functions, the class of f-monotone functions lies between the classes of

monotone and strongly monotone functions.

Note any constant function, i.e., f(x) = c for all x, is an f-monotone function;

any variational inequality with a constant problem function and a polyhedron as

the feasible set K is equivalent to a linear program in the sense that xz pt solves the

variational inequality if and only if xzp t solves the linear program min{ctx: X E K}.

Therefore, one of the principal attractions of f-monotone functions is the fact that the

class variational inequalities with f-monotone functions contains all linear programs.

Recall that linear programs do not always have optimal solutions (since the defining

polyhedron might be unbounded), and so variational inequalities with f-monotone

functions need not have a solution.

Note that for affine functions f (i.e., f(x) = Mz - c for some matrix M and

vector c), the differentiable f-monotonicity condition holds if we can

find a constant a > 0 so that Mt - aMtM is a positive semidefinite matrix.

As a last preliminary observation about f-monotone functions, we note that f-

monotonicity is equivalent to strong monotonicity of the generalized inverse f-1 of

f in the following sense.

Definition 2 . The generalized inverse f-1 of a problem function f is the point to

set map

f-l :f(iK) R i 2,

defined by f-'(X)= {x E R : f(x) = X}.

Definition 3 . A point to set map g Rn - 2 R" is strongly monotone if for every

E gE -1(X) and y E g-(Y)

(x - y) t (X - Y) > allX - YII2,

for some constant a > 0.
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Proposition 1:

The problem function f is f-monotone if and only if its generalized inverse f- 1 is

strongly monotone in f(K).

The proof of this proposition can be found in [26].

2.2 The f-monotonicity condition implies the norm condition.

In this section we show the relationship between the condition of f-monotonicity

and the norm condition used by Chan and Pang for establishing the convergence of

the linearization algorithms [32] (see also Hammond and Magnanti's discussion of

the convergence of the generalized contracting ellipsoid algorithm [18]). These algo-

rithms fit in the framework of the general iterative scheme developed by Dafermos

[12], which works as follows:

STEP 0:

Start with some initial point x0o E I.

STEP k + 1:

Find k+l E K satisfying

g(xk+lxk)t(x - Xk+l) > O Vx E K.

We make the following assumptions on the scheme's function g:

1. g(x,x)= f(x),

2. the Jacobian matrix of g(x, y) with respect to the x component, when evalu-

ated at the point y = x, which we denote throughout this chapter by gx(x,x),

is a positive definite and symmetric matrix.

For linearization algorithms, g(x, y) = pf(y) + A(y)(x - y) for some positive definite

matrix A(y) and constant p satisfying 0 < p < 1. For the generalized contracting
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ellipsoid algorithm,

g(x, y) = f(y) + p(vf(y) + Vf(Y) t )(x - ),

with gf(y) positive definite and a constant p satisfying 0 < p < 1. In most cases,

p is chosen equal to one.

In the context of these algorithms, the norm condition we have been referring to

is

l(g1/2 ((x,x))t gy(x, x)g-"/2 (x,x)11 < 1 Vx E K,

which can also be rewritten (see Section 1) as follows:

II9-1(x,x)gy(,x)1g:(x,x) < 1 Vx E K.

In particular, for the linearization algorithms, since

g(x, y) = pf(y) + A(y)(x - y),

gx(x, x) = A(x) is positive definite and symmetric (A(x) = A(x)t),

gy(x, x) = pvf(x)-A(x), and so pf(x) = gy(x,x)+gx(x, x). The norm condition

becomes

II(A(x)-/12)t[P V f(x) - .4(x)](A(x)-1/ 2 )II = III - pA-1/ 2 (x) V f(x)A-1 2(X)II < .

In the generalized contracting ellipsoid algorithm, A(y) = f(Y) + Vf(y)t and

p = 1, so the norm condition becomes

I(v f() + vf(x)t)-'/ 2 (vf(x)) t(vf(x) + vf(x)t)-/21l =

= I(vf() + vf(x)') -1 V f(x)tllvf(X)+vf(X)' < 1.

Notice that the norm condition used by Dafermos for the convergence of the general

iterative scheme, namely,

1gl-1/2(xl, yl)gy(X2, 2)gx'/2(X3, Y3)1 < 1 VX,yl1 ,2, Y2,3, Y3 E K,
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includes the norm conditions of Pang and Chan and of Hammond and Magnanti as

special cases. This condition is more difficult to verify, however, since it involves

different points xl, Y1, 2, Y2, x 3 , Y3.

Our goal in this section is to investigate the relationship between the norm

condition and the f-monotonicity condition. The main theorem of this section shows

that the differential form of f-monotonicity of f implies the norm condition in a

more general form, a less than or equal form instead of a strictly inequality form.

Furthermore, the theorem also demonstrates a partial converse of the statement.

Namely, the norm condition implies a weaker form of the differential condition of

f-monotonicity.

Before analyzing the main theorem of this section, we state and prove two useful

lemmas.

LEMMA 1:

If A is a positive semidefinite matrix and G a positive definite, symmetric matrix,

then G- 1/2 AG - 1/ 2 is also a positive semidefinite matrix.

Proof:

Let z R and y = G- 1/2, then xtG-1/ 2AG-1/2 x = ytAy > 0 since A is a

positive semidefinite matrix. Therefore, x tG-1/2AG-1/2x > 0 Vx E R and so

G- 11/2AG - 1/2 is a positive semidefinite matrix. Q.E.D.

LEMMA 2:

Suppose that the matrix

Vf(x)t - a V f(x) t v f(x), Vx E K,

is positive semidefinite for some constant a > 0. Let G be a positive definite matrix,

g be the minimum eigenvalue of G (a positive definite matrix), and a < ag. Then

(G - l /2 V f(x)G-1/ 2)t(I - a G - / 2 V f(x)G-1 / 2 ) is also positive semidefinite.

Proof:
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Recall that for any vector v E R'n, and Vy E Rn ,

yt(G- 1/2 v f(x)G-1/ 2 )t( I- alG - l/ 2 V f(Z)G-l/2)Y >

and replacing a1 < ag, and z = G-1/2 y, v t G-v gvtv we obtain:

> (G-1/ 2y) t[vf(x) t - ag 7 f(x) tG - ' V f(x)](G-1/2y) >

> z t[vf(x) t - a V f(x)t V f(x)]z > 0.

The last inequality follows from the assumption, and so the matrix

(G - 1/ 2 V f(x)G-1/ 2)t(I - alC - / 2 V f(x)G- 1 / 2 ) is positive semidefinite. Q.E.D.

LEMMA 3:

The matrix Bt[I - (a/2)B] is positive semidefinite if and only if the operator norm

II - aBII < 1. Moreover, if both conditions are satisfied for any value a* of a, then

they are satisfied for all values a < a*.

Proof:

Recall that

III - aBII = sup <I( I - a B ) y l2

y0 IyI12 -

Therefore,

III - aBIl 1

yt[I - (aBt + aB) + (aB)t(aB)]y <1

yZO yty

yt[ - (aBt + aB) + (aB)t(aB)]y < yty Vy E R n

<* 2aytBy > a2 ytBtBy Vy E R n

4* ytBy > (a/2)ytBtBy Vy E Rn (2)

y Bt [ l - (a/2)B]y > O y E R1

These relationships show that IIl - aBll < 1 if and only if the matrix Bt[I - (a/2)B]

is positive semidefinite. Moreover, (2) implies that if both conditions are valid for

any value a* of a, then they are valid for all values a < a*. Q.E.D.
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This Lemma also holds with Bt [I - (a/2)B] positive definite and III - aBII < 1.

We are now ready to prove the central theorem of this section.

THEOREM 1:

Consider the general linearization scheme for some constant p > 0, g(x, x) = pf(x)

and that gx(x, x) is a positive definite and symmetric matrix. Then the following

results are valid.

1. If the differential form of f-monotonicity condition holds, i.e., the matrix

vf(x) t - a v f(x) t v f (y) Vx, y E K,

is positive semidefinite for some constant a > O, then the norm condition holds

in a less than or equal to form. Namely,

jlg;1/2(x, x)gy(x, x)g1/2(x, x)< 1 V< E I.

2. If the norm condition

lg1'l/2(xx)gy(x, x)g1/2(x,x)| _< 1 Vx E K,

holds, then for some constant a > 0, the matrix

Vf(x) t - a V f(x)t V f(x),

is positive semidefinite Vx E K.

Proof:

1. We want to show that the following norm condition holds:

Ilg1'/ 2 (x x)gy(x,x)g-1/ 2 (x, x)| < 1 Vx E K.

Since

gy(x, x) = p V f(x) - gx(x, X),
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if we let G = g(x, x), the norm condition becomes:

jIG-'/2 [p V f(x) - GIG-I 2 11 = III - pG-1 /2 V f(x)G-1 /211 < 1.

By assumption, G is a positive definite and symmetric matrix. Let

9min = infxEh [min eigenvalue G],

which is positive since K is a compact set. Also let B = G-1/ 2 vf(x)G-1/ 2 . Lemma

2 shows that if a1 = agmi, the matrix

Bt[I - aB] = (G - 1/ 2 f(x)G-1/2)t( I _ a G - 1/ 2 V f(x)G - 1/ 2)

is positive semidefinite. Lemma 3 implies that for any choice of

< p < 2al = 2ag,-, 111- pBII < 1.

Making the replacement B = G - / 2 7 f(x)G-1/ 2 , we see that for 0 < p < 2a1 =

2agmin,

IIG- /2gy(x, x)G-1/211 = IIG-1/2[p V f(x) - GIG-l/211 =

= Ill - pG - 1/ 2 f(x)G-/21l 1, Vx K.

Therefore, for G = gx(x, x),

Vx E IK.

2. In the second part of the theorem we want to prove that if the norm condition

Vx E K,

holds, then the matrix

Vf(x) t- a V f(x) t V f(x),

is positive semidefinite for some a > 0 and Vx E K.

Let G = gx(x, x). Since

llzg;1/2 (x, x)gy(x, x)g;1/ 2 (x, x)II = llG-1/2[P V f(x) - G]G-1/2 11 =

14

J-11,(X, Z)gY(X, Eg-111E, 1)11 I 1,

I z 2XXg( ,X z-1( , )I< 1



= 11- pG-1/2 V f(x)G-1 /2 11 < 1, V E IK,

setting, as before, B = G - 1 / 2 V f(x)G-1 / 2 , we see from Lemma 3 that if

III - pBII < 1,

for any value a1 < p/2 , then the matrix Bt[I - aiB] is positive semidefinite. Let

gmax = sup[max eigenvalue G].
xEK

Then if p > 2a1 > 2agm,,x,

ytBty > alytBtBy > aytBtGBy Vy E R

Making the replacement B = G-1 / 2 V f()G - 1/ 2 , we obtain

Yt[G-1/2 V f(x)t(I -a V f(x))G-1/2]y > 0.

Finally, setting z = G- / 2y, we see that zt[vf(x)t(I - a V f(x))]z > 0.

These results show that for any a < 2 the matrix

vf(x)t(I - a f(x)) Vx E K

is positive semidefinite. Q.E.D.

Remark:

The differential condition of f-monotonicity implies that the norm condition holds

in a less than or equal form. The existing convergence proofs require a strictly in-

equality form of the norm condition. This happens in our case, when the differential

form of f-monotonicity holds in some form of a strict inequality, i.e.,

[vf(x) t (I - a V f(y))],

is positive semidefinite and the matrix vf(x) is nonsingular. The norm condition

Ig-1/2 (,x)gy(X,x)g-1/ 2 (X,X)ll < 1 Vx E K
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then holds as a strict inequality. The following Proposition formalizes this result.

Proposition 2:

Consider the general linearization scheme for some constant p > 0. Suppose that

g(x, x) = pf(x) and that gx(x, x) is a positive definite and symmetric matrix. Then

the following results are valid.

1. If the differential form of f-monotonicity condition holds as a strict inequality,

i.e., the matrix

Vf(x) - a V f(x) t
V f(y) Vx, y E K,

is positive semidefinite for some constant a > 0, and the matrix vf(x) is

nonsingular, then the norm condition holds as a strict inequality. Namely

119-1/2(x )gy(x, X)9g1/2(x,x) < 1 VZ E K.

2. If the norm condition

Ij-1/2 (x, x)gy(x, x)g91/ 2 (, x)lI < 1 Vx E K,

holds, then for some constant a > 0, the matrix

vf(x) t - a V f(x) t V f(x),

is positive definite Vx E K.

The proof of this Proposition follows from that of Theorem 2 using strict inequalities

in place of the less than or equal to inequalities.

Remark:

In particular, for the linearization algorithms g(x, y) = pf(y) + A(y)(x - y) and

for the generalized contracting ellipsoid algorithm with A(y) = Vf(Y)+ Vf(Y)t, the

norm condition becomes:

IIgx1/2( x)gy(x, )g-1/2(x, x)ll = IIA(x)- 1/2[p V f(x) - A(x)]A(x)-1 / 2 11 < 1

Vx E K.
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Therefore, these two classes of algorithms converge under the assumption that the

problem function f is strictly f-monotone. The advantage of stating the result in

this way is that we impose a condition directly on the problem function f and we

do not involve the algorithm function g.

The convergence proofs of the linearization and the contracting ellipsoid algorithms

([17], [16], [32]) require that the norm is a strict inequality because they require

that the algorithm needs to start with an initial point x0o that lies close to the

VIP solution. In fact, if x' p t i a solution to the variational inequality and c =

IIA(x)-/2[p V f(x) - A(x)]A(x)-l/ 2 11 < 1, they require that

1-c
lir 0 - x°Ptll < C'

for some positive constant C'. The closer c is to one, the closer the initial point

needs to be to the optimal solution.

From this discussion, we conclude that the differential form of f-monotonicity and

the assumption that vf(x) is positive definite imply that the generalized contracting

ellipsoid algorithm and the linearization algorithms converge to an optimal solution

of the variational inequality problem.

3 On the convergence of the projection algorithm un-

der f-monotonicity

In this section we show that the f-monotonicity condition implies the convergence

of the sequence of averages induced by the projection algorithm. To establish this

result we employ ideas from the theory of variational inequalities as well as an ergodic

theorem due to Baillon [3]. Furthermore, when the feasible set is compact, we show

that that f-monotonicity implies that every accumulation point of the projection

algorithm sequence solves the variational inequality. We first recall the classical

projection algorithm.
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The Projection Algorithm

Fix a positive definite and symmetric matrix G and a positive scalar p, whose value

we will select below.

STEP 0:

Start with some x0o E K.

STEP k + 1:

Compute xk+1 E K by solving the variational inequality VIk:

[pf(xk) + G(xk+1 - Xk)](X - Xk+l) > 0, tV E K.

If we let PrG (y) denote the projection of the vector y onto the feasible set K, with

respect to the 11.11G norm, we can view this step as the following projection operation:

Xk+1 = PrTG(xk - pG-lf(xk)).

Note that this algorithm is a special case of the general iterative scheme [12] and

the linearization algorithms [32], with g(x, y) = pf(y) + A(y)(x - y) and A(y) = G.

In view of the symmetry and positive definiteness of the matrix gx(x,y) = G,

the line integral fg(x,y)dx defines a function F : K x K -- R satisfying the

property that, for fixed y E K, F(.,y) is strictly convex and g(x,y) = F(x,y).

Therefore, step k + 1 of the projection algorithm is equivalent to the strictly convex

mathematical programming problem:

minE- F(x, k).

Consequently, the problem defined in step k + 1 has a unique solution that can be

computed by any appropriate nonlinear programming algorithm. For some fixed

xk E K (found in the previous step), if we let hk = pf(xk) - Gxk we can rewrite

9(x, xk) as g(x, xk) = Gx+hk. In other words, according to the projection algorithm,

at each step k + 1, we need to determine the point k+l E K that satisfies the

variational inequality for g, visualized as:

(GXk+l + hk)t(x - xk+1) > 0, Vx E K.

18



In view of the symmetry and positive definiteness of the matrix G, this variational

inequality has a unique solution xk+1, which as shown above, is the unique minimum

over K, of the function F(., Xk), with k fixed from the previous step. For notational

convenience, let us define Fk(x) as F(x,xk) = Fk(x) = (1/2)xtGx + hxz.

3.1 On the convergence of the sequence of averages induced by the

projection algorithm

In this section we establish the convergence of the sequence of averages induced by

the projection algorithm. The key theorem we employ to establish this result is an

ergodic theorem due to Baillon. Throughout this analysis, we assume the feasible

set to be compact; this is not an essential assumption. We can derive similar results

by just assuming that the feasible set is closed and convex.

For the subsequent analysis, let us define Tp: K R as the map that carries

xk E K into the minimizer over K of the function Fk(.). Namely, Xk+l = Tp(xk).

The following lemma describes the relevance of the map Tp.

LEMMA 4:

Every fixed point of the map Tp is a solution of the original asymmetric variational

inequality problem (1).

Proof:

The definition of map Tp implies that if xk = k+1 = Tp(xk) E K is a fixed point of

Tp, then

(Gxk+l + hk)t(x - Xk+l) > 0 Vx E K.

In this case hk = pf(xk) - Gxk = pf(xk+l) - Gxk+l. Making this replacement in

the inequality gives

(Gxk+l + Pf(xk+1) -Gk+l)t(x - Xk+1) = pf(xk+l)t(x - k+l) > 0 Vx E K.

Therefore, xk+l = Tp(xk) = Xk is a solution of the original asymmetric variational

inequality problem (1). Q.E.D.
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LEMMA 5:

Let A be the minimum eigenvalue of the positive definite, symmetric matrix G, and

b = . If 0 < p < ' and f is a f-monotone map (with constant a), the map Tp is a

nonexpansive map on the feasible set I with respect to the norm ljlXjG = (tGx)1/2.

That is,

IITp(y) - T(Y2)IIG < IIY1 - Y211G VYl, Y2 E K.

Proof:

Let Y1, Y2 E K and set xl = Tp(y1) and x2 = Tp(y 2 ). The definition of map Tp shows

that

(Gxl + hl)t(x - xi) = (GX1 + Pf(Yi) - Gyi)t(x - X1) > 0 VX E K, (3)

(Gx 2 + h2 )t (x - X2) = (Gx 2 + Pf(Y2) - GY2)t(x - X2) > 0 Vx E K. (4)

Setting x = 2 in (3) and x = xi in (4) and adding the two inequalities we see that

IXI1 - X2 11G {Yl - Y2 - pG-[f(Y 1 ) - f(Y 2 )]}t G(x1 - X2).

Applying Cauchy's inequality, we find that

11XI - x211G < IIYI - Y2 - PG-1 [f(y) - f(Y2)]IIGIIxl - 211G.

Dividing through by 11x1 - x211G, squaring, and expanding the righthand side, we

obtain

IXl -- 21G < ly1 - Y2 - 2p[f(yi) - f(Y2)l t [Yl - Y2]+

(p) 2 [f(y)- - f(Y 2 )]tG-1 [f(yi) - f(2)]. (5)

The f-monotonicity of map f and the symmetry and positive definiteness of matrix

G, together with this result, implies that if A is the minimum eigenvalue of the

positive definite, symmetric matrix G, and b = , then

1XI - X211G < ly1 - Y2llG - 2 pallf(yl)- f(y2)l2 + (p)2 bllf(Yl)- f(Y2)112 =
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-Iyi - Y2112 - p( 2 a - pb)llf(y) - f(Y2)l2.

Finally, since 0 < p < 2 and Ilf(yI)- f(y2)112 > 0, we conclude that

JIIT(Y) - TP(y 2 )IIG = 1lx - X211G < Ily1 - Y211G

Q.E.D.

Using these lemmas we now establish the convergence of the sequence of averages

induced by the projection algorithm. We will use the following ergodic theorem.

THEOREM 2 (Baillon [3]):

Let T be a map, T: K - K, defined on a closed, bounded and convex subset K

of a Hilbert space H. If T is a nonexpansive map on K relative to the Il.lIG norm,

that is,

IlT(yi) - T(y 2)llG < IIY1 - Y2 1C Vy1,y 2 E K,

then the map

Sk(y) y + (y) + ... + T ) EK,
k

converges weakly to a fixed point of map T, which is also the strong limit of the

projection of Tk(y) on the set of fixed points of map T.

In the following theorem we use the finite dimensional version of this theorem.

THEOREM 3:

Let K be a convex, compact subset of R n (the feasible set of the VIP (1) ) and Tp

K Rn be the map that carries x E K into the minimizer over K of the function

Fk(.). Also, let A be the minimum eigenvalue of the positive definite, symmetric

matrix G and let b = J. Assume in the projection algorithm that 0 < p < . Then

if f is a f-monotone map, the sequence of averages

y + T(y)+ ... + Tk-I(y)
sk Pk

converges to a solution of the original asymmetric variational inequality problem.
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Proof:

From Lemma 5, if 0 < p _ in the projection algorithm and if f is f-monotone, then

the map T. is nonexpansive relative to the Il.llG norm. Then the finite dimensional

version of Theorem 3 guarantees that

Sk(y) = + Tp(y) + ... + r-(y) E
k I YEN,

converges to the fixed point of the map Tp. Lemma 4 shows that every fixed point of

the map Tp is a solution of the original asymmetric variational inequality problem.

Q.E.D.

REMARKS:

1. If we choose 0 < p < 2 and the function f is one-to-one, then Tp is not just

a nonexpansive map, but also a contraction map. In this case, the original

sequence induced by the projection algorithm converges to the the solution

of the VIP (1), which is then unique (since f is strictly monotone). The

convergence of the original sequence follows from Banach's fixed point theorem,

(see also [10], [12]).

2. Throughout this analysis we have assumed that the feasible set KI is compact.

We believe that this assumption is not essential. If we start the algorithm

with x1 E K so that liT(xi) - x111 < o we lie without loss of generality in a

compact set. In the next Section 3.2, we derive similar results for the sequence

induced by the projection algorithm, by assuming that the feasible set is

just a closed and convex set.

3.2 Convergence of the projection algorithm

In this section we establish the convergence of the sequence induced by the pro-

jection algorithm when the underlying problem function satisfies the f-monotonicity

condition. In this proof we will assume that the feasible set KI is a closed and convex

set and that the VIP problem has at least one optimal solution. We show that every
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accumulation point x* of the projection algorithm sequence solves the variational

inequality problem. We first prove several lemmas.

LEMMA 6:

Let A be the minimum eigenvalue of the positive definite and symmetric matrix G

and let b = i. Assume that the variational inequality problem VI(f, K) has at least

one optimal solution xopt and that the feasible set K is a closed and convex set. If

O < p < and f is a f-monotone map, then the sequence ({1xk - x°PtlIG}°=l is a

convergent sequence.

Proof:

Step k + 1 of the projection algorithm implies that xk+1 E K satisfies the following

inequalities

[pf(xk) + G(xk+l - k)]t[X - Xk+1] > 0 Vx E K.

Setting x = xopt E K in Step k + 1 and recalling that [pf(o°Pt)]t[Xopt - Xk+l] < O,

we see that

[Pf(xk) - pf(xpt) + G(xk+l - Xk)]t[x
°
Pt - Xk+l] > 0.

This inequality implies (by adding I[xk+1 - x°PtlJG to both sides) that

k+1 - · 1opt2 _ (x pt - k - pG-l[f(xpt) - f(xk)])tG(xt - Xk+l)

and Cauchy's inequality implies that

llXk+1 - x°7"'2 < I °pt - k- G-[f(xPt) - f(xk)]cIGIXlPt - Xk+ll1G.

Dividing through by 11x°Pt - xk+1IIG, squaring, and expanding the righthand side,

we obtain:

xk+l-xPtl ~ _< lxk-xPt2 I -2p[f (x Pt)- f (xk)]t[XPt-Xk] +(p)2 [f(Xt) _ f (xk)]tG -l [f(XPt)f(xk)I

The f-monotonicity of function f and the symmetry and positive definiteness of

matrix G implies that

xk+l - x°Ptl< xk - °Ptll - p(2 a - pb)llf(x ° p t) - f(xk)ll.
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Therefore, by choosing 0 < p < 2 and by observing that Ilf(x ° t) - f(xk)II 2 0,

we see that

0 < Ik+l - X tll IIZk - P11t2.

Therefore, the sequence {Izxk - °PtcIG}k=1 is a convergent sequence (since it is

nonincreasing and bounded from below). Q.E.D.

LEMMA 7:

Let xOpt be a solution of the VIP. Under the assumptions of Lemma 6, the sequence

{f(xk)}k=l converges to the optimal value f(z °Pt) of the problem.

Proof:

In the course of proof of Lemma 6 we showed that

IIxk+1 X- X1G < IIzXk -x Pt II - p(2 a - pb)llf(xoPt ) - f(xk)l 2

Therefore,

IIXk - 11 - IIxk+1 - X t l _ _ > p(2a - pb)IIf(x"p t ) - f(zk) 2 > 0.

Since IIxk I - z I° pt IIxk+l -OPtIIG -k --k- 0, and since 0 < p < , this inequality

implies that

llf(zOpt ) - f(zk)l 2 -k-oo 0.

Thus,

f(xk) -k-coo f(ZoPt)

Q.E.D.

LEMMA 8:

Under the assumptions of Lemma 6, the sequence {f(zXPt)t(xk - °Pt)}I°=l converges

to value zero.

Proof:

Setting x = xOp t in Step k + 1 and recalling that [pf(x°Pt)]t[x °Pt - Xk+1] < O, we see

that

[pf(xk) - pf (x° pt) + G(xk+l - Xk)]t[X °P t
- Xk+1] > pf(o°Pt)]t[xk+l - x° pt] > 0.
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Adding and subtracting llxk+1 - xoPtj from the middle term in this expression and

rearranging as in Lemma 6 gives

0 - pf(xoPt)]t[xk+l - x"pt] < (opt- xk-pG- l[f(xPt)-f(xk)])tG(xPt-Xk+l)-lxk+l-- xPtII.

Applying Cauchy's inequality, using the fact that f is f-monotone, and following the

steps of Lemma 6, we obtain

0 < pf(Xpt)]t[Xk+l - xOpt ] <

V/llxk - X°tl - p(2a - pb)Ilf(x oPt) - f(Xk)llllxk+l - xPIIG - Ilxk+1 - XoPtll .

Since 0 < p < 2a

0 < pf(xOPt)]t[Xk+l-xOPt] < [k-XPtIIG-IIk+l-X°P'IG][|lXk+l-XPIIG] k-oo 0,

due to Lemma 6 (i.e., that the sequence JIxk - x°Ptll is convergent). Therefore, the

sequence {f(xopt) t (Xk - O°Pt)}kC= 1 converges to value zero. Q.E.D.

LEMMA 9:

Under the assumptions of Lemma 6, the sequence {f(xk) t (k - opt)}k=l converges

to value zero.

Proof:

0 < f(xk)t(xk - xoPt) = [f(xk) - f(xtot]t(xk - xOpt) + f( opt)t(xk - xoPt) 

(applying Cauchy's inequality)

If(Xk) - f(XoPtlJ 2.lltk - X°Pt112 + f(xPt)t(xk - xopt) -k- 0,

due to Lemmas 6,7 and 8. Q.E.D.

THEOREM 4:

If the variational inequality problem VI(f, K) has at least one solution ZOp t , the

feasible set K is a closed, convex subset of R' , the problem function f is f-monotone,

and 0 < p < in the projection algorithm, then

lim f(xk)t(x - Xk) > 0 Vx E K,
k- oo
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and every accumulation point of the algorithm solves the variational inequality prob-

lem.

Proof:

We intend to show that, under the assumptions of this theorem, limk,, f(xk)t( -

Xk) exists and,

lim f(xk)t(x - zk) > 0 V E K.
k oo

Let x' p t be an optimal solution of (1). Then if we add and subtract xOp t from the

lefthand side, we see that Vx E K:

lim f(xk)t( - Xk)= lim f(zk)t(X - XOpt) + lim [f(xk)lt(Xopt - k) =
k-oo k--oo k-oo

(from Lemma 9)

lim [f(xk)]t[x - x° Pt] + 0 =
k-x oo

(using Lemma 7)

[f(xt )](x - xOP) > 0

due to the fact that xop t is an optimal solution.

Putting everything back together we conclude that the limit exists, furthermore

lim f(xk) t (x - Xk) = [f(xoPt )]t (x - xopt) 0
k oo

for all x E K. Therefore, every accumulation point x* of the projection algorithm

sequence (there exists at least one, since the limit limk-oo, xk - x° pt ll exists and is

finite) is indeed a VIP solution. In other words,

x*E I : lim f(xk) t (x - Xk) = f(x*)t(x - *) > 0 Vx E K.
k-oo

Q.E.D.

We conclude this section by comparing the results we have obtained with the

literature. As we have already observed, the projection algorithm fits into the frame-

work of the general iterative scheme of Dafermos [12], the framework of linearization
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algorithms [32] and, when f is affine, the framework of the generalized contracting el-

lipsoid algorithm [18]. The choice of g(x, y) in this case is g(x, y) = pf(y) +G(x-y),

with G positive definite and symmetric. Results in the literature have shown that

the projection algorithm converges, as we've already stated in Section 2, under a

norm condition, which in the special case of the projection algorithm becomes

IIG-1/2 [G - p V f(x)]G-1 /211 < 1, Vx E K.

On the other hand, when the problem function f is f-monotone, Theorem 3 es-

tablishes the convergence of the sequence of averages, while Theorem 4 establishes

convergence of the sequence itself induced by the projection algorithm. In Section

2 we have shown that the f-monotonicity condition implies the previous norm con-

dition on g, but in a less than or equal form.

Moreover, the convergence proof of the linearization algorithms and of the gener-

alized contracting ellipsoid algorithm, under the norm condition, require an initial

point close to the solution; in contrast, Theorems 3 and 4 establish global conver-

gence. Therefore, under f-monotonicity, we obtain more general results.

4 Convergence of the relaxation scheme

In this section we show that when the problem function of a variational inequality (1)

satisfies a norm condition, the sequence of averages induced by relaxation algorithms

converges to an optimal solution xOp t of the problem (1). As in Section 3 (see

Theorem 3), to establish this result, we employ the theory of variational inequalities

as well as the ergodic theorem of Baillon. First, we need to describe the general

relaxation scheme. It reduces the solution of the VIP (1) to a succession of solutions

of variational inequality problems with a simpler structure that can be solved by

available efficient algorithms.

We consider a smooth function g: K x K -- Rn satisfying the condition that

g(x,x) = f(x) Vx E K.
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We assume that for any fixed y K, the variational inequality

g(x', y) t (x- x') > O V E K (6)

has a unique solution x' E K, which can be computed by some known algorithm.

As an important special case, g(x, y) is defined by

g(x, y)= fi(y ... , yi- xi, y+l ,..,y) i = 1,2, ... , n.

Then solving (6) amounts to solving a separable variational inequality problem,

which has a unique solution provided that gi is a strictly monotone increasing func-

tion of the variable x i . More generally, g(x, y) should be defined so that the matrix

gx(x, y) is symmetric and positive definite. In that case, as mentioned in Section 3,

for a fixed value of y E K the variational inequality (6) is equivalent to a strictly

convex minimization problem with the objective function F(x) = f g(x, y)dx.

The Relaxation scheme

STEP 0:

Choose an arbitrary point x0o E K.

STEP k + 1:

Find Xk+1 E K satisfying

g(k+l, Xk) t (x - Xk+l) > 0 V E K.

The original relaxation algorithms developed by Ahn and Hogan [1] used

gi(Xk+l,xk) = fi(x, ... ,xr 1 +X+l, xk) for i = 1,2,..., n) to compute equi-

libria in economic equilibrium problems. This algorithm is known as the PIES

algorithm. Subsequently, Dafermos developed and analyzed a general relaxation

scheme with the more general choice of g (as described above) in the context of

both the traffic equilibrium problem [11] as well as the general variational inequal-

ity problem [12].
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The papers [1], [11] and [12], and the references they cite in describe more details.

In the subsequent analysis, we show that under appropriate assumptions, the limit

of the sequence of averages induced by the sequence {Xk}=1 solves the original

asymmetric variational inequality (1).

THEOREM 5:

Let T : K -- R n be the map which carries the point y* E K to the solution

T(y*) = x* of the relaxation scheme (6) with y = y*.

Suppose the algorithm function g satisfies the following conditions:

1. The matrix gx(x, y) is positive definite and symmetric Vx, y E K.

2. If a = infx,yEK (min eigenvalue gx(x, y)), then

sup llgy(x,y)I < a.
x,yEK

Then the sequence of averages

k(Y) = y + T(y) + ... + Tk(y) yEK,
Sk(Y) yk + 

converges to a solution of the VIP.

Proof:

We first prove that the map T, defined above, is a nonexpansive map in K. To

establish this result, we need to show that

IIT(y) - T(y2)l < Ilyi - Y211 Vy1 ,y 2 E K.

Fix Y1, Y2 E K and set T(yl) = x1 and T(y 2 ) = x2. Then the definition of T yields:

g(xl,yl)t(x- x1) > 0 Vx E K, (7)

g(x 2 , Y2)t(x-x 2 ) > 0 Vx E K. (8)

Setting x = x2 in (7) and x = xi in (8) and adding the resulting inequalities we

obtain

[9(X2,Y2) - 9g(x, Yl)]t(Xl -- 2) > 0. (9)
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By adding and subtracting g(x2, yl), we can rewrite this expression as

[g(x2, Y2) - g(x2, yl)]t(Xl - 2) > [g(x 1, Y1) - 9(2, Y1)]t(Xl - X2). (10)

Applying a mean value theorem on the righthand side of the inequality, we obtain

[9(x2, Y2) - g(X2, yl)]t(xl - 2) > [l - 2]t[gx(x', yl)][xl - X2], x' E [l; X2]. (11)

Since the matrix gx(x, y) is positive definite and symmetric Vx, y E K (by assump-

tion) and a = infx,yEK (min eigenvalue g(x, y)),

[g(x2, Y2) - g(x2, Yl)]t(Xl - x2) > alIXl - 2 112. (12)

Moreover, by applying a mean value theorem on the lefthand side of the inequality,

we obtain:

[Y2 - Yi]t[gy(x 2 , y')](x - 2) > lIxl - 2112, Y' [Y2; Y]. (13)

Furthermore, Cauchy's inequality and the operator norm inequality implies that

llYl - Y2Illlgy(x2, Y')IIXIX - X211 >_ (IIxl - X2112 , y' E [Y2; Y1]. (14)

Dividing both sides of this inequality by Ilxl - 211 gives

lly1 - Y21llllgy(2,y')ll > Cllx1 - X211, y' E [Y2;Y1] (15)

Finally, the second assumption of this theorem, namely,

sup 11gy(X, )ll < 
x,yEK

implies that the map T is nonexpansive. This is true because this inequality implies

that

allY1 - Y211 > allxl. - x211. (16)

Therefore,

IIT(yl)- T(y2 )ll < Ily - Y211 Vyl ,y2 E K.
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Finally, the finite dimensional version of Theorem 2 (see Section 3) guarantees that

the sequence of averages

Sk(y) - + T(y) + ... Tk(y) y K,
k+( yE ',

converges to an optimal solution of the VIP, since the map T is nonexpansive.

Q.E.D.

Remarks:

1. The norm condition of Theorem 5, namely,

sup IIgy(X, Y)11< 
x,yE K

implies the norm condition:

ll /2(x,< 1 Vx E K,

analyzed in Section 2.

This is true because

9;1/2(X, )gy(X, )9g112(x, ) 11-112(X, )llllg(1 zX)llllg-1/2(X )l <

< a-/2. .a-l/2 = 1 Vx E K

via the operator inequality and

a = inf (min eigenvalue gx(x,y)) > 0.
x,yEK

2. The convergence proofs of Dafermos [11], [12] and of Ahn and Hogan [1] have

more restrictive assumptions than the proof of Theorem 5. They require that

the algorithm function g satisfies the following conditions:

(a) The matrix gx(x, y) is positive definite and symmetric Vx, y E K.

(b) If a = inf,yEK (min eigenvalue gx(x, y)), then

sup Ilgy(x,y)ll < A c for some 0 < A < 1.
x,yEK

We next give examples that violate these conditions but satisfy those of Theorem 5.
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Examples:

1. Consider the variational inequality problem with problem function f(x) = Mz

with

2 2
M- 

-2 3

This matrix is asymmetric, but positive definite since

M + Mt = ]
0 6

is positive definite. The matrix

2 0
g(x, ) =

0 3

is positive definite and symmetric. Moreover, a = infx,yel- (min eigenvalue gx(x, y)) =

2 > 0, while

0 2
gy(x,y) = 

-2 0

xt x

Since gy(x11 , y) 2 [ = I 12 5Upxo 4 a2

Therefore, this problem satisfies the condition IIg(x, Y)II1 a of Theorem 5.

To apply the norm condition of Dafermos and Ahn, Hogan, we would require

Ilgy(x, y) ll < Aa for some 0 < A < 1.

2. Consider the variational inequality problem with problem function f(x) = Mx

with

M 2 2

2 2
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This matrix is symmetric and positive semidefinite. On the other hand, the

matrix

g(xz, ) =
0 2

is positive definite and symmetric. Moreover, ka = inf,yeK (min eigenvalue gx(x, y)) =

2 > 0, while

gy (X, ) = 
2 0

Since

Igy(L,y)l12 = [ 2 2
2 0

t 40

0 4

sup = 4 = 2.

As in the case of Example 1, this problem satisfies the norm condition Ilgy(z, Y)ll 

c, but not the norm condition Ilgy(x, y)ll < A for some 0 < A < 1.

5 On the convergence of the Frank-Wolfe algorithm

In this section we present a convergence proof of the Frank-Wolfe algorithm when

applied to convex programming problems defined on general convex sets (i.e., vari-

ational inequality problems with a symmetric Jacobian matrix). This convergence

proof applies to problems that satisfy the f-monotonicity condition. The conver-

gence proof of Martos [28] assumes that the objective function F of the correspond-

ing minimization problem is pseudoconvex, and that the feasible set is a bounded

polyhedral. His main theorem establishes that every accumulation point of the se-

quence k induced by the algorithm is a solution to the minimization problem (or

the equivalent variational inequality problem). Our convergence proof in this sec-

tion also assumes symmetry of the Jacobian matrix, but permits the feasible set to
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be a general convex, compact set instead of a 'bounded polyhedron.

Before presenting the convergence proof, we make the following assumptions.

ASSUMPTIONS

Al. The feasible set K is a nonempty, convex and compact subset of R ' .

A2. The problem function f satisfies the f-monotonicity condition.

Since the Jacobian matrix vf is symmetric, the variational inequality problem

is equivalent to the minimization problem:

minxEK F(x),

and, in this case, f(x) = V(F(x)).

The Frank-Wolfe algorithm works as follows:

THE FRANK-WOLFE ALGORITHM

Step 0:

Choose an arbitrary point xto in the feasible set K. Set k = 0.

Step k + 1:

Part a: (minimization part)

Let k be the point found in the previous step k and let Yk+l be the point that

solves the following minimization problem:

min f(xk)ty. (17)
yEK

(When the feasible set KI is a polyhedron, this is a linear programming problem.)

TERMINATE if f(zk)t(zk - Yk+l) = 0 and set k as the solution.

Part b: (line search part)

Find xk+l E [k; k+l] for which

f(xk+l)t(x - Xk+l) > 0 Vx E [k; Yk+1] (18)
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Go to the next step k + 2, part a, with xk+ 1 in place of xk.

The point Xk+l found at step k + 1 is a point that solves a one-dimensional

variational problem. This is true because every point x E [k; Yk+l] can be rewritten

as x = xk(a) = k + a(yk+l - xk) with a E [0, 1], while xk+ = xk + ak+l(Yk+l - xk)

with ak+1 E [0, 1]. Therefore, we can write part b of the Frank Wolfe algorithm as:

Find ak+l E [0, 1] for which

f(xk + ak+l(Yk+l - Xk))-(Yk+l - xk)(a - ak+1) > 0 Va E [0,1]

which is the one-dimensional variational inequality VI(hk, [0,1]) with a problem

function hk(a) = f(xk(a))t(yk+l - xk) and with the interval [0, 1] as the feasible set.

If the Jacobian matrix of the problem function f is symmetric and positive definite,

with f = gradient(F), part b is also equivalent to a one-dimensional minimization

problem, namely

minaE[o,] F(xk(a)).

Then the VIP is also equivalent to the minimization problem

minxEp F(x).

To understand the behavior of hk(a), and therefore part b of step k + 1, we consider

the following lemma.

LEMMA 10:

If the problem function f is strictly monotone, then the function hk : [0, 1] - R

defined as hk(a) = f(xk(a))t(yk+l - xk) is strictly increasing.

Proof:

To establish this result, we show that if al $ a2, then

[hk(al) - hk(a2)][al - a2] > 0.

This condition is true because

[hk(al) - hk(a2)][al - a2] = [f(xk(al)) - f(xk(a2))]t(Yk+l - zk)[al - a2] =
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(recalling that x = xk(a) = k + a(Yk+l - xk))

= [f(xk(al))- f(xk(a2))]t [xk(al) - xk(a2)] > 0,

when al a2 (and therefore xk(al) xk(a2)), by the strict monotonicity of f.

Therefore,

[hk(al) - hk(a 2 )][al - a2 ] > 0.

Q.E.D.

Note that since hk(a) is strictly monotone, the one-dimensional variational in-

equality, find ak+l E [0,1] so that hk(ak+l) t (a - ak+l) > 0 for all a E [0, 1], or

equivalently (18), has a unique solution ak+1, or xk+1 = Xk + ak+1(Yk+l - Xk), that

satisfies one of two conditions.

1. If hk(l) = f(Yk+l)t(Yk+l - xk) < 0, then ak+1 = 1 since then k+l = Yk+l

and, therefore,

Xk+1 E [k;Yk+1] f(xk+l)t(x-xk+l) = f(yk+l)t(yk+l-xk)(a-1) > 0 Va e [0, 1].

2. If hk(l) > 0, then ak+1 E [0, 1] and hk(ak+l) = 0.

This result is true because hk(O) = f(xk)t(yk+l - xk) < 0

(from part a, Yk+1 = argminyEPk f(xk)ty, also hk(O) $ 0 otherwise we would

stop),

and hk is a strictly increasing function (Lemma 10), hk(l) > hk(0) < 0.

Therefore, either hk(1) < 0 so ak+1 = 1, or hk(1) > 0 and so hk(ak+l) = 0, for

some ak+l E [0, 1].

If f is strictly monotone, we can view part b (because of Lemma 10) as a minimiza-

tion problem, regardless of the symmetry of the Jacobian matrix of f. Namely,

minaE[o0,1] (-hk(a))2. (19)
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Remark:

When hk(l) > 0, computing ak+1 boils down to solving the one variable equation

hk(ak+l) = 0, which becomes

hk(ak+l ) = f(xk + ak+l(Yk+l - Xk)) (yk+l - Xk) = 

or [f(Xk + ak+l(Yk+l - Xk)) - f(xk)]t(yk+l - Xk) = f(xk)t(Xk - Yk+l).

Applying the mean value theorem shows that for some z E [k; xk+1],

f(xk)t(xk - Yk+l) = ak+lI[Yk+l - Xkvf(z), implying that

Xk+1 = Xk + f(k)t(k - Yk (Yk+l - Xk),
IIxk - k+1 IIvf()

for some z E [k; Xk+l].

We are now ready to establish convergence of the algorithm sequence Xk.

Before we state the main theorem, we establish several preliminary lemmas.

LEMMA 11:

Let Xk be the sequence induced by the Frank-Wolfe algorithm. Under assumptions

Al and A2, the objective function {F(xk)} is a convergent sequence.

Proof:

Observe that under f-monotonicity,

F(Xk)- F(Xk+l) > VF(Xk+l)t (Xk - Xk+l) > 0,

(this inequality is due to the line search we performed in part b of the algorithm).

Therefore, F(xk) > F(Xk+l) is a decreasing sequence. Moreover, since the feasible

set is bounded, the sequence F(xk) is bounded from below. So {F(Xk)}°=0 is a

convergent sequence. Q.E.D.

LEMMA 12:

Let Xk be the sequence induced by the Frank-Wolfe algorithm. Under assumptions

Al and A2, every convergent subsequence Xkp (with accumulation point x*) has

(perhaps a further) convergent subsequence Ykp+l (with accumulation point y*).
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Proof:

This follows from assumption Al, i.e., that the feasible set K is bounded. Q.E.D.

LEMMA 13:

Let xk be the sequence induced by the Frank-Wolfe algorithm. Under assumptions

Al and A2,

lim f(xkp)t(xkp - Ykp+l) = 0

Proof:

Consider any convergent subsequence xkp with accumulation point x*. From Lemma

12, the subsequence Ykp+l has an accumulation point y*.

Let s, r E {kp} 0=o with s > r + 1 > r. Then F(xs) < F(xr+l) < F(xr) and

F(xs) < F(Xr+l) < F(Xr + a(yr+1 - Xr)), Va E [0, 1].

Therefore F(xs)-F(xr) < F(xr+a(yr+l-xr))-F(xr) Va E [0, 1]. Letting s cc anda - a

r - oc in both sides of the inequality, we see that

F(x* + a(y* - x*)) - F(x*) > 0 Va [0,1].
a

Letting a -i 0, we see that f(x*)t(y* - x*) > O. Since f(xkp)t(xkp - Ykp+l) > 0 from

part a of step kp + 1, we also conclude that f(x*)t(y* - x*) < O. Finally, combining

this result with the previous inequality, we conclude that f(x*)t(y*-x*) = 0. Q.E.D.

LEMMA 14:

Let k be the sequence induced by the Frank-Wolfe algorithm and let x* be any

accumulation point of sequence Xk. Under assumptions Al and A2,

f(x*) = f(x ° Pt) and f(x*)t(xPt p t x*) = 0.

Proof:

Part a of step kp + 1 and the fact that xOp t E K is an optimal solution implies that

f(xkp)t(Ykp+l - Xkp) < f (kp)t (x - X kp ) < 0.
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Lemma 13 implies that f(xkp)t(x °Pt - xkp) "--'kp-. 0, i.e.,

f(x*)t(xopt - x*) = 0

for any accumulation point x* of the sequence k. Combined with f-monotonicity,

the result implies that

0 f(x*)t(x* - x p t ) > (f(x) - f(xpt)t(* - xo t ) > allf(x*) - f(xoPt) ll2

Therefore, f(x*)= f(xo°P). Q.E.D.

THEOREM 6:

Let k be the sequence induced by the Frank-Wolfe algorithm. Under assumptions

Al and A2, every accumulation point x* of the sequence Xk is a VIP solution.

Proof:

In Lemma 14 we have shown that

f( X. = f(x pOt) and f(x*)t(xopt - x*) = 0.

These two equalities imply that

f(x*)t(x-x*) = f(x*)t(X-XoPt)+f(x*)t(xoPt-x*) = f(X*)t(X-xopt) = f( xPt)t(x-xoPt) > 0,

for all x E K. Therefore, x* is a VIP solution.

Q.E.D.

6 Applications in transportation networks

In this section we apply the results from the previous sections to transportation

networks. We first briefly outline the traffic equilibrium problem.

Consider a network G with links denoted by i, j,..., paths by p, q,... and origin-

destination (O-D) pairs of nodes by w, z,.... A fixed travel demand, denoted d,

is prescribed for every O-D pair w of the transportation network. Let Fp denote

the nonnegative flow on path p. We group together all the path flows into a vector
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F E RN (N is the total number of paths in the network). The travel demand d,

associated with the typical O-D pair w is distributed among the paths of the network

that connect w. Thus,

d, = Fp, VO-D pair w, (20)
p joining w

or, in vector form, d = BF, where B is a W x N O-D pair/path incidence matrix

whose (w, p) entry is 1 if path p connects O-D pair w and is 0 otherwise. The path

flow F induces a load vector f with components fi defined on every link i by

f = E Fp, (21)
p passing through i

or, in vector form, f = DF, where D is a n x N link/path incidence matrix whose

(i, p) entry is 1 if link i is contained in path p and is 0 otherwise. Let n be the total

number of links in the network.

A load pattern f is feasible if some nonnegative path flow F, that is,

Fp > 0 V paths p, (22)

induces the link flow f through (21) and is connected to the demand vector d through

(20). It is easy to see that the set of feasible load patterns f is a compact, convex

subset K of R n .

Our goal is to determine the user optimizing traffic pattern with the equilibrium

property that once established, no user can decrease his/her travel cost by making a

unilateral decision to change his/her route. Therefore, in a user-optimizing network,

the user's criterion for selecting a travel path is personal travel cost. We assume

that each user on link i of the network has a travel cost ci that depends, in an a

priori specified fashion, on the load pattern f, and that the link costs vector c = c(f)

is a continuously differentiable function, c : K Rn . Finally, we let Cp = Cp(F)

denote the cost function on path p. The link and path cost functions are related as

follows:

Cp(F) = E ci(f), V paths p. (23)
iEpath p
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Mathematically, a flow pattern is a user equilibrium flow pattern if

Vw (O-D pair), Vp connecting w : Cp(f) = vw if Fp > 0 and Cp(f) > v if Fp = 0.

The user equilibrium property can also be cast as the following variational inequality:

f* E K is user optimized if and only if c(f*)t(f - f*) > O, Vf E K. (24)

Several papers [10], [11], [25], [36], [16] and the references they cite elaborate in

some detail on this model and its extensions.

The analysis in the previous sections applies to the traffic equilibrium problem,

with the travel cost function c as the VIP function and with the link flow pattern

f as the problem variable. The f-monotonicity condition becomes

[c(fl)_ ( 2 )] t[fl _ f 2] > allc(fl)-_ c(f 2)l2 Vfl ,f 2 E K,

for some positive constant a. As indicated in Section 2, we can verify this condition

by checking whether the matrix

vc(f) t - a V c(f)t V c(f') f, f' E K

is positive semidefinite for some a > 0. Theorems 3 and 5 guarantee that the

sequence of averages induced by the projection and the relaxation algorithms con-

verges to an equilibrium solution f* of the user optimizing network. Furthermore,

since the feasible set K in the traffic equilibrium example is always bounded for any

a priori fixed demand d, Theorem 4 establishes that every accumulation point of the

sequence induced by the projection algorithm is a user optimizing load pattern.

Next, we study some traffic equilibrium examples that illustrate the importance

of the f-monotonicity condition.

Examples:

1. The simplest case arises when the travel cost function ci = ci(f) on every link

i depends solely, and linearly, upon the flow fi on that link i:

ci = ci(fi) = gifi + hi.
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In this expression, gi and h are nonnegative constants; g denotes the conges-

gi 0 ... 0

o 92 ... 0
tion coefficient for link i. Then c(f) = .'

0 0 ... gn

91 0 ... 0

0 g2 ... 0
Since vc = , the matrix Vc(f)t -a c(f)t c(f') becomes

o 0 ... gn

g91 - ag 2 ... 0

0 g2 -- ag 2 ... 0
Vct(I - a V c) =

0 0 ... gn -ag

This matrix is positive semidefinite if gi - ag2 > 0 for i = 1,2, ... , n.

This, in turn, is true if the congestion coefficients gi > 0 for i = 12, ..., n

and a < 
- maxl<i<n9s

The matrix is positive definite, and so the function c is strongly monotone,

if each gi > 0 and a < m <. It is positive semidefinite, and so (from

Section 2) is f-monotone even if some gi = 0. Our analysis still applies even

though some or all g's are zero. This example shows that f-monotonicity might

permit some links of the network to be uncongested. This might very well be

the case in large scale networks. The projection algorithm would still allow

us, as shown in Theorem 3 and Theorem 4, to compute an optimal solution

to the problem.

2. Consider the simple case of a transportation network, with one O-D pair

w = (x,y) and three links connecting this O-D pair as shown in Figure 1.

In this case, the link congestion function is not separable.
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1 3

Figure 1: The traffic equilibrium problem

The travel costs on the links are

cl(f) = fl + f2 + 10,

1
c2 (f) = fi + 2f2 + 5,

2

c3 (f) = 15.

Suppose the demand for the O-D pair w is d, = 20. The user equilibrium

solution is f = 0, f2 = 5 > 0, f3 = 15 > 0. At this point, cl = c2 = c3. In

this case,

1 1 0

VC=M= 2 0

0 0 0

1 0

Mt= 1 2 0

0 0 0

and

2 3 0

M + M t = 3 4 0

0 0 0
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which is positive semidefinite, but not positive definite. Furthermore,

- a - 2a 0

Mt - aMtM = 1-2a 2-5a 0

for a = 1/5, becomes

3 1
4 10°

Mt _ Mt M 1 0
5 5

which is a positive semidefinite matrix, since its symmetric part is

3 7 o
[ To]

(which is indeed positive semidefinite). In this example, the travel cost func-

tion c is f-monotone, but not strongly monotone.

3. We conclude this set of examples by considering a transportation network with

multiple equilibria, specifically a network (see Figure 1) consisting of one O-D

pair w = (, y) and three links connecting this O-D pair. The travel demand

is d, = 20. The travel costs on the links are

cl(f) = f + f2 + 5,

c2 (f) = fi + f2 + 5,

C3(f) = 30.

The user equilibrium solution is not unique. In fact, the problem has infinitely

many user optimized solutions. Any fi + f2 = 20, f3 = 0 is a solution to the

user optimized problem, since then cl = c2 = 25 < c3 = 30.
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The matrix vc = M is

1 1 0

This matrix is not positive definite. Nevertheless, the matrix

1 - 2a 1 - 2a 0

Mt - aMtM = 1-2a 1-2a 0 ,

s postve0 0 1/2. So the travel cost function c in this

is positive semidefinite for any a < 1/2. So the travel cost function c in this

case is f-monotone, but not strongly monotone.

We conclude this section by showing that if the link cost function is f-monotone,

then so is the path cost function. In establishing this result, we use the following

elementary lemma.

LEMMA 15:

Any set of n real numbers xi E R for i = 1, 2, ..., n satisfy the following inequality:

n n

[(Xi)]2 < nZ(xi). (25)
i=l i=l

This result is easy to establish by induction.

Proposition 2:

Let n be the total number of links in the network, and N be the total number of

paths. If the link cost function c = c(f) is f-monotone with respect to the constant

a, then the path cost function C = C(F) is also f-monotone with respect to the

constant a' = -.

Proof:

If the link cost function c = c(f) is f-monotone with respect to the constant a > 0,

then

[c(fl)- c(f 2 )]t[fl _ f 2] > allc(fl)- c(f2)112 Vfl f 2 E K.
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Making the replacements fi = p passing through i Fp, and Cp(F) = iEpath p Ci(f).

Observing that

[c(f') - (f 2 )]t[fl - f 2] = C[C(fl) - c(f 2 )][f - fi2],
i=1

we obtain

N

[c(f')-c(f 2 )]t [f' -f 2 ] = y~.[Cp(F1 _)-Cp(F2 )][F -F 2] = [C(F1) -C(F 2 )] t[F-F 2].
p= 1

The defining equality (23) and Lemma 15 imply that

N N

Z[Cp(F)- Cp(F2)] 2 Z[ = (c,(fl)-Ci,(f 2))]2 <
p=l p=l iEpath p

N

< Z (n E [c,(f)- C,(f2)]2)
p=l iEpath p

Since link i belongs to at most N paths, each term ci(fl) - c(f 2 ) appears in the

last expression at most N times, so

N n

[Cp(Fl) - Cp(F 2)] 2 < nN [ci(f') - ci(f 2)]2 .
p=l i=1

Combining these results shows that

[C(F 1) - C(F 2 )]t [F1 - F2 ] = [c(fl) - c(f 2 )]t [fl _ f 2] >

n N

> a [cC(f') - c 2(f2 )] 2 -nN [Cp(Fl) - Cp(F 2)]2 = a'llC(F')- C(F 2)1 2 ,
i=l p=l

if a' = ~ > 0. Therefore, the path cost function C = C(F) is f-monotone. Q.E.D.

This proposition shows that if the link cost function is f-monotone, then so is

the path cost function. The user optimizing path flow pattern should satisfy the

following VIP:

find a feasible path flow FOPt E K for which

C(FoPt)t(F - FPt) > O VF E K.
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Therefore, we can apply a path flow projection algorithm to solve the user optimizing

traffic equilibrium problem instead of a link flow one. The main step would be the

projection

Fk+l = PrG-(Fk - pG-1C(Fk)),

in the space of path flows F.

As our prior results show, we can consider networks that contain some uncon-

gested paths. A path flow algorithm is preferable to a link flow one because it is

much less costly to carry out projection iterations in the space of path flows than

in the space of link flows [6].

Proposition 2 is similar to a result of Bertsekas and Gafni, [6]: they assume

strong (rather than f-) monotonicity on the link cost function and show that a path

flow projection algorithm solves the user optimizing equilibrium problem.

7 Conclusions and open questions

In this paper, we analyzed the convergence properties of several classical algo-

rithms - the Frank-Wolfe algorithm and projection and relaxation algorithms -

with respect to the condition of f-monotonicity which is weaker than the standard

strong monotonicity condition. We began by showing the connection between f-

monotonicity and the norm condition of Dafermos [12], Chan and Pang [32], and

Hammond and Magnanti [18]. Assuming the f-monotonicity condition, we showed

that the sequence of averages induced by the projection algorithm converges to a

solution of the variational inequality problem. Under a norm condition weaker than

an existing one, we also established the convergence of the sequence of averages

induced by relaxation algorithms. To establish these two results, we employed an

ergodic theorem for nonexpansive maps due to Baillon [3]. Moreover, we showed that

when the feasible set K is both compact and convex, every accumulation point of

the projection algorithm solves the variational inequality problem. We also showed
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that every accumulation point of the sequence induced by the Frank-Wolfe algo-

rithm, when applied to convex optimization problems over convex sets, is a VIP

solution under the f-monotonicity condition. Finally, we applied these results to

transportation networks, permitting uncongested links. We showed that a path flow

projection algorithm can be used to solve the user optimizing problem when the link

cost function is f-monotone.

The results in this paper suggest the following question:

can some form of the f-monotonicity condition imposed upon the problem function f

guarantee convergence of the sequence of averages induced by other VIP algorithms,

such as linearization algorithms and more general iterative schemes?
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