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Abstract

We show that the number of vertices of degree k in the Euclidean minimal

spanning tree through points drawn uniformly from either the d-dimensional

torus or from the d-cube, d > 2, are asymptotically equivalent with probability

one. Implications are discussed.

*Research carried out at MIT and supported in part by a CNRS/NSF Grant

1



1 Introduction

In Steele et al. [3], the authors prove that for any independent and uniform random

variables {Xi : 1 < i < oo} in [0, l]d, d > 2, the number of vertices of degree k in the

Euclidean minimal spanning tree through {X 1, ... , X, is asymptotic to a constant

ak,d times n with probability one. In the case k = 1 and d = 2 (i.e., for the number of

leaves of the MST in the square), the authors have shown that the constant a = a 1,2 is

positive and that Monte Carlo simulation results suggest that a = 2/9 is a reasonable

approximation. If one attempts to get any more information on this constant, one

rapidly finds that the boundary effects of the square is a serious limitation on any

analytical approach. This observation is the main motivation of this paper: we

show that the results of Steele et al. [3] are still valid in the d-torus (with the

same constants). Hence any attempts on characterizing these constants could now

be made within the torus model, with no boundary problems. For example, it is

clear, from the symmetry induced by the d-torus model, that ak,d is now equal to

lim,_oo P(H(n) = k), where Hn) is the degree of any point, say X1 , in a minimal

spanning tree through {X1 ,..., Xn} in the d-torus. Before going into the details of

our proofs, let us first give some notation.

Let G = (V, E) be a connected graph with vertex set V and edge set E, together

with a weight function w : E -- R which assigns a real number to each edge in E.

A minimal spanning tree (MST) of G is a connected graph with vertex set V and

edge set T C E such that ,ET w(e) is minimal. If no ambiguity can arise on the

vertex set, a spanning tree is usually identified by its set of edges; we will adopt this

convention hereafter. The two models of interest here are the following.

The d-cube model:

Let {xi : 1 < i < oo} be an arbitrary infinite sequence of points in [0, ]d (the

unit cube in Rd, d > 2, considered as the d-dimentional space of real numbers,
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with its Euclidean metric and Lebesgue measure), and let x(n) = {x, x2,..., , }

denote its first n points. For each finite n, x(n) will be the vertex set V, and

E = {(xi, xj); 1 i < j < n} the edge set of our graph. The weight of an edge

(xi,xj) will be the Euclidean distance Ili - xjll from xi to xj.

The d-torus model:

In order to eliminate the boundary effects of the previous model, consider the pre-

vious sequence x 1, 2, ... ,xn ,... modulo 1 in each component. Alternatively, one

can imagine a sequence on the d-torus Td = ([0, 1] mod 1)d (the metric space with

its Lebesgue measure and Euclidean d-torus metric). Note that the weight of an

edge (xi, xj) is now taken to be lxi - xj(mod)dll (for y E [-1,1], y(modl) is the

minimum of IyI and 1 - YI).

Other notations:

An optimal MST in the d-cube will be described by its set of edges Acub,(x(n)). With

a slight abuse of notation, we will use Atorus(x(n)) for the corresponding problem in

the d-torus. For a given k, we will write VCk(x(n)) and VTk(x(n)) for the number

of vertices of degree k in the MST in the d-cube and d-torus, respectively. Finally,

Lmax(X(n)) will be the length of the largest edge in an optimal MST in the d-torus.

We can now state our main result.

Theorem 1 Let (Xi)i is a sequence of points independently and uniformly dis-

tributed over [0, 1]d . Then there are constants atk,d such that

lim n-IVTk(X(n)) = lim n-VCk(X()) = oek,d (a.s.). (1.1)

The existence of the constants verifying the second equality was proved in Steele et

al. [3]. For proving the remaining part of this theorem, we need two intermediate

lemmas. Both of them have been proved in Jaillet [2], but, for completeness, the

proofs are restated in the next section.
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2 Intermediate lemmas

Lemma 1 Let (Xi)i be a sequence of points independently and uniformly distributed

over [0, li]d . Then we have

P (Lma,(X(')) > Ad(logn/n)l/d) < 1/n2 logn, (2.2)

where Ad = 121/dV/- d -3.

Proof:

First let (Qj)l<j<md be a partition of the d-cube [0, 1]d into cubes with edges parallel

to the axle and of length 1/m. If for a sequence of points {xi : 1 < i < oo}, x(n) n Qj

is not empty for all j, then the MST in the d-torus is such that

Lmax(Xn)) < x+ 3/m. (2.3)

Indeed let e be an edge of Ato,,, 8 ((n)) so that its weight is Lm,,x((n)). By discarding

e we end up with a forest with two components, with point sets, say V, and We,

such that for all xi E Ve and all xj C We we have xi - xj(modl)dll > Lmax(x(n))

(by definition of an optimal MST). As a working hypothesis, let us then assume that

Lmax((n)) > Vd- 3/m. Then Lm,,x(()) > d/7/m and thus each Qj either contains

points from Ve or from We but not from both. Now, since all cubes are non-empty,

we can always find a pair of adjacent (i.e, sharing a facet) cubes Qi and Qj such that

Qi contains points from V, and Qj contains points from We. But now, the largest

possible edge connecting these two squares is bounded from above by v'+3/m

and thus, using our working hypothesis, by Lm,,(x(n)). But this contradicts the

definition of an optimal MST (see above). Hence (2.3) is valid.

Now let (Xi)i be a sequence of points independently and uniformly distributed over

[0, 1]d, and consider the same partition as before. If Nj denotes the cardinality of

x(n) n Qj, then, with p = 1/md, we have, for h > 12 and n > 3,

P (vj:Nj > np-- hnplogn) > 1-1/2pnh/4. (2.4)
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Indeed for all j let B,n,j be the event {Nj np - /hnplog n}. We obviously have

md

P (3j: B, j ) < E P (B, j ) = mdP (t3, 1) = P (B,l) Ip. (2.5)
j=1

Now N1 is a binomial random variable with n trials and parameter p. Using classical

bounds on the tail of a binomial distribution (see [1, Corollary 4, p.11]) we have,

with q = 1 -p,

P (N 1 < np- /hnplogn < exp{-hlogn/3q + 1/q} < 1 /2nh/4, (2.6)

the last inequality being valid for h > 12, and n > 3. Now (2.4) follows from (2.5)

and (2.6).

Finally let us take md(= l/p) to be < n/(h log n). Then, from (2.4), we have

P (Vj Nj > 0) > 1 - 1/2hnh/ 4-1 logn. (2.7)

But, from (2.3), we also have, for any e > 0,

P (Lma(X(n)) < (h + e)1/d/d+3(log n/n)1/d) > P (j : Nj > 0). (2.8)

Hence the lemma follows from (2.7) and (2.8) by taking h = 12.

Lemma 2 Let {xi : 1 < i < oo} be an arbitrary infinite sequence of points in [0, ]d

and Atorus(z(n)) be an optimal MST in the d-torums through x(n). Let Btorus(x()) be

the set of edges (xi, xj) of this solution such that IIx, - xj(modl)d = - jll

(i.e., that do not 'cross' the boundary of the d-cube). Then there exists an optimal

solution for this problem in the d-cube, say 2A*ub(x(n)), such that:

If (xi, xj) belongs to Btorus,(z()), then (xi, Xj) belongs to A*cb(X(n)) (2.9)

Proof:

Take any edge (xi, xj) Btoru,,(z(n)) and consider a given solution Aube((n)) in the
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d-cube. Suppose that (xi, xj) does not belong to this solution. Then Acube(X(n)) U

{(xi, xj)} contains a unique cycle, say Ccube, such that for all edges (k, xl) E Ccube \

{(xi, j)} we have

Ixl - 11 < 11I X- jll. (2.10)

(Note that we can discard the easy case for which there is an edge (k, xI) such

that llxk - x11 = Ilxi - xjll. Indeed we would then exchange the two edges and

obtain an optimal solution in the d-cube that verifies (2.9) for the edge (xi,xj)

under consideration). Now among the edges of Ccube \ {Atorus(x()) n Ccube} there is

at least one edge, say (k, xl) such that Ator,,u(x(n)) U {(xk, xi)} has a cycle containing

(xi, xj). The proof of this key result goes as follows. Let Z = (zl,..., Zm) be the

points (other than xi and xj) along the cycle Ccube, numbered as they appear from

xi to xj. By definition of a spanning tree there is a unique path in Atorus(x(n))

going from xi to each of these points. Color a point of Z red if this path does not

go through xj and blue otherwise. Note that the blue points can alternatively be

defined as the points reached from xj without going through xi. Also color xi red

and xj blue. Now any edge of Ccube \ {(Xi, xj)} with adjacent points of opposite color,

if added to Atorus((n)), would form a cycle (in At,,,u((n))) containing (xi, xj). Now,

by going along the cycle, starting from xi and in the opposite direction of xj, we must

find such an edge, since xi and xj are of opposite color. It is now easy to conclude.

Indeed if we remove (xi, xj) from Ator,,u(()) and replace it by (k, x1), we end up

(from (2.10)) with a spanning tree of weight less than Lto,ru,,((n)): A contradiction.

3 Proof of the main result

From Lemma 2, we see that Atorus,((n)) and Acube(x(n)) have a strong related struc-

ture. In fact, for the case of random points, Ato,rus(X(n)) and A,,b(X(n)) are unique
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with probability one and thus, if Etor,s(X(n)) denotes the set of edges of Atorus(X(n))

that 'crosses' the boundary of the d-cube, this lemma tells us that, with probability

one, we have

Atorus(X()) \ £torus(X(")) C Acube(X(")). (3.11)

Now consider any spanning tree T on an arbitrary connected graph G = (V, E), and

any pair of edges e E T and e' E E\T such that T' = T \ {e} U{e'} is still a spanning

tree. For any given k, let Nk and Nk be the number of vertices of degree k in T and

T', respectively. Then it is easy to see that

INk-Nk < 4. (3.12)

(in fact, for leaves, this can be improved to IN1 - Nfl < 2). From (3.11) and (3.12)

we then have

IVCk(X(n) - VTk(X(")) < 4card(£tor,, (X(n))). (3.13)

Lemma 1 will now play a role. Consider Q(r) = [0, 1]d \ [r, 1 - r]d a layer of width r

on the inside of the d-cube, and partition Etor,,(X(")) in two sets: the set ?)(X("))

of 'crossing' edges having at least one endpoints in Q(r), and the set E£r)(X(n)) of

the remaining 'crossing' edges. Now it is easy to see that

card(E(r)(X(n))) < Ddcard({X : X, E Q(r)}), (3.14)

where Dd is the number of spherical caps with angle r/3 which are needed to cover

the unit sphere in Rd (an upper bound on the degree of any vertex in an optimal

MST). From the the strong law of large numbers we have

lim n-lcard({X : Xi E Q(r)}) = 1 - (1 - 2r)d (a.s.). (3.15)

Also from Lemma 1 we have
00 00 00

S P(card(E2rn)(X(n))) > 0) < E P(Lmax(X()) > r) < E 1/n 2 logn < oo,
n=1 n=1 n=1

(3.16)

7



where r, = Ad(log n/n)1/d. From Borel-Cantelli this implies that

lim card(£(rn)(X(n))) = 0 (a.s.). (3.17)

One finally concludes from (3.13), (3.15) (with r = r,), and (3.17).
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