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Abstract

For a sample of points drawn uniformly from either the d-dimensional torus

or the d-cube, d > 2, we define a class of random processes with the property of

being asymptotically equivalent in expectation in the two models. Examples

include the traveling salesman problem (TSP), the minimum spanning tree

problem (MST), etc. Application of this result helps closing down one open

question: We prove that the analytical expression recently obtained by Avram

and Bertsimas for the MST constant in the d-torus model is in fact valid for

the traditional d-cube model. For the MST, we also extend our result and

show that stronger equivalences hold. Finally we present some remarks on the

possible use of the d-torus model for exploring rates of convergence for the

TSP in the square.
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1 Introduction

In Beardwood et al. [2], the authors prove that for any bounded i.i.d. random

variables {Xi : 1 < i < oo} with values in Rd, d > 2, the length of the shortest

tour through {X1 ,..., X,) is asymptotic to a constant times n(d-l)/d with probabil-

ity one (the same being true in expectation). This theoretical result has been the

inspiration for a growing interest in the area of probabilistic analysis of combina-

torial optimization problems. An important contribution is contained in Steele [8]

in which the author uses the theory of independent subadditive processes to obtain

strong limit laws for a class of problems in geometrical probability which exhibit non-

linear growth. Examples include the traveling salesman problem (TSP), the Steiner

tree problem, and the minimum weight matching problem. Among other problems,

not in this class, but with a similar asymptotical behavior, is the minimum spanning

tree problem (MST) and some weighted versions of it (see Steele [9]).

For most of these problems, the results concern the almost sure convergence of

a sequence of normalized random variables, say Ln/ncd, to a constant /3d, as well as

the convergence of the normalized means. One of the persistently important open

problems in this area is the determination of the exact value of the constant d for

any interesting functional. In fact progress has been made by Avram and Bertsimas

[1] who have recently obtained an exact expression (as a series expansion) for the

MST constant when the points are drawn uniformly from the d-dimensional torus.

The use of the d-torus was to avoid boundary effects but they conjectured that the

resulting constant was in fact the same for the traditional d-cube model.

In this paper, we prove this conjecture for the MST and give general conditions

under which the d-torus and d-cube models are asymptotically equivalent in expecta-

tion for a large class of problems. In addition to the MST, this class contains many of

the well-known combinatorial optimization problems such as the TSP and minimum
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weight matching problem. We also show that, for the MST, the equivalence can be

expressed almost surely and that the optimal trees themselves (and not only their

weight) are in some sense very close. Note that, for comparison with related results

on the d-torus versus d-cube model, it has been shown, in Steele and Tierney [10],

that, when d > 3, the limiting distribution for the largest of the nearest-neighbor

links is different in the two models.

The paper is structured as follows. In the next section we introduce a set of con-

ditions defining a class of graph problems with the property of being asymptotically

equivalent in expectation in the d-cube and d-torus models. In Section 3 we prove

that the MST, the TSP and the matching problem are all examples of this class.

In Section 4 we extend our result on the MST to cover equivalence with probability

one, and we give a structural comparison of the problem in the two models. In a

concluding section, we present some open questions and discuss the applicability of

our results for studying rates of convergence.

2 Equivalent class

Definition of the edge-set problems:

We are concerned here with a class of combinatorial optimization problems defined

on an undirected graph (G, V) with positive weighted edges. Typically, these prob-

lems will be to find among all feasible subsets of edges (of given cardinality) a subset

of minimum weight. The weight of a subset of edges will be a function of the weight

of the edges belonging to this subset. The only restriction we impose on the objective

function is the following: The weight of a feasible solution is assumed to be a non-

decreasing function with respect to the weight of any edge belonging to the feasible

solution. Note that we do not restrict ourselves to linear or even separable function.

Let us call a member of such a class of problems an edge-set problem. Let us now
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consider two special models for our weighted graph.

The d-cube model:

Let {xi : 1 < i < oo} be an arbitrary infinite sequence of points in [0, l]d (the

unit cube in Rd, d > 2, the d-dimentional space of real numbers, with the Eu-

clidean metric and the Lebesgue measure), and let x(n) = {xl,x2,...,x,} denote

its first n points. For each finite n, x(n) will be the vertex set, and Kn(x) =

{(xi, Xj); 1 < i < j < n} the edge set of our graph. The weight of an edge (xi, xj)

will be the Euclidean distance lxi - xjll from xi to xj.

The d-torus model:

In order to eliminate the boundary effects of the previous model, consider the pre-

vious sequence x,x 2,...,x,... modulo 1 in each component. Alternatively, one

can imagine a sequence on the d-torus Td = ([0, 1] mod 1)d (the metric space with

its Lebesgue measure and Euclidean d-torus metric). Note that the weight of an

edge (xi, xj) is now taken to be lxi - xj(mod1)dl (for y E [-1,1], y(modl) is the

minimum of IYl and 1 - Iyl)
Set of conditions:

Consider a generic edge-set problem. We will write Lcub,(x(n)) for the value of an

optimal solution (described by its set of edges Acub,(x(n))) for the problem in the

d-cube. With a slight abuse of notation, we will use Ltorus(X(n)) and Atorus(X(n)) for

the corresponding quantity in the d-torus. Also, from now on, 1{.}1 will stand for

the cardinality of the set {.}. We can now consider the following set of conditions

for an edge-set problem.

1. (Sublinear growth). There exist two constants d > 0 and 0 < cd < 1 such

that Lcube(x(n)) < dnd for any sequence {xz: 1 < i < oo} in the d-cube.

2. (Bounded degree). For any x(n) = {x 1, 2,...,xn} the degree of the points in

·Atorus(z(")) is bounded by a constant Dd.
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3. (Bounded passage from torus to cube). Among Ato,,(x(n)), let k be the num-

ber of edges (xi, xj) such that lxi-xj( mod 1)dll < IIxi-xjl. Thenthereexists

a feasible solution to the d-cube problem, of weight bounded by Ltoru,,((n)) +

ydkCd, where ad > 0 and Cd is the same constant as in Condition 1.

4. (Probabilistically small maximal edge).

Let MAX(x(n)) = sup{ xi- xj(modl)dll; (xi, xj) E Ato,,,(z(n))}. Then for

(Xi); a sequence of points independently and uniformly distributed over [0, 1]d,

there exists a sequence of real numbers (r,),, such that limnO rn = 0 and

lim,,n 0 P(MAX(X(")) > r,) = -0.

The most restrictive conditions are obviously the last two. We can now state our

main result.

Theorem 1 Let us consider an edge-set problem verifying Conditions 1-4. Then if

(Xi)i is a sequence of points independently and uniformly distributed over [0, l]d we

have
ELube(X(n)) ELtorus (X(n))

limsup = limsup , (2.1)
n-- oo ncd n .-+oo ncd

and
ELcube(X(-)) ELtorus (x(n))

lim inf = lim inf . (2.2)
n--+oo nCd n--+oo ncd

Proof:

First let us consider an arbitrary sequence (xi)i. For all edges (xi, xj) of A,ube (X(n)),

replace I xi - xjll by IIx - xj( mod )dl . From the restriction imposed on an edge-set

problem's objective function, we obtain a feasible solution to the d-torus model of

weight less than Lube(x()). Hence we have

Ltorus(X(n)) < Lcube(x(n)). (2.3)

Now let (z(n)) = {(xi, j) C Ato,u(x(n)) : Ixi- xj(modl)dll < jxi - xjl}. Also,

for r < 1/2, let Q(r) = [0, 1]d \ [r, 1 - r]d be a layer of width r on the inside of
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Partition F(x(n)) in two sets r)(x (n ) ) = {(x, xj) E F(()) : xi E

[r, 1- r]d, xj E [r, 1-r]d}, and .r)(x(")) = F(x()) \ r)(x(n)). Call their respective

cardinality kl(r) and k2 (r). From Condition 3 we then have

Lcube((n)) < Ltorus(X(n)) + Yd (kl (r) + k 2 (r))d (2.4)

From Condition 2, it is easy to see that

(2.5)

and

k 2(r) < Ddl{i EG Q(r)}j. (2.6)

Let us now consider a sequence (Xi) i of points independently and uniformly dis-

tributed over [0, 1]d. We then have from (2.5)

Ddn

EK(r) = E kP(KI(r) = k) < DdnP(Kl(r) > 1),
k=O

(2.7)

and since the event {Kl(r) > 1} is included in the event {MAX(X(")) > r} we get

EKi(r) < DdnP(MAX(X(n)) > r). (2.8)

From (2.6), we also have

EK 2(r) < DdEI{Xi E Q(r)}j = Ddn[l - (1 - 2r)d]. (2.9)

Finally we obtain, from (2.3),

(2.10)

and, from (2.4), (2.8), (2.9) and the concavity of f(y) = ydycd, for Cd < 1,

ELcube(X(n)) < ELtorus(X(n))

+ 7d (DdnP(MAX(X(n)) > r) + Ddn[1 - (1 - 2r)d])d . (2.11)

6
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It is now easy to conclude from (2.10), (2.11), Conditions 1 and 4 (taking r = r,,

where (r,)n is the sequence of Condition 4).

Consequence: As a corollary to Theorem 1, if ELcub(X(n))/ncd happens to con-

verge to the constant pd, it will be true of ELtru8 (X(n))/nCd, and vice-versa.

3 Examples

3.1 The minimum spanning tree problem and its constant

The minimum spanning tree problem consists of finding a spanning tree through a

given set of points of minimum total length.

It is clear that the MST is a member of the class of edge-set problems. Now

Condition 1 with Cd = (d - 1)/d is well-known for the MST (see for example [9]).

From geometric considerations it is also easy (and well-known) that the MST in

Euclidean metric spaces verifies Condition 2 with Dd bounded by the number of

spherical caps with angle r/3 which are needed to cover the unit sphere in Rd. In

the proposition below we show that Condition 3 is also satisfied.

Proposition 1 For the MST, Condition 3 holds.

Proof:

From Atoru(x(n)), delete the edges (xi, xj) such that I xi- xj( mod )dll < Ilxi- xjll.

If k is the number of such edges, we end up with a forest of k + 1 components. Pick

one representative from each component, and construct the MST (in the d-cube)

through these k + 1 points. From Condition 1 the length of such a tree is bounded

by Cd(k + l)(d-l)/d. Now the forest together with this tree form a spanning tree of

x(n) in the d-cube, and this shows the validity of Condition 3.
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U

In order to show that Condition 4 is verified we need two intermediate lemmas.

Lemma 1 Let (Qj)l<j<md be a partition of the d-cube [0, 1]d into cubes with edges

parallel to the axle and of length l/m. If for a sequence of points {x 1 : 1 < i < oo},

x(n) n Qj is not empty for all j, then the MST in the d-torus is such that

MAX(X(n) ) < + 3 (3.12)
m

Proof:

This proof is a generalization of an argument used in [4] for the MST in the square. It

goes as follows. Let e be an edge of Atoru,,((n)) so that its weight is MAX(x(n)). By

discarding e we end up with a forest with two components, with point sets, say V, and

We such that for all xi E Ve and all xj E We we have I xi-xj(mod l)d > MAX(x ())

(by definition of an optimal MST). We will now prove the lemma by contradiction.

Let us assume that MAX(x(n)) > v T_+3/m. Then MAX(x(n)) > v-/m and thus

each Qj either contains points from Ve or from We but not from both. So the

partition of the points into V, and We leads to a partition of the cubes in two sets,

I and J such that for all i I we have (n) n Qi E Ve, and for all j E J we have

x(n) n Qj E We. Now, since all cubes are non-empty, we can always find a pair of

adjacent (i.e, sharing a facet) cubes Qi and Qj with i E I and j E J. But now,

the largest possible edge connecting these two squares is bounded from above by

V'+ 3/m and thus, using our working hypothesis, by MAX(x(n)). This leads to a

contradiction (see the beginning of our proof). Note that the same arguments hold

for the problem in the d-cube.

Lemma 2 Let (Xi)i be a sequence of points independently and uniformly distributed

over [0, 1]d, and let (Qi)l<i<md be a partition of the d-cube [0, ]d into cubes with edges
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parallel to the axle and of length l/m. If Nj denotes the cardinality of X(n) n Qj,

then, with p = 1/md, we have, for h > 12 and n > 3,

P( Vj:Nj> np- hnplogn) > 1 n4

Proof:

For all j let Bn,j be the event {N j < np - /hnplogn}. We obviously have

md

P (3j: Bn,j) < S P (Bn,j) = mdp (Bn,1)
j=1

= P (3, 1) /P.

Now N1 is a binomial random variable with n trials and parameter p. Using classical

bounds on the tail of a binomial distribution (see [3, Corollary 4, p.11]) we have,

with q = 1 -p,

P(N np- hnplogn)
1 1

< -exp -h log n/3q + /q} < 

the last inequality being valid for h > 12, and n > 3. Now the lemma follows from

(3.14) and (3.15).

U

We are now in position to prove that Condition 4 holds for the MST.

Proposition 2 Let (Xi)i be a sequence of points independently and uniformly dis-

tributed over [0, 1]d. Then for the MST we have

> Ad (logn )n
1

n2 log n
(3.16)

where Ad = 121/V/d +3.

Proof:

If we take md(= l/p) < n/(h log n), then we have from Lemma 2

P (Vj: Nj > 0) > 1 -
1

2hnh 4-1 logn
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and from Lemma 1 we also have, for any e > 0,

P (MAX(X(n)) < (h + e)1d/j+ (logn/n)l/ d) > P (j: Nj > 0). (3.18)

The proposition follows from (3.17) and (3.18) by taking h = 12. Note again that

the same arguments hold for the problem in the d-cube.

Combining Theorem 1, Propositions 1 and 2, and the convergence in expectation of

the MST in the d-cube (see for example [9]), we finally obtain our main result for

the MST:

Theorem 2 Let (Xi)i be a sequence of points independently and uniformly dis-

tributed over [0, 1]d. Then for the MST we have

ELtorus(X(n)) lim ELcube(X(n))
lim im = d(mst) (3.19)
n §0o n(d-l)/d n-°oo n(d-l)/d

Consequence: As a corollary to Theorem 2, the series expansion re-

cently obtained for the MST constant in the d-torus (see [1]) is also valid

for the classical Euclidean model of the MST. This is then one rare ex-

ample, among this class of problems, for which we have been able to

characterize the limiting constant analytically.

Before concluding this section, let us mention that in [9], the author studies the

asymptotics of generalizations of the minimum spanning tree problem in which the

distance between points are some fixed power of the Euclidean distance. It is quite

clear that Theorem 2 can be readily extended to cover this case as well.

3.2 The traveling salesman and matching problems

The traveling salesman problem consists of finding a tour through a given set of

points of minimum total length, and the minimum weight matching problem consists
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of finding a matching (a pairing) of these points of minimum total length. The

analyses of these two problems are quite similar, so we will concentrate mainly on

the TSP, giving, afterward, the specificities of the matching problem.

Here again, it is clear that the TSP belongs to the class of edge-set problems.

Also, Condition 1 is quite well-known with Cd = (d - 1)/d (see for example [2]) and

Condition 2 holds obviously. The verification of Condition 3 for the TSP is slightly

more involved than for the MST but remains easy.

Proposition 3 For the TSP, Condition 3 holds.

Proof:

Again delete from Ator,s(x(n)) all edges (xi, xj) such that IIxi- j(modl)dll < IIxi-

xjll. If k is the number of such edges, we end up with k components, each of them

being a path (possibly degenerated to a point). Pick one extremity (a point with a

single adjacent edge) from each component, and construct a MST (in the d-cube)

through these k points. From the previous section, the length of such a tree is

bounded by -dltk(d-l)/d. We have now a connected graph with less than 2k points

with odd degree. We find a minimum weight matching (in the d-cube) on these points

(it is easy to see that the number of such points is even). The extra weight will then

be bounded by apat(2k)(d-)/ld (since the matching problem verifies Condition 1, see

for example [8]). Now the resulting graph is a spanning walk (see [6]) of total weight

(in the d-cube) not exceeding Ltorus(x( n)) + camstk(d-l)/d + Ceat(2k)(d-1)/d. Since

a tour of lesser weight can be obtained from this walk, this shows the validity of

Condition 3.

Now we will show that Condition 4 holds in a slightly modified model in which we

use a Poisson point process. More precisely, let 7rn denote a Poisson point process

in [0, ]d with intensity equal to n times the Lebesgue measure A. For any bounded

Borel set A C [0, ]d, let rn(A) denote the random set of points in A (almost surely a
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finite set of points) and Nn(A) the cardinality of 7rn(A) (a Poisson random variable

with parameter nA(A)). When A is [0, 1]d, we will simply write IIn and Nn. Now we

have the following result.

Proposition 4 Let inr be a Poisson point process in [0, 1]d with intensity equal to n

times the Lebesgue measure, then for the TSP we have

lim P (MAX(II) > nlo ) = 0. (3.20)

In order to prove this proposition we will need a series of intermediate results. In

some of the results, we will use e as a positive universal constant meant to be close

to zero, but whose value might change from equation to equation. The first lemma is

a geometrical property that exploits the property of a 2-change procedure (we recall

that a 2-change procedure consists of replacing any two edges of a tour by two other

edges so that we still have a tour). The lemma intuitively says that if we have a

sufficient concentration of points in a given area, then for any optimal solution to the

TSP, one can always find three points xi, x, and Xk in this area such that (xi, xj)

and (j, Xk) belong to the optimal solution. More precisely, we have the following.

Lemma 3 Let {xi : 1 < i < oo} be an arbitrary infinite sequence of points in [0, 1]d.

For any r < 1/8 let B(O, r) = {y E [0,l]d : IIy(modl)dll < r} be the (d-torus) ball

with radius r and center 0. Now if B(O, r) n x(n)l > 12, then , for any optimal

solution to the TSP in the d-torus, there exists a point in B(O, r) n x(n) such that

both its adjacent points (along the tour) belong to B(O, 4r).

Proof:

This lemma follows from the fact that in an optimal solution, a 2-change procedure

cannot improve the solution. Indeed let us consider a tour together with an arbitrary

orientation. For each point xi, let xa(i) and xb(i) be respectively its predecessor and

successor along the tour. It is then easy to show that if we have 6 points (or more)
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in B(O, r), each of them having its successor outside of B(0, 4r), then there is at

least two of these points, say xi and Xj, such that a 2-change procedure replacing

(xi, Xb(i)) and (xj, xb(j)) by (xi, xj) and (xb(i), Xb(j)) will give a saving greater than or

equal to (3r + 3r) - (4r + r) = r (i.e., will shorten the length of the tour by this

quantity). Indeed, note that the 'worst case' configuration against the validity of

our statement is (using the pigeonhole principle) given by 6 points evenly spread on

the boundary of B(O, r), with each successor xb(i) being on the boundary of B(O, 4r)

at the intersection with the semi infinite line from 0 through xi. Now the same

argument (with 6 points) holds with predecessors. Now with very generous bounds,

we can be sure that among 12 points, there is at least one point for which both its

successor and predecessor belong to B(0, 4r).

The next lemma is an adaptation of a technical result proved by Rhee [7, Lemma

3]. For any points x, y and z in [O,l]d, let S(x,y,z) = Ilx - y(modl)dll + Ily -

z(modl)dll - IIx - z(modl)dll.

Lemma 4 Let X(n) = {X ,...,X,} be n points independently and uniformly dis-

tributed over [0, 1]d . For a given constant c > O, consider B(0, c/nl/d). Then, for

any e1 > O, there exists a constant > 0 such that, for all pair of points Xi and Xj

in B(0, c/nl/d) n X(n), we have, for all n,

P S(XiOXj) > n- > 1-1. (3.21)

Proof:

Let N(c) = IB(O, c/nl/d) n X(") . Then there exists a constant k(c, e), such that, for

all n,

P(N(c) < k(c,e)) > 1- e. (3.22)

Hence it suffices to show that for two independent points X and Y uniformly dis-
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tributed on B(O, c/nl/d), we have

lim P(S(X, O, Y) < /n l /d) = 0 (3.23)

where the limit is uniform in n. But this is obvious since the probability in the

limiting expression is independent of n.

The two previous lemmas can now be put to work in order to prove the following

key result.

Lemma 5 Let X(n) = {X 1 ,...,Xn} be n points independently and uniformly dis-

tributed over [0, 1 ]d and, for any c, let X(c) = B(O, c/nl/d) n X(n"). Then for any

62 > 0, there exists two positive constants r and ,u so that the event

'(r,) - {3Xi e X(r) Xa(i), Xb(i) E B(0,4r/n/d) & S(Xa(i), Xi, Xb(i)) > /lin l / d }

verifies

P ((r, /)) > 1 - 62. (3.24)

Moreover this statement remains true if one replaces the random variables X(n) by

7r,, a Poisson point process in [0, 1]d with intensity equal to n times the Lebesgue

measure.

Proof:

First let N(r) = B(O,r/nl/d) n X(n). By conditionning on the value of N(r), and

using Lemma 1, we have

P ((r, y/)) > P ((r, )I)lN(r) > 12) P (N(r) > 12). (3.25)

But N(r) is a binomial random variable of expectation not depending on n and

then one can always choose r large enough so that P (N(r) > 12) > 1 - for all

n > 12. Now from Lemma 3, we know that if N(r) > 12, then there exists a point

Xi, such that both Xa(i) and Xb(i) belong to B(Xi, 5r/nl/d). Now, the application
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of Lemma 4 with c = 5r implies that there exists a constant p small enough so that

P (S(Xa(i), Xi, Xb(i)) > ui/n l / d) > 1-s. Indeed, note that in the d-torus, everything

is unchanged through translation. The lemma is then proved for the uniform case.

For the Poisson point process the argument is basically the same if one notices that

we can always successively find three constants r, K(r), and M(K(r)) large enough

so that

P ({12 < N.(r) < K(r)} n {N.(5r) < M(K(r))}) > 1 - e. (3.26)

where Nn(c) stands for N,(B(O, c/nl/d)) (a Poisson random variable with a param-

eter not depending on n). Note that the requirement of N,(5r) being bounded from

above by a constant is necessary to have a valid version of Lemma 4.

We are now ready to complete the proof of Proposition 4.

Proof of Proposition 4:

First note, from Lemma 5, that if the event (r, y/) is true then we get a saving of at

least yi/nl/d by skipping point Xi from the tour. Let Atorus(IIn) be a given optimal

solution to the TSP through the points of IIn. Let us look at the probability that a

given edge of the tour has a length, say D (in the d-torus), greater than or equal to

log n/n1/d. Take one such edge, say (X, Y), and divide it into three equal segments.

Now take the middle segment and further divide it into K - 1 equal segments. Let

(Zj)l<K be the K endpoints defining the small segments and consider K adjacent

d-balls of same radius and centered at these points. We choose K so that the com-

mon radius is 4r/nl/d for a given r (we will then have K > 1 + log n/12r). Now

suppose that for at least one of the ball, say B(zj, r/nl/d) the event 7-l(r, [) is true

with a given point, say Z. Then one can transform the current solution by connect-

ing Z to X and Y instead of its previous adjacent points. Since Z G B(zj, r/nl/d)

and min{l zj-X( mod 1)d i, Ilj-Y( mod 1)dll) > log n/3nl/d the extra cost of going

from X to Y via Z will be of order Q(l/nl/d log n) and the saving in the ball of order
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Q(l/nl/d). Hence, for n sufficiently large, we obtain a shorter tour. In conclusion,

with the help of Lemma 5, we have

P(D > log n/nl/d) < E~' < logn/12r+1 = 6 2 loge2/12r (3.27)

Now for n sufficiently large, one can find a constant m so that N, < mn with a

probability arbitrarily close to one, say 1 - e. Hence we finally have

P MAX( > (/d < mn( 2 n 2) + . (3.28)

Now we can always find 62 so that the proposition is true.

We are now in a position to give the main result for the TSP.

Theorem 3 Let (Xi)i be a sequence of points independently and uniformly dis-

tributed over [0, 1]d . Then for the TSP we have

ELtorus (X(n)) ELUbe(X(n))
lim E() - lim = 3d(tSp). (3.29)

n-+oo n(d-l)/d n-+oo n(d-l)/d

Proof:

From well-known results about the TSP (see for example [2] or [8]) it suffices to

show that (3.29) holds for a Poisson point process in [0, 1]d with intensity equal to

n times the Lebesgue measure. But this a consequence of Propositions 3 and 4, and

an adaptation of the proof of Theorem 1 to a Poisson process. The easiest way of

adapting these arguments is first by conditionning on Nn so that we get

ELcube(llnINn) ELtorus(lnINn)

+ yd (DdNnP(MAX(n > rjN) + DdN[1- (-2r)d]) d

and then by remarking that there exists a constant m so that

E[N.P(MAX(IIn > rNn)] < mnP(MAX(IIn) > r) + o(l). (3.30)
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All the other arguments in the proof of Theorem 1 remain valid for the Poisson point

process.

Now let us consider the minimum weight matching problem. It is an edge-set problem

and Conditions 1, 2, and 3 are either well-known (see [8]) or obvious. For the proof of

Condition 4 we proceed exactly as before. Indeed, here again, a close analysis of the

2-change procedure show that if there are more than 6 points in B(O, r) n X(") then

there is at least one point among them such that its matching point is inside B(O, 4r).

Now a lemma such as Lemma 4 is not needed anymore and we can prove directly a

result similar to Lemma 5. This result will basically say that with high probability

one can find a point among r,n (B(O, c/nl/d)) such that if we delete its matching

edge, we gain at least [l/nl/d for a positive constant ,u. The proof of Condition 4 is

then identical to the one given for the TSP.

4 Stronger equivalences for the MST

For the MST the equivalence in expectation can be strengthened into an equivalence

with probability one.

Theorem 4 Let (Xi)i be a sequence of points independently and uniformly dis-

tributed over [0, 1]d. Then for the MST we have

Ltorus (x(n)) L,,be(X(n))
lim L,() -lim L (X())= ,(t) (a.s.). (4.31)
n-oo n(d-l)/d, n-oo n(d-l)/d

Proof:

From the proof of Theorem 1 we recall that, for the MST, we have

Ltorus (X ®()) < Lcbe(X ® ) < Ltor,,(X(n))+7d (Ki(r) + DdI{Xi E Q(r)}I)cd , (4.32)

where Q(r) is the layer of width r on the inside of the d-cube and Kl(r) is the

cardinality of F(r)(X(n)) (see the proof of Theorem 1 for definition). Now from the
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strong law of large numbers we have

lim{X E Q(r) = 1 - (1 - 2r)d (a.s.). (4.33)
n--oo n

Also from Proposition 2 we have

E P(Kl(r) > 0) < E P(MAX(X(")) > r,) < E 2 < , (4.34)
n=l n=1 _l n2 log 

where rn = Ad(log n/n)l/d. From the Borel-Cantelli lemma this implies that

lim Kl(rn) = 0 (a.s.). (4.35)
n-+oo

The result (4.31) then follows from (4.32), (4.33), (4.35), and the almost sure con-

vergence of L,~e(X(n))/n(d- l)/d to /d(mst) (see [9]).

Let us end this section by a stronger version of Condition 3 for the MST. This

result might prove valuable for comparing the d-torus and the d-cube in terms of

asymptotic distribution for the MST. The result is the following.

Lemma 6 Let {xi : 1 < i < oo} be an arbitrary infinite sequence of points in [0, ]d

and Atorus,(X()) be an optimal MST in the d-torus through x(). Let £torus(X(n)) be

the set of edges (xi,xj) of this solution such that Ilxi - xj(modl)dll = llx, - jll

(i.e., that do not 'cross' the boundary of the d-cube). Then there exists an optimal

solution for this problem in the d-cube, say A*cube((n)), such that:

If (xi, xj) belongs to £Etorus(x()), then (xi,xj) belongs to A*cub,e((")) (4.36)

Pro of:

Take any edge (xi, xj) £torus((")) and consider a given solution Acube(x(n)) in the

d-cube. Suppose that (xi, Xj) does not belong to this solution. Then Acub,(x(n)) U

{(xi, xj)} contains a unique cycle, say Ccube, such that for all edges (Xk, XI) E Ccube \

{(xi, xj)} we have

IlXk - x11| < |HXi - Xil. (4.37)
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(Note that we can discard the easy case for which there is an edge (k, xl) such

that Illxk - xll = II - xjll. Indeed we would then exchange the two edges and

obtain an optimal solution in the d-cube that verifies (4.36) for the edge (x i,xj)

under consideration). Now among the edges of Ccu~ \ {Atorus(z(n)) n Ccube, there is

at least one edge, say (k, xl) such that At,,oru(X(n ) U { (xk, xl) } has a cycle containing

(xi, Xj). The proof of this key result goes as follows. Let Z = (zl,... , zm) be the

points (other than xi and xj) along the cycle Ccube and numbered as they appear from

xi to xj. By definition of a tree there is a unique path in Ator,,,((n)) going from xi

to each of these points. Color a point of Z red if this path does not go through xj

and blue otherwise. Note that the blue points can alternatively be defined as the

points reached from xj without going through xi. Also color xi red and zj blue. Now

any edge of Ccub \ {(xi, xj)} with adjacent points of opposite color, if added, would

form a cycle in Atorus,,,((n)) containing (xi, Xj). Along the cycle starting from xi and

in the opposite direction of xj we must find such an edge, since these two points

are of opposite color. It is now easy to conclude. Indeed if we remove (xi, xj) from

Atorus(X(n)) and replace it by (k, xl), we end up (from (4.37)) with a spanning tree

of weight less than Ltor,,,((n)): A contradiction.

5 Concluding remarks

In the course of proving the main theorems of this paper we have obtained several

results of independent interests. For example, in Proposition 2, we have proved that

for n points i.i.d. uniform on [0, 1]d, the length of the largest edge of the optimal

MST solutions (in the d-cube or d-torus) is almost surely asymptotically bounded

from above by Ad(logn/n)1/d. Now it is easy to show (see for example [4]) that, for

a Poisson point process 7r, with intensity n times the Lebesgue measure on [0, 1]d,
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there exists a constant d, such that this last quantity is asymptotically bounded

from below by d(logn/n)I/ d with a probability going to 1 as n goes to infinity. So

in the Poisson case the growth of the largest edge is Q((log n/n)l/d) in probability.

Is it true for the uniform case, and with in probability replaced by almost surely ?

We think so. Also the same questions arise for the TSP (or matching problem). In

this paper (see Lemma 5) we have shown that the largest edge in the Poisson case is

asymptotically bounded from above by a constant times log n/n'/d (in probability).

We feel that our techniques could be sharpen so that we get (log n/n)l/d instead

(but how ?). More generally we conjecture that in the uniform case the growth of

the largest edge of a TSP (in the d-cube or d-torus) is almost surely Q((log n/n)l/d).

Let us finally conclude with some remarks on the problem of finding, for the TSP

in the plane, the rate of convergence of the normalized mean ELu,be(X)/V to tlsp.

In [5], we have shown that

]ELcube(X")/Vn -
/3tpl < Cl/Vi, (5.38)

for a positive constant cl, but we have not been able to show that this result is best

in the sense that IELcube(X)/V- -
3tsp l = Q(1/x'). Now let us consider the easier

case of the Poisson point process model in the d-cube. Under this assumption, if one

follows the usual subadditivity argument (see, for example [2, 8]), one can easily get

the following one-sided bound

ELcube(In)/v/i > _ 3tsp - d//, (5.39)

for a positive constant d. Let us improve (5.39) by replacing the traditional partion-

ning and patching way of getting the subadditivity inequality by a recursive way. We

divide [0, 1]2 into 4 squares with edges parallel to the axle and of side length 1/2 and

we solve the TSP in each of them. Now we simply connect each small tours to the

center of [0, 1]2 (by a double link of smallest length). Starting with 7r4n in [0, 1]2, we

20



then obtain EL,,b(II4) 2ELCb(II ) + k//, where k is a positive constant. By

using this inequality recursively we finally get

ELcube(nII)/V > ,sp - 4k/3n. (5.40)

Can we do better ? We feel that the techniques of Subsection 3.2 (in particular

Lemma 5) could (?) now play a role. The idea is to improve the feasible solution

(obtained from the connection of the 4 TSP tours) by considering potential savings

along the borderline of two given adjacent (i.e., sharing a facet) small squares. More

precisely, in the 2-torus, if we consider a small ball of radius F(1/vn) and centered

on this borderline, we conjecture that, with a positive probability p, there exists a

point in the ball such that if we skip it along its current small TSP tour and connect

it to the TSP in the other square, we get a saving of Q(1/Vn/). Note that if this is

true, by placing Q(/n-) such balls centered on the borderline (much as in the proof

of Proposition 4), we would have an expected total saving of 0(1). This in turn

would imply that, for large n,

ELtorus(14n) < 2ELtorus8(l) - a, (5.41)

for a positive constant a. As a conclusion, note that if (5.41) is true (no matter how

it is proved), then, from Theorem 3, we would have ELcub(Hn)/>\/i /
3 tsp + C2/n,

for a positive constant c2. Together with (5.38), the final conclusion would then be

that

ELcube(II)/v' = !Atsp + Q2(1/v'/). (5.42)
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