
ON THE FINE-GRAIN
DECOMPOSITION OF MULTI-

COMMODITY TRANSPORTATION
PROBLEMS

by
Stavros A. Zenios

OR 236-90 November 1990

��·1_�_____1______14_-I-IY·i·IIIICI*YII^ � I_

I

1

On the Fine-Grain Decomposition

of Multicommodity Transportation Problems

Stavros A. Zenios

Decision Sciences Department

The Wharton School

University of Pennsylvania

Philadelphia, PA 19104.

October, 1990.

Abstract

We develop algorithms for nonlinear problems with multicommodity transportation
constraints. The algorithms are of the row-action type and, when properly applied,
decompose the underlying graph alternatingly by nodes and edges. Hence, a fine-grain
decomposition scheme is developed that is suitable for massively parallel computer
architectures of the SIMD (i.e., single instruction stream, multiple data stream) class.

Implementations on the Connection Machine CM-2 are discussed for both dense and
sparse transportation problems. The dense implementation achieves computing rate of
1.6-3 GFLOPS. Several aspects of the algorithm are investigated empirically. Compu-
tational results are reported for the solution of quadratic programs with approximately
10 million columns and 100 thousand rows.

� � II I· I ____L�I·__ I_� I_· __

_ �1

Fine-Grain Algorithms for Multicommodity Flows

Contents

1 Introduction

1.1 Problem Formulation

1.2 Matrix Formulations.

1.3 Outline of the Paper

2 The Fine-Grain Parallel Algorithms

2.1 The Row-Action Framework

2.2 Algorithm for Quadratic Problems .

2.3 Algorithm for Entropy Problems

2.4 Extensions to Generalized Networks . . .

2.4.1 Algorithm for Quadratic Problems

2.4.2 Algorithm for Entropy Problems .

2.5 Discussion.

2.5.1 Relaxation Parameters .

2.5.2 Choice of Control Sequence

2.5.3 Potentially Difficult Problems . . .

2.5.4 Asymptotic Convergence......

3 Massively Parallel Implementations

3.1 The Connection Machine CM-2

3.1.1 Elements of the Parallel Instruction Set Paris .

3.2 Dense Implementation.

3.3 Sparse Implementation .

4 Experimental Design and Performance Evaluation

4.1 Problem generator.

4.2 Algorithmic performance

4.3 The effects of problem structure

4.3.1 Increasing number of commodities

4.3.2 Increasing condition number.

4.3.3 Increasing percentage of active GUB constraints, a.

4.3.4 Increasing tightness of active GUB constraints,. .

4.4 The Performance of the Sparse Implementation

4.5 Solving large scale problems

2

4

5

8

11

12

12

15

20

24

24

27

32

32

32

33

33

33

34

35

36

39

40

42

43

45

45

46

48

48

48

52

Fine-Grain Algorithms for Multicommodity Flows 3

5 Concluding Remarks 53

__ _�� ___ _�__� _

Fine-Grain Algorithms for Multicommodity Flows 4

1 Introduction

Data-level parallelism appears to be a successful paradigm for computing on massively

parallel architectures. It is based on the premise that a massively parallel algorithm should

use multiple processors to carry out identical operations on different parts of the input

data. Communication among processors is orderly and synchronous. With this approach

one avoids the difficulties encountered in coordinating thousands - or, potentially, millions

- of processors in an asynchronous, chaotic fashion. Even more importantly, however, is

the ability to develop abstract models for data-level parallel computing: the vector random-

access-machine (V-RAM) of Blelloch [1990]. It is thus possible to study complexity issues

of massively parallel algorithms, and hence gain insight in their efficiency in an abstract

setting and without actual implementations. A potential limitation of data-level parallelism

is the requirement that the operations of the algorithm are identical on all the data. To

what extend this mode of computing can be applied to solve a broad range of problems is

presently unclear.

The focus of this paper is the design of fine-grain decomposition algorithms for non-

linear optimization problems with multicommodity transportation constraints. We seek

algorithms that decompose the problem into a large number of independent and identical

subproblems, and are, therefore, suitable for data-level parallel computing. If a problem

requires O(L) steps, a fine-grain decomposition will require L 0(1) steps. On a computer

system with P processors the problem can be solved in [1l O0(1) steps. When P is large

enough - as is the case with massively parallel computers - the problem can be solved in

a constant number of operations which is independent of its size.

Fine-grain decomposition algorithms are designed here for a class of multicommodity

transportation problems. Such problems appear in operations research (logistics, distribu-

tion, manufacturing, etc.), computer science (communication routing) and transportation

(the problem of estimating origin/destination tables, which is similar to the estimation of so-

cial accounting matrices in development planning and the estimation of migration patterns

in regional sciences). This is the second in a series of three papers that develop massively

parallel algorithms for optimization problems with network structures: The single com-

modity transportation problem was studied in Zenios and Censor [1990] and algorithms for

stochastic network problems are the topic of the paper by Nielsen and Zenios [1990a].

Linear multicommodity network flow problems have received extensive investigation;

see the survey articles by Assad [1978] or Kennington [1978]. Very little has been done

on the nonlinear problem, and in the cases known to the author it has been motivated by

recent developments in parallel computing: Shultz and Meyer [1989] and Zenios, Pinar and

Fine-Grain Algorithms for Multicommodity Flows 5

Dembo [1990]. The (easier) problem when the multiple commodities jointly contribute in
a congestion function has been studied in greater length: Bertsekas [1979] and Gallager

[1977] for data communication networks, and Chen and Meyer [1988] for traffic assignment
problems. The problems considered here have a more general constraint set than these

earlier studies: they permit multipliers (i.e., gains) on individual commodities, and weighted

linear combinations of the commodities contribute to the coupling constraints. This is the

generalized multicommodity flow problem. The only study that dealt with this problem is
Wollmer's [1972].

The algorithmic approach we follow is based on the class of row-action algorithms of

Censor [1981]. These algorithms have been proven successful in the solution of very large,

sparse optimization problems that arise in medical imaging, Herman [1980]. With the ap-
propriate choice of some control parameters, the algorithms can be implemented in parallel:

for a classification see Censor [1988], and for applications Zenios and Censor [1988] and
Censor and Zenios [1989a]. A limitation of this approach is that the developed algorithms

are specialized for quadratic or entropy objective functions. Such functions are typically

used in the matrix estimation applications mentioned above. However, these algorithms can

not solve directly the linear programming case. They are, nevertheless, the building blocks

for more general algorithmic schemes that can be applied to linear programs: the proximal

minimization algorithm of Rockafellar [1976], or the proximal minimization algorithm with

D-functions of Censor and Zenios [1989b].

One of the developed algorithms is been implemented on a massively parallel Connection

Machine CM-2 with up to 32K processing elements. We develop the data structures for the

representation of sparse, multicommodity network problems. To this end we extend the data

structures of Zenios and Lasken [1988] to represent multiple single-commodity networks.

The implementation is used to study the performance of the algorithm. Numerical results

are analyzed for the solution of test problems with up to 10 million variables and 100

thousand constraints.

We define now the problem and establish notation.

1.1 Problem Formulation

We will use < m > to denote the set {1,2,3,...,m}. m is the m-dimensional Eu-
clidean space and < .,- > is the Euclidean inner product. mid{a,i, } is the median
of the the three real numbers, a, and y. If a y the median can be computed as

max{a, min{f(,)}}. We use [m] 2 to denote rounding up of m to the next integer that is

a power of 2 (e.g., [6512 = 128).

Fine-Grain Algorithms for Multicommodity Flows 6

A transportation graph is defined by the triplet G = (VO,VD,£) where Vo =< mo >,

VD =< mD > and £ C {(i,j)li E Vo,j E VD}. Vo and VD are the sets of origin and
destination nodes with cardinality mo and mD respectively. £ is the set of n directed

arcs (i,j) with origin i and destination j which belong to the graph, (n < mo mD) .

On this transportation problem we consider the flow of K distinct commodities and let

< K > denote the set of these commodities. We assume for symmetry of notation that the

underlying graph is identical for all commodities. Additional notation is needed to define

the transportation problem for each commodity, and then to define the joint restrictions

over all the commodities.

For each commodity k E < K > we have:

Xk = (xk(i,j)) E Rn , (i,j) E £, is the vector of flows,

Uk = (uk(i,j)) CE n , (i,j) E C, is the vector of upper bounds on the flows,

mk = (mk(i,j)) E n , (i,j) E 6, is the vector of multipliers on the flows,

Sk = (Sk(i)) E m o , i Vo, is the vector of supplies,

dk = (dk(j)) E RmD , j e VD, is the vector of demands,

rk = (rk(i)) e wmo , i E VO, is the vector of dual prices for the origin nodes,

rk = (r kD (j)) E ,RmD , j E VD, is the vector of dual prices for the destination nodes,

rk = (rk(i,j)) e n v (i,j) E £, is the vector of dual prices for the bound constraints.

For the joint capacity constraints we define:

U = (U(i,j)) ~n , (i,j) E , the vector of mutual arc capacities,

ek = (ek(i,j)) E n , (i,j) E ,k E< K >, coefficients indicating the contribution of
commodity k to the mutual capacity of arc (i, j),

= ((i,j)) E Rn , (i,j) E £, the vector of dual prices for the joint capacity constraints.

In order to define the node-arc incidence relationships - assumed to be identical for all

commodities - we define:

6+(i) = {j E VDI(i,j) E } , the set of destination nodes which have incident arcs with

origin node i,

Fine-Grain Algorithms for Multicommodity Flows 7

6-(j) = {i E VoI(i,j) E E} , the set of origin nodes which have incident arcs with destina-

tion node j.

We define the pure and generalized multicommodity transportation problems as follows:

[PMTR] Pure Multicommodity Transportation Problem

Minimize F(x)

Subject to:

E Xk(i,j) = sk(:
jE+ (i)

E Xk(i,j) = dk(.
iES-(j)

0 < Xk(i,j) < uk(

E Xk(ii) < U
kE<K>

[GMTR] Generalized Multicommodity

Minimize F(x)

Subject to:

E Xk(ij) <
jE6+ (i)

i), Vi e Vo, k e< K >

j), Vj E VD, k E< K >

i,j), V(i,j) E C, k E< K >

i,j), V(i,j) e 6

Sk(i), Vi E Vo, k E< K >

5 mk(i,j) Xk(i,j)

iE6-(j)

O < Xk(i,j)

E ek(ij) *Xk(ij)
kE<K>

The objective function F : RnK _

[Q] Quadratic

= dk(j), Vj E VD, k E< K >

< Uk(i,j), V(i,j) e C, k E< K >

< U(i,j), V(i,j) E C

(8)

(9)

(10)

3? may take one of the following two forms:

(11)F(x) = y ? 1Wk(i,j) X2(i,j) + Ck(i,j) . Xk(i,j)
kE<K> (i,j)E£

where {wk(i,j)} and {ck(i,j)} are given positive real numbers.

[E] Entropy

F(x) = E E5 xk (i,j)) [ln ((12)
kE<K> (ij)E£

where In is the natural logarithm and {ak(i,j)} are given positive real numbers.

This discussion concludes the formulation of the problems for which we develop algo-

rithms in the sequel. The following assumptions are made for both [PTMR] and [GMTR].

(1)

(2)

(3)

(4)

(5)

Transportation Problem

(6)

(7)

Fine-Grain Algorithms for Multicommodity Flows 8

Assumption 1: The feasible sets defined by (2)-(5) and (7)-(10) respectively are non-
empty. The existence of feasible solutions for multicommodity network flow con-

straints can be checked using the algorithm in Gondran and Minoux [1986, pp. 251-

256].

Assumption 2: The transportation graph G is connected. Otherwise, the problem could

be partitioned into its disconnected components and each solved separately.

Assumption 3: sk(i) > 0, Vi E Vo, k E< K > and dk(j) > 0 Vj E VD, k E< K >. If

these conditions are violated for some index i or j for some commodity k, then all

the flows for the particular commodity on arcs incident to the offending node can be

set to zero, and the relevant constraint removed from the problem.

1.2 Matrix Formulations

In order to develop the row-action algorithms we will need to express the problems in a

compact matrix notation. Constraints (2)-(5) are rewritten as:

Sx = s (13)

Dx = d (14)

0 < Ix < u (15)

0 < Ex < U (16)

I is the nK x nK identity matrix. x E SnK is the vector (1l x 2 [... I XK)T, u E nK is
the vector (ul I u2 I ... I UK)T, S E RmoK is the vector (s 1 I ... I SK)T and d E RmDK

is the vector (dl d2 I ... I dK)T.
S is the moK x n matrix:

I .. m, -. . . m ImD.. II

Iall...almr

i_. K K
I. m ... amnmn -

with entries ak, for all k E< K >, given by

S

4

v _

Fine-Grain Algorithms for Multicommodity Flows

ak = 1, ifj E 6 (i), (17)
t3 0, otherwise. (17)

The remaining entries of S are all zeros. D is the mDK x n matrix

0 1 3m 1 I

I11 MO

rK mr
,.o rnm

with entries pk, for all k < K >, given by

1, ifi E 6-(j),

~t'/ = 0, otherwise.

The remaining entries of D are all zeros. E is a generalized-upper-bound (GUB) constraint

matrix of dimension n x nK of the form:

ell I ell l 1 el

el I e2 1 1 eK
E=I I . I -- I

I . I I
el e2 eK
emomD ImOmD OI I momD

with entries e, for all k E< K >, given by

1, if(ij) (19),
t3 0, otherwise.

The remaining entries of E are all zeros.

We also use

7rD
Z=

r

D=

9

Fine-Grain Algorithms for Multicommodity Flows 10

to denote the vector of dual prices, where r° E RmoK is the vector (r ° [Ir° ... I r °)T ,

r D E ~mDK is the vector (rl 2D ... r) T , and r e ~nK is the vector (rl r2 ... I
rK)T.

Finally, let

D

d

and be = (bt) = (Oet) denotes the -th column of T, the transpose of . We use the

lexicographic ordering of the variables, t, to index 'e, where the lexicographic order of

variable kj is given by t = (k - 1)n + (i - 1)mo + j. The rows of · are partitioned into

four sets:

Io = {1 I = mD(k - 1) + i, Vi E< mo >, k E< K >}, corresponding to rows of equality
constraints over all origin nodes, (i.e., rows of equation (13)).

ID = { I = mok + j, Vj E< mD >, k E< K >}, corresponding to rows of equality con-

straints over all destination nodes, (i.e., rows of equation (14)). Rows corresponding

to both origin and destination nodes are denoted by I = IO U ID.

12 = { = (mo + mD)K + q, Vq E< n >}, corresponding to the simple bounds of equation
(15).

13 = {l = (mo+mD+n)K+q, Vq E< n >},corresponding to rows of the GUB constraints,

(i.e., rows of equation (16)).

Fine-Grain Algorithms for Multicommodity Flows 11

With this notation the pure multicommodity problem can be expressed as

Minimize F(x) (20)

Subject to:

Y < x < 6 (21)

With slight modifications in the definitions of D, E, y and 6, the same formulation ex-

presses the generalized multicommodity problem. The modifications are the following:

1. Entries pk of the matrix D are given by

mk(i,j), if i E 6-(j),

0, otherwise.

2. Entries ek of the matrix E are given by

k ek(ij), if (i,j) E ,
iJ = 0, otherwise.

3. Define

d

0We will be developing the algorithms starting from the compact matrix notation,

0

We will be developing the algorithms starting from the compact matrix notation, but

will be expressing them finally in the algebraic representation of equations (2)-(5) and (7)

- (10). It is only in the later form that the fine-grain decomposition becomes apparent.

1.3 Outline of the Paper

In Section 2 we develop the algorithms. The general row-action framework is first sum-

marized. It is then used to develop fine-grain decomposition algorithms for both pure and

generalized problems and for both quadratic and entropy objective functions. Section 3

develops the data structures for the implementation of the algorithms on massively parallel

computers of the SIMD (i.e., single instruction stream, multiple data stream) class. Section

4 presents results from numerical experiments conducted on a Connection Machine CM-2.

Fine-Grain Algorithms for Multicommodity Flows 12

The experiments establish the efficiency of the algorithms for the solution of very large

problems. They also provide some insight on the performance of the algorithms for differ-

ent problem characteristics. Section 5 presents the conclusions of our study and discusses

directions for further research.

2 The Fine-Grain Parallel Algorithms

We begin with a sketch of the main idea. A fine-grain decomposition of the multicom-

modity transportation problem is developed when properly applying a row-action iterative

algorithm. Such an algorithm operates on one row of the constraint set at a time - hence

its name. The iterative step consists of an adjustment of the dual price of the constraint

followed by an adjustment of the primal variables. Throughout, complementarity is pre-

served and upon completion of the algorithm primal feasibility is achieved. The algorithm

iterates using an almost-cyclic control sequence over all the constraints.

Obviously, if two constraints do not share any primal variables, the respective iterative

steps can be executed independently. If multiple processors are available, they can also

be executed in parallel. It is then desirable to use the almost-cyclic control mechanism to

choose independent constraints. In the case of the multicommodity transportation problem,

the algorithm first iterates on the origin nodes for all the commodities, then it iterates on

the destination nodes for all the commodities, then it iterates on the simple bounds for

all the commodities, and finally it iterates on the GUB constraints. One iteration of the

algorithm requires O(n + (mo + mD)K) operations. When iterating on the origin nodes it

requires moK-.O(1) operations, on the destination nodes it requires mDK.h'O(1) operations,

on the simple bounds it requires n 0(1) operations, and on the joint capacity constraints

it requires n 0(1) operations. Hence, if the number of processors P scales linearly with

max{n, moK, mDK}, the algorithm can be executed in constant number of operations

per iteration.

The rest of this section makes these ideas precise.

2.1 The Row-Action Framework

We need some preliminary discussion. Let F : A C_ R - R and let S 4~ be an open

convex set such that S C A. The set S is called the zone of F if F is strictly convex and

continuous on S and continuously differentiable on S.

Let D(x,y) = F(x)- F(y)- < VF(y),x - y >, and let H(a,b) be the hyperplane

H(a,b) = {x E Rn I < a,x >= b}. The D-projection (or Bregman projection) of a point y

Fine-Grain Algorithms for Multicommodity Flows 13

onto H(a, b) is defined by

PH(a,b) = arg min D(x,y) (24)
XEH(a,b)n

A function F - that belongs to the family of Bregman's functions as characterized by

Censor and Lent [1981] - has the zone consistency property with respect to the hyperplane

H(a,b) if the D-projection of every y S onto H(a, b) is also in S. If a function is zone

consistent with respect to H(a,b) then it can be shown, Censor and Lent [1981, Lemma

3.1] that the D-projection of y onto H(a,b) is the point x given by the unique solution of

the nonlinear equations in x and /:

VF(x) = VF(y) + 3 a (25)

< a,x > = b (26)

The unique real number is known as the Bregman parameter.

Both the quadratic and entropy functions [Q] and [E] are Bregman's functions, Censor

and Lent [1981]. It is also easy to verify that - under Assumptions 1-3 - both functions

have the strong zone consistency property with respect to the hyperplanes H(t , 7e) and

H(qt, Se) for all £ E I1 U I2 U I3. Hence we can apply the following general iterative scheme:

Fine-Grain Algorithms for Multicommodity Flows 14

Algorithm 2.1 General Row-Action Algorithm for Mixed Equality and Inequal-
ity Constraints

Step 0: (Initialization) v - 0. Get z ° and x° such that

VF(x°) = ITzO° . (27)

Step 1: (Iterative step over equality constraints). Choose a row index e(v) E I1.

VF(xv+/ 2) = VF(x+) (28)

ZV + 1/2 = Zv -- Pet() , (29)

where fi is the Bregman parameter associated with the D-projection of x on the

hyperplane H(et(v), t(v)).

Step 2: (Iterative step over interval constraints). Choose a row index (v) E 12 U 13.

VF(xv+l) = VF(xz+ 1/ 2) +, fte (") (30)

zv+ l = zv +1/ 2 _- ee(v) (31)

= mid{zt+12,r , A}. (32)

r and A, are the Bregman parameters associated with the D-projection of x" +1/ 2

on the hyperplanes specified when the left and right inequalities, respectively, of the

interval constraints hold with equality (i.e., XV + l
/

2 is projected on the hyperplanes

H('t(),7te(v)) and H(t(v),te(v)) respectively). {e(v)) is the control sequence of

the algorithm, henceforth abbreviated as = (v). e E mO+mD+2n is the e- th

standard basis vector having 1 in the - th coordinate and zeros elsewhere.

Step 3: Let v -- v+ 1, and return to Step 1.

Fine-Grain Algorithms for Multicommodity Flows 15

2.2 Algorithm for Quadratic Problems

We specialize now the general row-action scheme for quadratic programs with pure, multi-

commodity network constraints. The iterative step for the equality constraints is derived

from Algorithm 2.1 (Step 1). It takes the form:

t t + Ot, t= 1,2,... Kn (33)

ZV+l
1

= Z - /ve (34)

where E I. The parameter /3 is obtained by solving

Yt = x + 35, t = 1,2,... Kn (35)Wt

< Hoyt > = Yte (36)

For any control index E Io the iterative step is obtained as follows: First - by the

definition of Io - £ can be expressed as = mD(k - 1) + i for some i E< mo > and

k < K >. Hence, et is the i-th row of the k-th block of matrix S with entries a as given
by (17). x' will be updated according to equation (33) only when Ot $ 0. This occurs for

values of t that correspond to the lexicographic ordering of variable xk(i,j) for j E b+(i),

since it is only for these values that ak = 1. Furthermore, the -th row of is sk(i) with

dual variable rk (i). Hence, system (35)-(36) can be simplified to

yk(i,j) = x4k(i,j) + (i) (37)
Wk(i,j)

yk(i, j) = sk(i), (38)
jE6+ (i)

for all k E< K >. Solving this system for P3. we obtain

Pv e pesi ori/3 isk(i)- E -(i, j) (39)
jE + (i) k(i) jE6+ (i)

This expression for 3, is substituted in (33)-(34) to complete the iterative step. Similarly,

we obtain the iterative step for any control index e E ID.

The iterative step for the simple bound constraints (i.e., E I2) can be obtained as'

a simplification of the interval constrained step. Is is identical to the step for the single

commodity transportation problems, see Zenios and Censor [1990], and its derivation is not

repeated here.

Fine-Grain Algorithms for Multicommodity Flows 16

For any control index E I3 the iterative step is taken over the interval constraints. It

is obtained from Algorithm 2.1 (Step 2):

-t xt + t , t = 1,2,...kn (40)

zV+l = z- /vee, (41)

when , = mid{z, r, a,}. r, is obtained by solving

Ir v .~")
Yt = xt + V t, t= 1,2,... Kn (42)

< Ye, y > = ?e, (43)

and A, is obtained by solving

Yt = x + -Vt, t = 1,2,... kn (44)
Wt

< e,y > = be. (45)

In order to solve for Fr or A , , we need once more to examine the structure of ¢be when

e E I 3 is given by e = (mo + mD + n)K + q for some q E< n >. d e is the q-th row of

the matrix E with entries ej as given by (19). 4x will be updated according to (40) only

when 4 0. This occurs for values of t that correspond to the lexicographic ordering

of variables xk(i,j) that satisfy q = moi + j for all k E< K >. Furthermore, the -th
row of y is 0, the -th row of 6 is U(i,j), and the dual variable is (i,j). With these

observations, systems (42)-(43) and (44)-(45) can be simplified to:

yk(i,j) = Xk(i,j) + W(i (46)
Wk(i,j)

K

E Yk(i,j) 0, (47)
k=l

and

Yk(i,j) = xt(i,j) + (i (48)
Z)w j k(i,j)

K

Eyk(i,j) = U(ij), (49)
k=l

Fine-Grain Algorithms for Multicommodity Flows 17

for all k E< K >. Solving these systems, we obtain

K
rv= - W) ZXk(i, j) (50)

Ek=l Wk(ij) k=l

and

Av 1 [U(i,j) - (ij) (51)
wk=l Wk(tj) k=l

These expressions for r, and A, are used to compute /,, which is then substituted in

(40)-(41) to complete the iterative step.

We have now all the components required to complete the algorithm for pure multicom-

modoty transportation problems with a quadratic objective function:

Fe-an AloihsfrMlicmoiyFos1

Algorithm 2.2: Quadratic Optimization Algorithm for Pure Multicommodity

Transportation Problems.

Step 0: (Initialization) v -- 0. z 0,

zki Ck(i,j) k e< K >, (i,j)E £. (52)
Wk(i,j)'

Step 1: (Solve the single commodity problems)

FOR k = 1,2,3,... K:

Step 1.1: (Solve for origin nodes)

FOR i = 1,2,3,...mo:

Compute

P sk(i)- (i,j) (53)
L-j.~s+ +(i) wk(i4j) [jE+(i)

Update

xk(i,j) k- x(i,j) + k(ij)' i e 6+(i) (54)

(r(i))+l = ('7r(i)) -
- (55)

ENDFOR

Step 1.2: (Solve for destination nodes)

FOR j = 1,2,3,... mD:

Compute

= Ei 1 [dk(j) - E s(x(ij) (56)

Update

x(i,j) -- xk(i,j) + wk(i,j) i E (j) (57)

(rD(i))>+1 = (irD(j))" --P (58)

ENDFOR

Step 1.3: (Solve for the simple bounds)

FOR (i,j) E £:

Fine-Grain Algforithms for Multicommodity Flows 18

Fine-Grain Algorithms for Multi commodity Flows 19~~
Compute

0 = mid{r[(i,j), wk(i,j) (uk(i,j) - (i,j)), -Wk(i,j) X4(i,j)}

Update

X4(i,j) +- X(i,j) + k(ij)
k(i,j)) =

r+ f(i, J) = rk(i,j) /

(59)

(60)

(61)

ENDFOR

ENDFOR

Step 2: (Solve for the joint capacity constraints)

FOR (i,j) E :

Compute

1 K

rI = -K 1 E Xk(i,j)
k=l wk(,j) k=1

1 [U(i,j)-
Zk=l Zk(ij)

K

E Xk (i j)
k=l

P = mid{,v(i,j),r,,,)v}

0+ (i,j)

(62)

(63)

(64)

= x(ij) + k(i,j)' Vk < K >

= bv(i,j) - p, Vk E< K >.

(65)

(66)

ENDFOR

Step 3: Let v - v+l

Update

19Fine-Grain Algforithms for Multicommodity Flows

AV

7and return to Step

Fine-Grain Algorithms for Multicommodity Flows 20

2.3 Algorithm for Entropy Problems

The development of the algorithm for entropy optimization problems proceeds along similar

lines as the quadratic programming algorithm of the previous section. The basic iterative

step for the equality constraints - see Step 1 of Algorithm 2.1 - is of the form:

x+ = xVexp(3b) (67)

zV+1 = zV - iet, (68)

where E I. The parameter f/3 is obtained by solving

Yt = xtexp(o/3[) (69)

< e,y> = Yt. (70)

We make the same observations as in section 2.2 about the structure of 4e and y to obtain

the system:

yk(i,j) = x'(i,j)exp(h,) (71)

Z Yk(i,j) = Sk(i), (72)
jEs+ (i)

for all k E< K >. Solving this system for exp(3v) we obtain:

exp(v) = E (i) (73)
EjW((i) Xl,J)'

This value of exp(fY') can be used in the primal updating step in (67). It appears, however,

that in order to update the dual variables according to (68) we need /,. To avoid taking

logarithms on (73), the algorithm will be working on the logarithm of the dual prices. If

we let ze = In z1 then the dual updating step is of the form:

+ = ep()t (74)

Hence, the iterative step can be completed using only algebraic operations.

Similarly, for the interval constraints, the algorithm takes the form:

t +l = xv exp(Pvb) (75)

z + l = z - /v ee, (76)

Fine-Grain Algorithms for Multicommodity Flows

where p, = mid{z,r F, A}. Making the same observations as in section 2.2 about the

structure of ~e, -y and 6, we arrive at the following system for r, and A,.

yk(i,j) = Xk(i,j) e x p (r) (77)
K

E yk(i,j) = 0, (78)
k=l1

and

Yk(i,j) = x(i,j)exp(A) (79)
K

E yk(i,j) = U(i,j), (80)
k=l1

for all k E< K >. It follows that

exp(r,) = 0, and (81)

U(i,j)
exp(A,) ((82)

kk+l xk(ij)

In order to avoid once more taking logarithms use the substitution iz = In ze and the

fact that In mid (exp ca, exp , exp y) = mid(a, ,). Then

exp(o/) = mid{24,exp(r,),exp(A)} (83)

= min{2,exp(A,)}. (84)

This expression for exp(L3i) is used in (75) for the primal updating step. The dual updating

step is of the form

2-v+1 = Ze (85)
exep(P,)

Working out the algebra, we can now summarize the preceding discussion in the following:

21

Fine-Grain Agorithms fo Multicommoity Flows 2

Algorithm 2.3: Entropy Optimization Algorithm for Pure Multicommodity

Transportation Problems.

Step 0: (Initialization) v - 0. - 1,

Xk(i,j) = ak(i,j), Vk E< K >, (i,j) E E. (86)

Step 1: (Solve the single commodity problems)

FOR k = 1,2,3,... K:

Step 1.1: (Solve for origin nodes)

FOR i = 1,2,3,... mo

Compute
Sk(i)

Pv -EjE+(i) xk(ij) (87)

Update

xz(i, j) x'(ij)/v, j E +(i) (88)

(O(i))v+l _ (k(i))v

ENDFOR

Step 1.2: (Solve for destination nodes)

FOR j = 1,2,3,... mD:

Compute
/3(= dk(j) (90)

Update

X4(i,j) - (i,j)3,, i E &-(j) (91)

(1ffD(i))+ = (rD(j))" (92)

ENDFOR

Step 1.3: (Solve for the simple bounds)

FOR (i,j) E :

22Fine-Grain Aorithms for Multicommodity Fows

Compute

p, = min{rk(i,j), (93)
Xk(i,j)

Update

xk(i,j) Xk(ii)3v, (94)

+= V(i ,j) (95)
ENDFOR

ENDFOR

ENDFOR

Step 2: (Solve for the joint capacity constraints)

FOR (i,j) E £:

Compute

pv = min ,v(i,j), (i,j) (96)

Update

x+l(i,j) = x(i,j), Vk E< K > (97)

+'(idj) = ' , Vk < K > . (98)

ENDFOR

Step 3: Let v - v + 1, and return to Step 1.

23Fine-Grain Algorithms for Multicommodity Fows

Fine-Grain Algorithms for Multicommodity Flows 24

2.4 Extensions to Generalized Networks

The algorithms of sections 2.2 and 2.3 can be extended to the generalized problem [GMTR].

For the quadratic programming problem the development of the algorithm follows the dis-

cussion of section 2.2. The algorithm for the entropy problem does not have closed-form

solutions for the Bregman parameters. It turns out, however, that an approximation to these

parameters can be computed in closed form without destroying the asymptotic convergence

of the algorithm.

2.4.1 Algorithm for Quadratic Problems

In order to develop the algorithm, based on the developments of section 2.2 we need to make

three observations. First, the iterative steps when the control sequence is taken from Io is

a step over an interval constraint. (Recall that ye = -oo and 6e = se.) Second, for control

sequence E ID the coefficients of qe are given by equation (22). Hence, the generalized

network multipliers {mk(i,j)} enter the calculation. Third, the entries of Oe for E 3 are

given by equation (23). Hence, the coefficients ek(i,j)} enter the calculation. Using now

the basic Algorithm 2.1, much in the same way as we did in section 2.2, we obtain:

Fine-Grain Algorithms for MulticomodityF

Algorithm 2.4: Quadratic Optimization Algorithm for Generalized Multi-
commodity Transportation Problems.

Step 0: (Initialization) v - 0. z 0,

xk(i,j) = - k(i,j), Vk E< K >, (i,j) E £.
Wk(i,j)

(99)

Step 1: (Solve the single commodity problems)

FOR k- = 1,2,3,... K:

Step 1.1: (Solve for origin nodes)

FOR i = 1,2,3,... mo:

Compute

1

'jEs+(i) k(1)

Sk(i) - (100)

(101)/V = min{(0r°(i,j)), AV}

Update

x4(i,j)

(rO (i))V+l

ENDFOR

Step 1.2: (Solve for destination nodes)

FOR j = 1,2,3,... mD:

Compute

Pv =
1

m2 (i,j)

EiE6-(j) Wk(ij)

Update

(i,j)

+- X4(i,j) + w(ij) E +(i)
= (Wk(i,)-

= (rok(O" - 1

(102)

(103)

dk(j) - E mk(i, j)- (i, jk
iE6-(j)

(104)

(i,j) + k(ij) /v,

= (7kD(j)) -/P

i -(j) (105)

(106)

Fine-Grain Algforithms for Multicommodity Fows 25

E 41(i~ j)
jE6+ (i

A,

Fine-Grain Algorithms for Multicommodity Flows 26

ENDFOR

Step 1.3: (Solve for the simple bounds)

FOR (i,j) E

Compute

, = mid{r'(i,j), wk(i,j) (k(i, j) - (i,j)), -Wk(ij) x (i,j)} (107)

Update

4x[(i,j)

k+ (i, j)

+ x (i,j) +
wk(i,j)'

= rk (i, j) -

(108)

(109)

ENDFOR

ENDFOR

Step 2: (Solve for the joint capacity constraints)

FOR (i,j) E :

Compute

1 K

rV = rK,?2(ij) E ek1i,

v = mid{pK (i,j),ri',A),0 = mid{?0>(i), r,A,}

j) Xk(i,j)

K

E ek(i, j)
k=l

x(ii)

(110)

(111)]
(112)

Update

(113)

(114)

ENDFOR

Step 3: Let v - v + 1, and return to Step 1.

- (ij) + ek(i, j. Vk E< K >

= 0(i,j)-p3, Vk E< K >.pv+l(i,j)

Fine-Grain Algorithms for Multicommodity Flows 27

2.4.2 Algorithm for Entropy Problems

Finally, we develop the entropy optimization algorithm for the generalized problems. The

basic iterative step for control sequence parameter E Io is of the form:

xV+1 = x'exp(O,.5) (115)

Z" + 1 = Zv - ,ee, (116)

where h. = min{z, A,} and A, is the solution of:

Yt = x'exp(A.ctt) (117)

< ey > = t. (118)

We make the same observations as in section 2.3 about e and ae to obtain the system:

yk(ij) = x~(i,j) exp(A,) (119)

y yk(i,j) = sk(i), (120)
jE6+(i)

for all k E< K >. Solving for exp(A ") we obtain:

exp(Av) = S+(i) (121)

We make once more the transformation of dual variables ze = in ze, and using the fact that

lnmin(exp(a), exp(P)) = min(a, p) we can use

exp(/,V) = min(2t,exp(A,)) (122)

This value of exp(v) is used directly in (116) for the primal updating step. The dual

updating step becomes

Z+ = - (123)

The iterative step for E ID is obtained along similar lines. Recall that - by the

definition of ID - £ can be expressed as = mok+j for some j E< mD > and k E< K >.

Hence, 4t is the j-th row of the k-th block of matrix D, with entries Pk as given by (22).

The Bregman parameter , is obtained from:

Yk(i, j) = x(i, j) exp(Pvmk(i,j)) (124)

E mk(i,j)yk(i,j) = dk(j)- (125)
iES-(j)

Let w, = exp(o,,) and rewrite this system as a nonlinear equation in w,:

P(wO,) -E mk(i,j) . xk(i,j) .v m k(i 'j) _ dk(j) = 0. (126)
iEs-(j)

The existence of a solution to this equation follows from Lemma 1 of Censor et al. [1989].

However, its solution requires the use of an iterative procedure - such as the massively par-

allel linesearch algorithms developed by Zenios and Nielsen [1990]. It is possible, however,

to obtain an approximate solution in closed form by taking one secant step: Consider the

line through (0, -dk(j)) and (1, p(1)) instead of the graph of (p(w,). This line intersects

the w, - axis at
dk(j)

C = EiE-(j) mk(i,j) X(i,j) (127)

and we use this value of d, as an approximate solution to (126). It can be shown - see

Censor et al. [1989] - that using this approximation preserves asymptotic convergence of

the general Algorithm 2.1. This value of al: = exp(/,d) is used in the primal updating step

in (115). For the dual updating step we work once more in the space of ze = In ze.

The iterative step for e E I3 is

X t+l1 = xtexp(m3ot/) (128)

zV+ 1 = z - ,e (129)

where 3l = mid{ze,r F,,A,. By the definition of I3, can be expressed in the form

i = (mo + mD + n)K + q for some q E< n >, and qe is the q-th row of matrix E. Its

entries are given by equation (23). Hence, the parameters r, and A,, can be obtained by

solving

yk(i,j) = x,(i,j)exp(reki,j)) (130)
K

ek(i,j) yk(i,j) = 0, (131)
k=1

and

yk(i,j) x(i,j)exp(Aek(ij)) (132)
K

~E ek(i,j). yk(i,j) = U(i,j). (133)
k=l

28Fine-Grain Algforithms for Multicommodity Fows

Fine-Grain Algorithms for Multicommodity Flows 29

The solution to the first system is exp(r) = 0. For the second system we take a single

secant step to get an approximate solution

U(i,j)
exp(Av) = E -1 U ek(i,j) (ij) (134)

We work once more in the transformed dual variable space ze = In zt and observe that

exp(/,3) = mid{ze,exp F,,expA)}

= min{ze, exp A,}.

Hence, we have completed all the components required to write down the entropy optimiza-

tion algorithm:

F

Algorithm 2.5: Entropy Optimization Algorithm for Generalized Multicom-

modity Transportation Problems.

Step O: (Initialization) v - O0. 2° 1,

x(i,j) = ak(i,j), Vk E< K >, (i,j) E £. (135)

Step 1: (Solve the single commodity problems)

FOR k = 1,2,3,...K:

Step 1.1: (Solve for origin nodes)

FOR i=1,2,3,....mo:

Compute

+= Sk(i)
Ay = (136)

EjE6+(i) X[(ij)

13L = min{7r°(i), \,} (137)

Update

x[k(i,j) x k(i,j)v j E +(i) (138)

kT°(i))>+l = (k(j))v (139)

ENDFOR

Step 1.2: (Solve for destination nodes)

FOR j = 1,2,3,... mD:

Compute
dk(j)

/5~d =) (140)
EiE6-(j) mk (i,j) x j(i,j)

Update

x(i,j) - x(i,j)3, i 6-(j) (141)

k = (k D() (142)

ENDFOR

Step 1.3: (Solve for the simple bounds)

FOR (i,j) E C:

Fine-Grain Aorithms for Multicommodity Flows 30

Fine-Grain Algorithms for Multicommodity Flows

Compute

Update

Xk (i, j)

ENDFOR

ENDFOR

Step 2: (Solve for the joint capacity constraints)

FOR (i,j) E :

Compute

3v, = min (i,j),

Update

vY+' (i,j)

ENDFOR

Step 3: Let v +- v + 1, and return to Step 1.

pv = min{lr(i,j), v(i j)
) (143)

fV (i,j)

Pv

(144)

(145)

U(i, j) l
xk(i,j) J

(146)

= x(i,j)I3, Vk E< K >

(i,) Vk < h >

(147)

(148)

31

I -K
/ k=1 ekk~i,;)

Fine-Grain Algorithms for Multicommodity Flows 32

2.5 Discussion

Several issues deserve further analysis with respect to the developed algorithms. We discuss

here some of these issues, with the objective to provide additional insight and provoke further

studies.

2.5.1 Relaxation Parameters

Relaxation parameters {AV} can be built into all the algorithms. Actually a different

relaxation parameter can be used for different constraints, and they can also change value

as the algorithm proceeds, provided they are within some limits imposed to guarantee

convergence. For the quadratic algorithms, for example, 0 < < V < 2 and for the

entropy algorithms 0 < E < A" < 1. The use of relaxation parameters could accelerate

significantly convergence of the algorithm to an approximate solution. Since the algorithms

are usually terminated when a sufficiently good solution is obtained, the use of relaxation

parameters is of great practical significance. This is a topic worth further study.

2.5.2 Choice of Control Sequence

The algorithms developed here use the following control sequence: (1) origin node con-

straints, (2) destination node constraints, (3) simple bounds, (4) GUB constraints. Of

course, any other almost cyclic control sequence will do. It is unclear which control se-

quence would accelerate the convergence of the algorithm towards an approximate solution.

In addition to empirical studies, it is possible to undertake a more fundamental analysis:

The algorithms project the current iterate x" on successive hyperplanes that are specified

by the choice of q54(). If e(") and /t(v+l) are almost parallel the algorithm will take very

small steps. Looking at the cosine of the angle between successive hyperplanes

< ¢>e(v)¢,ef(v+1) > (149)

1 0e(~)]1'-11 ¢be(V+ l) 11

we can choose hyperplanes that are (almost) orthogonal. On the other hand, if some hyper-

planes {qe} are almost parallel, they could be replaced by a surrogate hyperplane. Given

the rich structure of the constraint matrix Ai, it is worthwhile to investigate specialized

acceleration schemes, starting from the general discussion of Bjorg and Elfving [1979] or

Bramley and Sameh [1990].

Fine-Grain Algorithms for Multicommodity Flows 33

2.5.3 Potentially Difficult Problems

It is possible to gain insight about the performance of the algorithm on a candidate class of

test problems by examining the problem data and the structure of the algorithms. Refer,

for example, to the quadratic programming Algorithm 2.4. In the primal and dual step

calculation (Step 1.1), we see the term 1 If the coefficients Wk(i,j) are very
ZjE6+() wk(t,3)

small, so will be the whole term and the algorithm will be taking very small steps. Similar

performance will be observed for very large and dense problems. In Step 1.2, we have the

expression 1 , . If the problem multipliers are very large, the algorithm will be
ZitE-(j) ij)

taking very small steps. On the other hand, if the multipliers are very small the algorithm

will be taking very large steps in satisfying the destination node constraints. Such steps

will, most likely, produce large errors in the origin node constraints and joint capacity

constraints. Multipliers close to 1.0 would be the best for our algorithms. Models that

use the multipliers to indicate gains/losses fit in this requirement For example, network

models for financial planning and for water distribution systems have multipliers close to

1.0. Similar observations can be made on the structure of the coefficients ek(i,j).

2.5.4 Asymptotic Convergence

Since the algorithms we developed are specializations of the general row-action framework,

their asymptotic convergence can be derived from known results. For pure problems and

generalized quadratic problems, we can obtain convergence from the results of Censor and

Lent [1981] and Elfving's [1989] extension to mixed equality and inequality constraints. For

the generalized entropy problem, we can obtain convergence from the results of Censor et al.

[1990]. For the relaxed versions of the algorithm, one needs to extend the results of Pierro

and Iusem [1986] and Censor et al. [1989] to the mixed equality and internal constrained

problem. Such extension is easy, see, for example, Elfving [1989].

3 Massively Parallel Implementations

The motivation for the design of the algorithms has been the desire to exploit massively

parallel computing for the solution of very large problems. Of particular interest is the con-

cept of data-level parallelism, whereby the problem is decomposed into fine-grain identical

operations executed on multiple data. If a large number of processors is available, then each

one could execute these operations on its local data elements.

Fine-Grain Algorithms for Multicommodity Flows 34

When there is interaction among the problem data, it would be necessary to commu-

nicate among the corresponding processors. Such communication can be combined with

computations, as for example when P processors with local data ai, i = 1,2,3,..., P co-

ordinate to compute the partial sums aj = e=l as. Or the communication step could be

void of any computing, as in the case of permuting the data among processors according to

some index list aCi +- alist(i).

The algorithms we developed decompose naturally for this form of parallelism. In this

section we discuss implementations of Algorithm 2.2 on a massively parallel Connection

Machine CM-2. However, the data structures developed here could be used to implement

any one of the algorithms in this paper.

3.1 The Connection Machine CM-2

In this section we introduce the characteristics of the Connection Machine (model CM-2)

that are relevant to the parallel implementations discussed in the sequel. Parts of this

description were included in earlier reports and are presented here to make the paper self

contained. Further details on the architecture of the CM can be found in Hillis [1985].

The Connection Machine is a fine grain SIMD - Single Instruction stream, Multiple

Data stream - system. Its basic hardware component is an integrated circuit with sixteen

processing elements (PEs) and a router that handles general communication. A fully con-

figured CM has 4,096 chips for a total of 65,536 PEs. The 4,096 chips are interconnected

as a 12-dimensional hypercube. Each processor is equipped with local memory of 8Kbytes,

and for each cluster of 32 PEs a floating point accelerator handles floating point arithmetic.

Operations by the PEs are under the control of a microcontroller that broadcasts in-

structions from a front-end computer (FE) simultaneously to all the elements for execution.

A flag register at every PE allows for no-operations; i.e., an instruction received from the

microcontroller is executed if the flag is set, and ignored otherwise.

Parallel computations on the CM are in the form of a single operation executed on

multiple copies of the problem data. All processors execute identical operations, each one

operating on data stored in its local memory, accessing data residing in the memory of

other PEs, or receiving data from the front end. This mode of computation is termed data

level parallelism in contradistinction to control level parallelism whereby multiple processors

execute their own control sequence, operating either on local or shared data.

To achieve high performance with data level parallelism one needs a large number of

processors that could operate on multiple copies of the data concurrently. While the full

configuration of the CM has 65,536 PEs this number is not large enough for several appli-

Fine-Grain Algorithms for Multicommodity Flows 35

cations. The CM provides the mechanism of virtual processors (VPs) that allows one PE to

operate in a serial fashion on multiple copies of data. VPs are specified by slicing the local

memory of each PE into equal segments and allowing the physical processor to loop over

all slices. The number of segments is called the VP ratio (i.e., ratio of virtual to physical

PEs). Looping by the PE over all the memory slices is executed, in the worst case, in linear

time. The set of virtual processors associated with each element of a data set is called a

VP set. VP sets are under the control of the software and are mapped onto the underlying

CM hardware in a way that is transparent to the user.

The CM supports two addressing mechanisms for communication. The send address is

used for general purpose communications via the routers. The NEWS address describes the

position of a VP in an n-dimensional grid that optimizes communication performance.

The send address indicates the location of the PE (hypercube address) that supports a

specific VP and the relative address of the VP in the VP set that is currently active. NEWS

address is an n-tuple of coordinates which specifies the relative position of a VP in an n-

dimensional Cartesian-grid geometry. A geometry (defined by the software) is an abstract

description of such an n-dimensional grid. Once a geometry is associated with the currently

active VP set a relative addressing mechanism is established among the processors in the VP

set. Each processor has a relative position in the n-dimensional geometry and NEWS allows

the communication across the North, East, West and South neighbors of each processor,

and enables the execution of operations along the axes of the geometry. Such operations are

efficient since the n-dimensional geometry can be mapped onto the underlying hypercube

in such a way that adjacent VPs are mapped onto vertices of the hypercube connected with

a direct link. This mapping of an n-dimensional mesh on a hypercube is achieved through

a Gray coding.

3.1.1 Elements of the Parallel Instruction Set Paris

Paris is the lowest level protocol by which the actions of the data processors of the CM are

controlled by the front end. Interfaces with languages like C, Fortran or Lisp allow users

to develop a program in a high-level language and then use Paris instructions to control

the execution of parallel operations. Paris supports operations on signed, unsigned and

floating-point numbers, message passing operations both along send and NEWS addresses

and mechanisms for transferring data between the host and the data processors.

Before invoking Paris instructions from a program the user has to specify the VP set,

create a geometry, and associate the VP set with the geometry. Thus a communications

mechanism is established (along both send and NEWS addresses). Paris instructions -

Fine-Grain Algorithms for Multicommodity Flows 36

parallel primitives - can then be invoked to execute operations along some axis of the ge-

ometry (using NEWS addresses), operate on an individual processor using send addresses,

or to translate NEWS to send addresses for general interprocessor communication or com-

munication with the front end. Parallel primitives that are relevant to our implementation

are the scans and spreads of Blelloch [1990].

Scan is also known in the literature as parallel prefix. The -scan primitive, for an

associative, binary operator , takes a sequence {xo,xl,... , n and produces another

sequence {Yo, Y1, * ,yn) such that Yi = xo xl (... 0 xi. On the Connection Machine, for

example, add-scan takes as an argument a parallel variable (i.e., a variable with its i - th

element residing in a memory field of the i - th VP) and returns at VP i the value of the

parallel variable summed over j = 0,..., i. User options allow the scan to apply only to

preceding processors (e.g., sum over j = 0,..., i - 1) or to perform the scan in reverse. The

-spread primitive, for an associative, binary operator 0, takes a sequence {(0, x1,... , ,n}

and produces another sequence {Yo, yl,... , yn such that Yi = xo 0 X1 0 .. 0 x n. For

example, add-spread takes as an argument a parallel variable residing at the memory of n

active data processors and returns at VP i the value of the parallel variable summed over

j = 0,... ,n. An add-spread is equivalent to an add-scan followed by a reverse-copy-scan

but is more efficient.

Another variation of the scan primitives allows their operation within segments of a

parallel variable or VP. These primitives are denoted as segmented-0-scan. They take as

arguments a parallel variable and a set of segment bits which specify a partitioning of the

VP set into contiguous segments. Segment bits have a 1 at the starting location of a new

segment and a 0 elsewhere. A segmented-®-scan operation restarts at the beginning of

every segment. . When processors are configured as a NEWS grid, scans within rows or

columns are special cases of segmented scans called grid-scans.

3.2 Dense Implementation

In all implementations we assume that the individual commodities are unbounded (i.e.,

uk(i,j) = +oo, for all arcs and all commodities), and are only restricted through the GUB

constraints. This is a reasonable practical assumption, and our implementations can be

easily extended to remove this restriction.

In the dense implementation of the algorithm, it is assumed that the graph g is dense.

The CM-2 is configured as a two-dimensional NEWS grid of dimensions [mol2 x mDl 2.

This grid is then used to solve a sequence of single-commodity transportation problems,

implemented as explained in Zenios and Censor [1990]. The memory of VP with NEWS

Fine-Grain Algorithms for Multicommodity Flows 37

coordinates (i,j) stores the data for arc (i,j) E £. It is partitioned into the following data
fields:

1. Supply and demand, s=sk(i) and d=dk(j).

2. Current iterate, x =xk(i,j).

3. Dual price PSI=b(i,j).

4. Sum of the flows over all commodities ex=K_=l xk(i,j).

5. Joint capacity constraint U= U(i,j).

6. Three fields IW, JW and KW that hold the constants 1 E l
iE6-(j) wkZl 3E 6 +(i) WE(i)

and K -- - respectively, and a field W that holds the quadratic coefficient.
Ek=l wk(i,--

7. Scaling factor BETA.

8. Scratch fields to hold intermediate results.

In the memory of the FE we define a vector of K structures of the form

a-commodity {

fe-w[mo] [mD]

fe-x[mo] [mD]
fe-s [mo]

fe-d[mD] } commodity-t;

commodity-t com[K] ;

Figure 1 illustrates the memory configuration of both the CM and the FE. With this

layout of memory, the algorithm is executed as follows:

Step 0: Initialize according to Algorithm 2.2 (Step 0), and set BETA=O.

Step 1: Initialize ex to zero. Move one commodity at a time from the FE Update x and

PSI according to (65) and (66), and solve by executing iteratively Steps 1.1-1.3 of

Algorithm 2.2. Accumulate the optimal solution into field ex, and move the optimal
solution from the CM to the FE.

Step 2: Compute the scaling factor (Step 2 of Algorithm 2.2, equation (64)), store in BETA

and return to Step 1.

Fine Grain Algorithms for Multicommodity
Flows

I

1

Figure 1: Memory configuration of the FE and the CM for the dense implementation.

W

Fine-Grain Algorithms for Multicommodity Flows 39

3.3 Sparse Implementation

Solving sparse network optimization problems on the CM is particularly challenging. The

arbitrary network topology has to be mapped to the virtual processors in a way that is

efficient both for computations and communications. It appears that the data structures

introduced in Zenios and Lasken [1989] are at present the best known method to repre-

sent sparse network problems. A comparison of alternative parallel implementations is

reported in Nielsen and Zenios [1990b], and these data structures have been used by Eck-

stein [1990] for the implementation of his alternating directions method of multipliers with

very encouraging results, and in the network optimization solver of Zenios and Nielsen

[1990]. The representation adopted in these studies uses a 1-dimensional geometry of size

2n + (mo + mD). It assigns two VPs for each arc (i,j), one at the tail node i, and one

at the head node j and one VP for each node. VPs that correspond to the same node are

grouped together into a contiguous segment. In this way segmented-scan operations can be

used for computing and for communicating data among processors incident to a node. The

general communication of prices among nodes is a one-to-one send operation between the

VPs at the head and tail of each arc.

In order to implement a sparse, multicommodity network solver, we use the single-

commodity nonlinear network optimizer of Zenios and Nielsen [1990]. This solver is designed

to handle sparse, transhipment problems. A further specialization for the bipartite graphs

is also possible, but is not implemented here. Interestingly, the single commodity solver

can be easily extended to solve multiple independent commodities in parallel: The CM is

configured as a two-dimensional NEWS geometry, of dimensions [K] 2 x 2n + (mo + mD)l 2 -.

Each row of the 0-axis is used to represent a single network problem as outlined above. Since

the network problem has identical topology for all the commodities, the mapping of arcs

into VPs and the partitioning of VPs into segments will be identical for each row of the

NEWS axis.

The control of the algorithm is identical for each row of the NEWS grid (i.e., for each

network problem). Row k of the 0-axis will store the data of the network problem for

the k-th commodity. This configuration is illustrated in Figure 2. The algorithm iterates

along the 1-axis until some convergence criteria is satisfied for all the rows. Once the single

commodity networks are solved by iterations along the 1-axis, the algorithm executes Step

2 using scan operations along the 0-axis. (Note that, since the flows of each commodity

satisfy k(i,j) 0 we only need to compute the projection for the upper bound of the

GUB constraints). This step is implemented by the following code segment:

CM-spread-with-f-add-lL(scrl, x, 0, S, E);

I _

Fine-Grain Algorithms for Multicommodity Flows 40

CM-f-sub-mult-lL(scr2, U, scrl, KW, S, E);

CM-f-min-2-1L(scr2, PSI, S, E);

CM-f-subtract-2-1L(PSI, scr2, S, E);

CM-f-divide-2-1L(scr2, W, S, E);

CM-f-add-2-1L(x, scr2, S, E);

4 Experimental Design and Performance Evaluation

The quadratic optimization Algorithm 2.2 was implemented on the Connection Machine

CM-2 using C/Paris, as explained in the previous section. As pointed out in Section 2, the

steps of Algorithm 2.2 can be executed in any almost-cyclic fashion. Our implementation

carries out iteratively Steps 1.1-1.3 until some termination criterion is satisfied for the

equality constraints (MINOR iterations). Once this tolerance is achieved, it executes Step

2 (MAJOR iteration) and resumes minor iterations. The algorithm terminates when both

of the following termination criteria are satisfied:

1. Relative error on GUB constraints for major iterations:

100 x max 0, =l xk(ij) U(i) } < (150)
(i,j)E£ U(i,j) -

In all experiments we set el = 0.1%.

2. Absolute error on network equality constraints for minor iterations:

max > {I k(i) - E k(i,j) Il dk(i) - Xk(ij) } <e 2 (151)
KjE6+(i) iE- j)

In all experiments we set 2 = 10- 4 .

In this section we provide a summary of computational results in order to highlight

certain aspects of the performance of the algorithm and illustrate its suitability for the

solution of very large problems. The program was compiled on a SUN 4/280 FE using

compiler flags -O -cm2. We used in all runs a CM-2 with 32-bit floating point accelerators at

Thinking Machines Corporation. All times are in seconds. Data input/output is excluded,

but time for the transfer of data between the FE and the CM is included, together with

all time spent in communications on the CM. All times reported are in total CPU time as

recorded by the FE. This includes CPU time for execution of the C/Paris code and time

------ __ ___ 11I~

FieGanAgrtmionMlicmoiyFos4

1 axis
(Network)

NEWS address
of VP along axis 1

Network Structure
for commodityk

Data Fields in the k-th row corresponding to commodity k.

NEWS address
of VP along axis 1 0 1

Node

Segment bits

Supply Data

Demand Data

Joint Capacity

Send address
in NEWS
coordinates
along axis I

2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 2 2 3 3 3 3 4 4 4 5 5 5

1 0 0 1 0 1 0 0 0 1 0 0 1 0 0

Sk(l) Sk(l) Sk(l) Sk(2) sk(2) Sk(3) Sk(3) Sk(3) Sk(3) Sk(4) Sk(4) Sk(4) s(5) s(5) s(5)

dk(1) dk(1) dk(1) dx(2) dk(2) dk(3) dk(3) dk(3) dk(3) dk(4) dk(4) dk(4) dk(5) dk(5) dk(5)

0 U(1,3)U(1,4) U(2,3) U(1,3)U(2,3)U(3,5) U(1,4)U(4,5) U(3,5)U(4,5)

0 6 10 3 7 5 1 4 13 9 2 14 12 8 11

Figure 2: Representing sparse multicommodity networks on the CM.

41Fine-Grain Aloforithms for Multicommoditv Fows

V
.

Fine-Grain Algorithms for Multicommodity Flows 42

for the controlling program and FE calculations. Most runs were carried out on a lightly

used FE and the CM times consume more than 95% (up to 99% in some cases) of the total

time.

The dense implementation runs at approximately 1.6 GFLOPS when implemented in

C/Paris. It is possible to design an alternative implementation based on the NEWS grid,

that minimizes the amount of communication required. Such an implementation was carried

out in CMIS and is described in McKenna and Zenios [1990]. It was observed to achieve 3

GFLOPS rate in solving single commodity problems. Unless otherwise stated all subsequent

experiments are using the C/Paris implementation.

4.1 Problem generator

We wrote a problem generator that provides control over several characteristics of the test

problems. The generator was also written in C/Paris on the CM. It is thus possible to

generate extremely large problems in memory and pass them on to the solver without

the need to transfer data to an external storage device - a task that would take several

hours for the bigger problems. The input parameters for the generator are: (1) Number

of origin and destination nodes mo and mD respectively, (2) Number of commodities K,

(3) Condition number p, (4) Largest coefficient for linear term, max-c, (5) Percentage of

joint capacity constraints that are active at the optimal solution a, (6) The tightness of the

active joint capacity constraints 3, (7) Maximum supply or demand at each node, max-sd.

The generator accepts as input the seven control parameters and generates a problem in

three steps:

Step 1: Generate K single commodity problems: Set up a two-dimensional NEWS grid

of mol2 x mDl2 active VPs. Generate the quadratic objective function coefficients

wk(i,j) in the range [1,p] using a uniform random distribution. Generate the linear

objective function coefficients ck(i,j) in the range [1, max-c]. Generate supply and

demand values for origin and destination nodes respectively in the range [1, max-

sd]. Scale all supply values by EMO to ensure that the equality constraints are
feasible.

Step 2: Solve the K uncapacitated, single commodity problems generated in Step 1. (We

use the algorithm of Zenios and Censor [1990].)

Step 3: Calculate the sum of the optimal flows from Step 2 over all commodities for each

arc, say ex(i,j). Choose, at random, a% of the arcs that will have active GUB

� _

Fine-Grain Algorithms for Multicommodity Flows 43

constraints. For the arcs so chosen, set U(i,j) = . ex(i,j). The rest of the arcs are

virtually unrestricted, and the joint capacity constraints are set to U(i,j) = .-ex(i,j).

At this point any arcs that have ex(i,j) = 0 are removed from the problem. In general,

we found that leaving these arcs in the problem with a large upper bound would make the

test problems significantly easier. Some of the problems solved at the early stages of our

experimentation kept all the arcs in the problem. Whenever, in subsequent sections, the

number of arcs is precisely mo x mD, then the problem is relatively easy.

Subsequent sections will describe in detail the parameters used to generate each problem.

When no such information is given, then the following base-case test problem is being used:

Nodes: mo = mD = 256

Commodities: K =5

Condition number: p = 102

Largest coefficient for linear term: max-c=100

Percentage of active joint capacity constraints: a = 10%

Tightness of active joint capacity constraints: / = 0.90

Maximum supply or demand: max-sd=100.

When information is provided only for some of the input parameters, then the remaining

parameters have the values given above for the base case.

4.2 Algorithmic performance

The algorithm is a first-order method, and as such it is expected to have a tailing effect. A

small test problem is used to illustrate the performance of the algorithm. Figure 3 plots the

absolute maximum error of the GUB constraints (max(i,j)Ec {0, =l xk(i,j) - U(i,j)})

at successive major iterations. Within each major iteration the figure illustrates the absolute

error of the equality constraints at selected minor iterations. Following a major iteration,

the joint capacity constraint error is zero (recall that Step 2 of the algorithm will satisfy

exactly the joint capacity constraints), but the error of the equality constraints is large.

Successive minor iterations reduce the error at the equations and increasingly violate the

joint capacity constraints. Depending on which constraints are "soft" in a given model

(i.e., the GUB constraints or the equality constraints), the results of Figure 3 provide some

guidance on when should the algorithm be terminated.

The question is raised whether the minor iterations should be terminated with a loose

tolerance at the early major iterations. For the sparse implementation, such a strategy

is not advisable for the following reason: In order to execute the minor iterations, each

Error

2.0

1.5

1.0

0.5

Iterations
/Av If-.--

Minor Iterations x 10- 3

4.5

4.0

3_5

k'IvLJu'

Figure 3: Maximum error at successive major and minor iterations.

1

a)
0

0E

O

Figure 4: Computation and communication times for the dense implementation.

1 2 3 4 5 6 7 8 9
Iteration counts

____IUIILL___lllyllII__YIIIIII___LII__ -�.··I_·�I - _C---· I

Error

Fine-Grain Algorithms for Multicommodity Flows 45

commodity has to be loaded into the CM memory from the FE. A significant amount of

time is consumed in this step. As illustrated in Figure 4, after the first few major iterations

more time is spent in transferring data from the FE to the CM than in computations.

Terminating the algorithm with looser minor iteration tolerance will increase the number of

major iterations, and hence the communication time. After the first 1-2 major iterations,

the decrease in computing time will not compensate for the increase of communication time.

The numerical values from Figure 4 on which this claim is based are the following:

Major itn. Computation time Communication time

0 447.0 20.0

1 35.0 9.2

2 15.5 8.9

3 9.4 9.2

4 5.6 8.6

5 3.8 8.6

6 2.1 9.4

7 2.2 8.7

This is one example where a strategy that would be efficient on a serial computer, or a

coarse-grain parallel computer, is not advisable on a massively parallel system. The time

spent in communications is critical in the choice of internal algorithmic tactics.

4.3 The effects of problem structure

It is well established in the optimization folklore that the performance of a nonlinear pro-

gramming algorithm may differ significantly for different problem characteristics. In this

section we look at the performance of the quadratic programming algorithm when the follow-

ing problem parameters change: (1) Number of commodities K, (2) Condition number p,

(3) Percentage of active GUB constraints, a, and (4) Tightness of active GUB constraints,

/3.

4.3.1 Increasing number of commodities

Figure 5 illustrates both solution time and number of major iterations as the number of

commodities increases for a given problem size. Problems are getting only slightly more

difficult with increasing number of commodities, as manifested by the small increase in the

number of major iterations. However, solution times increase linearly with the number

of commodities. This observation provides empirical verification that the amount of com-

_ __ _�

3ULULIUI l

Time
(seconds)

1600-

1200-

800-

400-

Major iterations

x

on time

2 4 6 8 10
n

No. of
Commodities

Effect of increasing the number of commodities K on the performance of the

putation and communication required per iteration is a linear function of the number of

commodities.

There is an interesting implication from the results of this figure: If a massively parallel

architecture scales linearly in size with the number of commodities, then larger problems

can be solved with only slight increase of solution time. This increase will be proportional

to the increase in major iterations.

4.3.2 Increasing condition number

First order algorithms, like those presented here, are very sensitive to ill-conditioning. Fig-

ure 6 illustrates the performance of the algorithm as the condition number of the problem

increases, and for problems with varying number of commodities. The adverse impact of ill-

conditioning is more significant for problems with more commodities. For condition number

p = 102, the algorithm can solve problems with a large number of commodities. (In Sec-

tion 4.5, we report solution profiles for problems with up to 20 commodities.) For condition

number p = 103, the algorithm can still solve problems with many commodities, but at

significant increase in computing time. For condition number p = 10 4 , the algorithm has a

very slow rate of convergence when applied to problems with more than two commodities.

The information in this section provides general guidelines on the potential difficulty of a

W ;-a.u

Iterations

-160

-120

- 80

- 40

0

Figure 5:

algorithm.

�_1__1

·C1..4.: _

0. ._

Fine-Grain Algorithms forvMutiomodiFlows47

x 2 commodities; condition no. 104

* 2

v

commodities; condition no. 102

60 80 100
Major

Iteration

x 4 commodities; condition no. 104

A 4 commodities; condition no. 103

* 4 commodities; condition no. 102

x, x~~L X

0 50 100 150 200 500
Major

Iteration

Figure 6: Effect of increasing the condition number p on the performance of the algorithm.

Absolute
Error 6-

4-

U.

Absolute
Error

0 20 40
- t} t} -m

- ---·---- --- --- --

Fine-Grain Algforithms for 2ulticommoditvI Fows 47

A\

Fine-Grain Algorithms for Multicommodity Flows 48

given test problem.

4.3.3 Increasing percentage of active GUB constraints, a.

As the number of joint capacity constraints that are active at the optimal solution increases,

the problems become more difficult. Figure 7 shows the increase in: (1) Major iterations,

(2) Total solution time, and (3) Solution time per major iteration, as the percentage of

active constraints a increases.

We observe that the increase in solution time is primarily due to the increase in number of

major iterations. Hence, no improvements in performance can be anticipated with increases

in the size of the computer. It is also usually unknown a priori how many constraints are

active at the solution. Hence, the results of this section are of limited practical value.

They mainly illustrate two facts. First, the algorithm is capable of solving problems with a

significant number of active GUB constraints, and second, the solution time increases only

linearly with increase in the number of active constraints.

4.3.4 Increasing tightness of active GUB constraints, /3.

Intuitively, one expects the following: If the joint capacity constraint is larger than the

sum of the unconstrained optimal flows on all commodities, then the problem is trivial. It

will be solved in one major iteration. If the joint capacity is slightly less than the sum of

unconstrained flows, then some flow can be diverted easily to adjacent arcs. If the joint

capacity is significantly less than the sum of unconstrained flows, then more flow has to be

diverted to adjacent arcs and the problem gets more difficult.

This intuition is confirmed in Figure 8 when the tightness of the active capacity con-

straints ranges from /3 = 0.97 to /3 = 0.90. (Recall that for /3 = 1.00 the joint capacity

constraints are not active, and they become more tight as ,/ decreases.) From the same

figure, however, it appears that the problems get marginally more difficult as /3 decreases to

0.80. Additional experimentation is needed before one attempts to devise an explanation.

4.4 The Performance of the Sparse Implementation

Table 1 summarizes the results in solving identical problems using both the dense and

sparse implementations. All of the test problems solved here are totally dense, and hence

this comparison is biased against the sparse implementation. Nevertheless, some interest-

ing observations can be made which are very encouraging for the performance of the sparse

implementation. If the computer configuration does not have a sufficient number of pro-

FieGanAgrtm o utcmoiyFos4

1t-
J U LUI

Tim)°0
(secondgy

1100-

900-

700-

500-

300-
Solution

Time 20-
per

Major 15-

Iteration1 0o

5-

Solution time

[ajor iterations

I I I I

3 5 10 15
A

A A

% Active
Coupling
Constraints

Major
Iterations

-80

-70

-60

-50

0

Figure 7: Effect of increasing the percentage of active GUB constraints a on the perfor-

mance of the algorithm.

49

- 1

Fine-Grain Agorithms for Multicommodity Fows

i

Ai

Fin-Gai Algith fo uliomos5

Solution
Time

(second }9(

600-

500-

400-

300-

200-

100-

Solution time

x or iterations

MajorlvlaJUl

Iterations

-100

- 80

- 60

- 40

- 20

I S
7 .

.97 .95 .90 .85.85 .80.80
A A

lA_~--

-

% Reduction of
Joint Capacity

- Constraints

Figure 8: Effect of increasing the tightness of the joint capacity constraints 3 on the

performance of the algorithm.

n

Solution
Time
per

Major
Iteration

8-

6-

4-

50

I

-�-�--------------

Fine-Grain Algforithms for Multicommodity Flows

Fine-Grain Algorithms for Multicommodity Flows 51

No. Problem Solution 4K CM-2 8K CM-2
size characteristics Dense Sparse Sparse

ii.i rob_______ _____________If Implementation Implementation Implementation

1 8 com. VP ratio 1 32 16
128 nodes

4096 arcs CM time(sec) 144 305 169

2 8 corn. VP ratio 1 8 4

64 nodes
1024 arcs CM time(sec) 130 218 139

3 8 com. VP ratio 1 1

32 nodes C t e NA

256 arcs CM time(sec) 156 25

Table 1: Comparing the dense and sparse implementations. (Solution times in seconds.)

cessors to store all the commodities simultaneously in their sparse representation, then the

dense implementation is superior. The time spent in transferring data from the FE to the

CM is compensated by the improved computing performance achieved when the algorithm

executes at a low VP ratio. Compare the solution time of problems no. 1 and 2 on the

4K CM-2, where the dense implementation is faster. However, the sparse implementation

can run faster on a bigger machine, while the dense implementation is already executed at

a VP ration of 1. Compare the solution times for problems no. 1 and 2 with the dense

implementation running at a VP ratio=l on a 4K CM-2, and the sparse implementation

running on an 8K CM-2 with VP ratios 16 and 4 respectively. The sparse implementation

is at par with the dense implementation and could improve even further with an increase

in the number of processing elements. When both the dense and sparse implementation

run with VP ratio 1, then the sparse implementation can be significantly faster - see the

results for problem no. 3.

Identifying the precise conditions under which the sparse implementation should be

preferred is a complex problem. A theoretical analysis of this problem, and empirical

verifications, are the topic of a current study. We discuss here the factors that enter into

the analysis:

1. The dense implementation runs at peak rate of 3 GFLOPS when solving dense prob-

lems on a 64K CM-2. This computing rate decreases linearly with increase in the

sparsity of the problem, and decreases almost linearly with decrease in the number

i

Fine-Grain Algorithms for Multicommodity Flows 52

of PEs. The sparse code runs at 140 MFLOPS. Both codes achieve these rates with

high VP ratios - a small loss in computing rate is observed with lower VP ratios.

2. The dense code solves the commodities one at a time in K serial steps. The sparse

code solves all K commodities simultaneously.

3. The dense code executes at a VP ratio [mol2rmDl2 . The sparse code executes at aP
VP ratio rK(2n+(+mD))12

4. The dense implementation requires a communication step between the FE and the

CM for each commodity.

The following examples illustrate how these factors affect the performance of the algorithm,

and could provide an explanation for the results of Table 1.

Example 1: Consider the solution time for problem no. 3 that was solved under VP

ratio=1 for both dense and sparse implementations. The dense code executes at

3GFLP = 187.5 MFLOPS on the 4K CM-2. The sparse code runs at 140 MFLOPS.

Hence, problem no. 3 could be solved in 156 x 1405 = 208.93 sec if the sparse code

were used to solve the 8 commodities one at a time. If all 8 commodities are solved in

parallel, the solution time would be 208.93 = 26.1 sec. This estimate is slightly higher

than the 25 sec solution time observed by the sparse implementation, since it also

includes time spent in transferring the commodities from the front-end to the CM at

each major iteration of the dense code. For the sparse code, this transfer of data is

executed only once.

Example 2: Repeating the same line of reasoning for problem no. 2 results in estimated

times that are significantly different from the observed time for the sparse code. The

solution time would increase to 130 x 187.5 = 174.1 sec, using the sparse code to solve

one commodity at a time. Solving all 8 commodities in parallel, assuming we could

still run at VP ratio=1, completes in 21.8 sec. At a VP ratio=4, the solution time

would be - 87 sec. At a VP ratio=8, the estimated solution time would be 174

which is much lower than the observed 218 sec. Clearly, the arguments in Example 1

do not capture the complex interactions among the several components of the two

algorithms, when each is executed at different VP ratios.

4.5 Solving large scale problems

As a final exercise, we generated and solved some very large problems. The results are

reported in Table 2. The algorithm achieves a good level of accuracy in number of major

________�_���_I_�^ �____li I__III__I1____I____IIg___LIL�·I-·-IIII Il·L- IIII1-III --· ---11_1 - I-

Fine-Grain Algorithms for Multicommodity Flows 53

iterations that range from 20-100. The largest problems (no. 5-10) have more than 1
million variables and 10 thousand equations and they are solved in well within 1 hour of

wall clock time. The same problem could be solved in less than 10 minutes on a 32K CM-2
and less than 5 minutes on a fully configured 64K CM-2.

5 Concluding Remarks

This paper has developed a class of algorithms for nonlinear multicommodity transportation

problems. The algorithms induce a fine-grain decomposition of the problem: First, by
node for each commodity, and then by arc. As a result, it is possible to implement these
algorithms on massively parallel computer architectures. Of course, implementations on

small-scale parallel machines are also possible, although such implementations would not

exploit fully the potential of the algorithms.

The algorithms appear effective in solving problems of medium difficulty (condition
numbers 10-1000) to a good level of accuracy. Nevertheless, as first order methods, they
could be severely affected by ill-conditioned problems. Also, the attainment of very high
accuracy could come with significant increase in the number of iterations and computer

times.

Massively parallel implementations on the Connection Machine CM-2 have been possible

even for sparse problems. The implementations are very efficient, and match the parallel

nature of the algorithms with the computer architecture of the CM-2. We expect significant

improvements in the performance of massively parallel architectures over the coming years.

For example, the current version of the CM-2 has processing elements that operate at

7MHZ; this is significantly lower than the operating cycle of personal computers. Also, 64-

bit WEITEK floating-point accelerators are now being added to some configurations. The

algorithms developed here could then achieve higher accuracy with little additional effort.

The current model of C/Paris - based on field-wise representation of data - is far from

being the most efficient one for the CM-2. The optimization algorithms developed here

should be able to benefit from improvements in the computer models without additional

effort on our part.

It is a severe limitation that these algorithm are applicable only to nonlinear problems.

Nevertheless, they are the building blocks for solving linear programs: The quadratic opti-

mization algorithms in the context of proximal minimization of Rockafellar [1976] and the

entropy optimization algorithms in the context of the framework developed by Censor and

Zenios [1990]. This is the topic of a current study.

1 _ _____ _ _ � _

No. Problem size Cond. Major Error Time

Network Lin. prog. No. Itns. % GUB Absolute 4K 32K

formulation formulation const. node const. CM-2 CM-2

1 2 com. 512 eqns. 104 90 .09 10- 5 20:00 3:10

256 nodes 1672 GUB

12976 arcs 25952 vars.

2 2 com. 512 eqns. 10 100 .11 10- 7 1:00 0:10

256 nodes 1675 GUB

15276 arcs 30534 vars.

3 5 com. 1280 eqns. 102 86 .09 10-6 1:50 :20

512 nodes 1634 GUB

16370 arcs 83850 vars.

4 5 com. 2560 eqns. 102 NA .09 10-6 4:30 0:45

512 nodes 6552 GUB

65478 arcs 327435 vars.

5 5 com. 5120 eqns. 102 41 .09 10-6 14:10 2:15

1024 nodes 26181 GUB

262000 arcs 1310000 vars.

6 10 com. 10240 eqns. 102 37 .09 10- 6 31:30 4:55

1024 nodes 25957 GUB

262144 arcs 2621140 vars.

7 20 com. 20480 eqns. 102 90 .09 10- 5 45:00 7:20

1024 nodes 26260 GUB

262144 arcs 5424880 vars.

8 2 com. 4096 eqns. 102 17 .08 10-6 14:35 2:15

2048 nodes 104443 GUB

1002338 arcs 2004678 arcs.

9 5 com. 10240 eqns. 102 19 .07 10-6 40:40 6:20

2048 nodes 104088 GUB

1048074 arcs 5240370 vars.

10 8 com. 16384 eqns. 102 22 .09 10- 6 29:50 4:40

2048 nodes 104521 GUB

1048570 arcs 8384560 vars.

Note:

is the

Time on the 32K CM-2 is estimated, dividing the time on the 4K CM-2 by 6.4. This

empirically observed improvement in performance as the VP ratio is reduced by a

factor of 8, when moving from the 4K to the 32K CM-2.

Table 2: Solving large scale problems. (Time in min:sec).

54

�'-'�--��1�1111"�.-11__·__1^111___ ------�-P·i�ll

Fin e- Grain Algori th ms for Mul ti comm odity yFlows

Fine-Grain Algorithms for Multicommodity Flows 55

As a postscript, we add that massively parallel algorithms - like those proposed here

- have been developed by Nielsen and Zenios [1990] for stochastic programming problems

with network recourse. Preliminary implementations on the Connection Machine CM-2

for some financial modeling applications reinforce the encouraging results reported here for

multicommodity flows.

Acknowledgements: Professor Yair Censor deserves honorary co-authorship on this paper

for numerous illuminating discussions on row-action algorithms and his constant encour-

agement. I also benefited from the comments of J. Mesirov and S. Nielsen. It is a pleasure

to acknowledge that the research reported here was completed while I was with Think-

ing Machines Corporation and the Operations Research Center at M.I.T.. Partial support

has been provided by NSF grant CCR-8811135 and AFOSR grant 89-0145. Computing

resources were made available by the North-east Parallel Architectures Center (NPAC) of

Syracuse University, NY.

1 _ _ __ __ _

Fine-Grain Algorithms for Multicommodity Flows 56

References

[1] A.A. Assad. Multicommodity network flows - a survey. Networks, 8:37-91, 1978.

[2] D.P. Bertsekas. Algorithms for nonlinear multicommodity network flow problems. In A.

Bensoussan and J.L. Lions, editors, International Symposium on Systems Optimization

and Analysis, pages 210-224, Springer-Verlag, 1979.

[3] A. Bjorck and T. Elfving. Accelerated projection methods for computing pseudo-inverse

solutions of systems of linear equations. BIT, 19:145-163, 1979.

[4] G.E. Blelloch. Vector Models for Data-Parallel Computing. The MIT Press, Cambridge,

Massachusetts, 1990.

[5] R. Bramley and A. Sameh. Row projection methods for large nonsymmetric linear

systems. CSRD Report 957, University of Illinois, Champaign-Urbana, Jan. 1990.

[6] Y. Censor. Parallel application of block-iterative methods in medical imaging and

radiation therapy. Mathematical Programming, Series B, 42(2):307-326, 1988.

[7] Y. Censor. Row-action methods for huge and sparse systems and their applications.

SIAM Review, 23:444-464, 1981.

[8] Y. Censor and A. Lent. An iterative row-action-method for interval convex program-

ming. Journal of Optimization Theory and Applications, 34:321-353, 1981.

[9] Y. Censor, A. R. De Pierro, T. Elfving, G.T. Herman, and A.N. Iusem. On iterative

methods for linearly constrained entropy maximization. In A. Wakulicz, editor, Numer-

ical Analysis and Mathematical Modelling, pages 147-165, Banach Center Publications,

PWN - Polish Scientific Publisher, Warsaw, Poland, 1989.

[10] Y. Censor and S.A. Zenios. Interval constrained matrix balancing. Linear Algebra and

its Applications, 1989a. (to appear).

[11] Y. Censor and S.A. Zenios. The Proximal Minimization Algorithm with D-functions.

Working paper, Decision Sciences Department, The Wharton School, University of

Pennsylvania, Philadelphia, PA, 1989b.

[12] R.J. Chen and R.R. Meyer. Parallel optimization for traffic assignment. Mathematical

Programming, Series B, 42(2), 1988.

.__ __�� 11_^1__1__1_11 1 �II- -._. --LI�L^--^--·ID-I�·L11--)------·111 rP··�-�IIl··-I--L��^---_I-· _--- I II�--- _

Fine-Grain Algorithms for Multicommodity Flows 57

[13] J. Eckstein. Implementing and Running the Alternating Step Method on the Connection

Machine CM-2. Working paper 91-005, Division of Research, Harvard Business School,

Boston, MA, 1990.

[14] T. Elfving. An algorithm for maximum entropy image reconstruction from noisy data.

Mathematical Computer Modeling, 12:729-745, 1989.

[15] R. Gallager. A minimum delay routing algorithm using distributed computation. IEEE

Transactions on Communication, COM-25:73-85, 1977.

[16] M. Gondran and M. Minoux. Graphs and Algorithms. John, Wiley and Sons, N.Y.,

1984.

[17] G.T. Herman. Image Reconstruction from Projections: The Fundamentals of Comput-

erized Tomography. Academic Press, New York, 1980.

[18] W. D. Hillis. The Connection Machine. The MIT Press, Cambridge, Massachusetts,

1985.

[19] J.L. Kennington. A survey of linear cost multicommodity network flows. Operations

Research, 26:209-236, 1978.

[20] M. McKenna and S.A. Zenios. An optimal parallel implementation of a quadratic

transportation algorithm. In SIAM Conference on Parallel Processing for Scientific

Computing, 1990. (to appear).

[21] S. Nielsen and S.A. Zenios. Massively Parallel Algorithms for Nonlinear Stochastic Net-

work Problems. Working paper, Decision Sciences Department, The Wharton School,

University of Pennsylvania, Philadelphia, PA, 1990a.

[22] S. Nielsen and S.A. Zenios. Sparse vs Dense Implementations of Network Problems on

the Connection Machine. Working paper, Decision Sciences Department, The Wharton

School, University of Pennsylvania, Philadelphia, PA, 1990b.

[23] A.R. De Pierro and A.N. Iusem. A relaxed version of bregman's method for convex

programming. Journal of Optimization Theory and its Applications, 5:421-440, 1986.

[24] R. T. Rockafellar. Augmented lagrangians and applications to proximal point algo-

rithms in convex programming. Mathematics of Operations Research, 1:97-116, 1976.

� i

Fine-Grain Algorithms for Multicommodity Flows 58

[25] G.L. Schultz and R.R. Meyer. A Structured Interior Point Method. Working paper,

Computer Science Department, The University of Wisconsin-Madison, Madison, WI,

1990.

[26] R. D. Wollmer. Multicommodity networks with resource constraints: the generalized

multicommodity flow problem. Networks, 1:245-263, 1972.

[27] S. A. Zenios and R. A. Lasken. Nonlinear network optimization on a massively parallel

Connection Machine. Annals of Operations Research, 14:147-165, 1988.

[28] S.A. Zenios and Y. Censor. Massively Parallel Row-Action Algorithms for Some Non-

linear Transportation Problems. Report 89-09-10, Decision Sciences Department, The

Wharton School, University of Pennsylvania, Philadelphia, PA, 1989.

[29] S.A. Zenios and Y. Censor. Vector and Parallel Computing with Block-iterative Algo-

rithms for Medical Image Reconstruction. Report 88-09-10, Decision Sciences Depart-

ment, The Wharton School, University of Pennsylvania, Philadelphia, PA, 1988.

[30] S.A. Zenios and S. Nielsen. Massively Parallel Algorithms for Singly Constrained

Nonlinear Programs. Report 90-03-01, Decision Sciences Department, The Wharton

School, University of Pennsylvania, Philadelphia, PA, 1990.

[31] S.A. Zenios, M.C. Pinar, and R.S. Dembo. Linear-Quadratic Penalty Forms for the

Decomposition of Network Structured Problems. Working paper, Decision Sciences

Department, The Wharton School, University of Pennsylvania, Philadelphia, PA, 1990.

- C_ --- -- . ---- �-·p�� �� __ ___

ny

