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Introduction

A new method for multi-objective optimization of linear programs
based on Lagrange multiplier methods is developed. The method resembles,
but is distinct from, objective function weighting and gaol programming
methods. A subgradient optimization algorithm for selecting the multipliers
is presented and analyzed. The method is illustrated by its application to a
model for determining the weekly re-distribution of railroad cars from excess
supply areas to excess demand areas.
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ANALYZING MULTI-OBJECTIVE LINEAR PROGRAMS
BY LAGRANGE MULTIPLIERS*

by V. S. Ramakrishnan and Jeremy F. Shapiro**
September, 1990

Introduction

In this paper, we present a new approach to analyzing multi-objective
linear programs based on Lagrangean techniques. The approach resembles
classical methods for using non-negative weights to combine multiple
objectives into a single objective function. The weights in our construction,
however, are Lagrange multipliers whose selection is determined iteratively
by reference to targeted values for the objectives. Thus, the Lagrangean
approach also resembles goal programming due to the central role played by
the target values (goals) in determining the values of the multipliers. The
reader is referred to Steuer [1986] for a review of weighting and goal
programming methods in multi-objective optimization.

The plan of this paper is as follows. In the next section, we formulate
the multi-objective linear programming model as an Existence Problem. We
then demonstrate how to convert the Existence Problem to an optimization
problem by constructing an appropriate Lagrangean function. The dual
problem of minimizing the Lagrangean is related to finding a solution to the
Existence Problem, or proving it has no feasible solution. In the following
section, we provide an economic interpretation of efficient solutions
generated by the method. In the section after that, we present a subgradient
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optimization algorithm for analyzing the Existence Problem by optimizing

the implied dual problem. This algorithm provides a sequence of solutions
which converge to a solution to the Existence Problem if the problem has a
solution. An illustrative example is given, and the paper concludes with a
brief discussion of areas of future research and applications.

Statement of the Existence Problem and Lagrangean Formulation

We formulate the multi-objective linear programming model as the

Existence Problem: Does there exist an xeRn satisfying

Ax b (1)

Ckx tk for k = 1, 2, ... , K (2)

x > 0 (3)

In this formulation, the matrix A is mxn, each ck is a lxn objective
function vector, and each tk is a target value for the kth objective function.
We assume for convenience that the set

X = (xl Ax < b, x > 0) (4)

is non-empty and bounded. We let xr for r=l, ... , R denote the extreme

points of X . For future reference, we define the Kxn matrix

Cl

C= 

CK

and the Kxl vector t with coefficients tk . We say that the vector t in the
Existence Problem is attainable if there is an xX such that Cx t;
otherwise, the vector t is unattainable.
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Letting 7r = ( ,1 *2, , /K) 0 denote Lagrange multipliers associated

with the K objectives, we price out the constraints (2) to form the Lagrangean

L(ig) = - t + maximum Cx

Subject to Ax < b (5)
x 0

We let x (x) denote an optimal solution to (5). The following definition and
result, which is well known and therefore stated without proof, characterizes
these solutions.

DEFINITION: The solution xX is efficient (undominated) if there does not
exist a yeX such that Cy > Cx with strict inequality holding for at least one
component.

THEOREM 1: Any solution x (X) that is optimal in the Lagrangean (5) is
efficient if k > 0 for k=1, 2,...,K .

We say that the solution x () spans the target vector Cx () ; if has all

positive components, x () is an efficient solution for the Existence Problem
with this target vector.

The two possible outcomes for the Existence Problem (the Problem is
either feasible or infeasible) can be analyzed simultaneously by optimizing the
Multi-Objective Dual Problem (MODP)

D = minimize L (7)

Subject to > 0 (6)

THEOREM 2: If the Existence Problem has a feasible solution, L () 0 for
all x > 0 and D = 0 . If the Existence Problem has no feasible solution,

there exists a > O0 such that L( ) < implying L0*) e -co as

0 - +oo and therefore D = -oo.
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Proof:

It is easy to show that L () > 0 for all X 2> 0 when there exists an x > 0

satisfying Ax < b and Ci > t . For then, we have x (C - t) > 0 for all

7x > 0 which implies L ) > 0 since L(X) x (Ci - t).

To complete the proof, we consider the phase one linear program for
evaluating the existence problem

W = minimize

Subject to

K

Sk
k=l

Ax < b (7)

ckx + k 2 tk

X > 0, S k 0

for k=l,...,K

for k=l, ... , K .

The linear programming dual to this problem is

W = maximize - b + t

- A + C < 0

0 < k < 1 for k=l, ... , K

Let x , s , denote an optimal solution to the primal problem (7) found by

the simplex method, and let , x denote an optimal solution to the dual
problem (8).

4
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By linear programming duality, we have

Thus,

W = oa b + at

cr (b - Ax*) = 0
-= 0

(-a*A + C) = 0

* * *

(9)

(10)

(11)

W = -oAx + art

= -a Cx + t

- (C x - t)

where the first equality follows from (9) and (10), and the second equality
from (11). If the Existence Problem has a feasible solution, we have W = 0

and L(T) = X* (Cx* - t) = 0 . This completes the first part of the proof

because x must be optimal in (6) and D = 0.

If the Existence Problem does not have a solution, we have W > 0,
or

(Cx - t) = -W <0 (12)

Our next step is to show L () = - W

To this end, consider any 5x > 0 satisfying Ax^ < b . We have

(- A + * C) x < O
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since -a A + C < 0 , implying

X CX < A < *b

where the second inequality follows because > 0 . Adding - x t to both

sides of the inequality, we obtain

x(C~ - t) < ab - x *t = -W = (C - t) (13)

Thus, L( *) = (Cx* - t) < 0 . Moreover, (13) implies for any 0 > 0 that

L(O*) = -W = (O:')(Cx* - t)> * (CR- t) .

This establishes the desired result in the case when the Existence Problem is

infeasible. ·

It is well known and easy to show that L is a piecewise linear convex

function that is finite and therefore continuous on RK. Although L is not

everywhere differentiable, a generalization of the gradient exists everywhere.

A K-vector is called a subgradient of L at if

L() L (x) + (; - ) for all ;

A necessary and sufficient condition for xn to be optimal in (MODP) is that

there exist a subgradient of L at xL such that

r k = 0 if k > 

xk > 0 if k = 0 (14)

Algorithms for determining an optimal are based in part on exploiting this

condition characterizing optimality. The K-vectors Cx () - t are the
subgradients with which we will be working.
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It is clear from the definition of the Lagrangean that L ( ) = L (n)

for any 2> 0 and any X > 0; that is, L is homogeneous of degree one.

Equivalently, for each extreme point xr e X, the set

1 x 0 and L(x) = (Cr r- t))

is a cone. The geometry is depicted in Figure 1 where r = Cxr - t for

r= 1,2,3,4 .

The implication of this structure to analysis of the Existence Problem is

that we could restrict the vectors xr in the MODP (6) to lie on the simplex

S = (I = 1, k 2 k 0}

Theorem 2 can be re-stated as

Corollary 1: Suppose the multipliers xr are chosen to lie on the simplex S. If

the Existence Problem has a feasible solution, L (X) 0 for all E S and

D = 0. If the Existence Problem has no feasible solution, there exists a x E S

such that L( ') < 0

For technical reasons, we choose not to explicitly add this constraint to

the MODP. When reporting results, however, we will normalize the k so

K

that Ik = 1 . The normalization makes it easier for the decision-maker
k=l

to compare solutions.
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L( = ,

L( = 2

L( = T3

L( = x 4

Conic Structure of the Lagrangean

Figure 1
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Of course, the reader may have asked him(her)self why we need the
Lagrangean method when we can test feasibility of the Existence Problem

simply by solving the phase one linear program (7). The answer is that the

decision-maker is usually unsure about the specific target values tk that he
(she) wishes to set as goals. The Lagrangean formulation and the algorithm

discussed in the next section allow him (her) to interactively generate

efficient solutions (assuming all the 7Rk > 0 ) spanning target values in a
neighborhood of given targets tk if these given targets are attainable. If the
targets prove unattainable, undesirable, or simply uninteresting, the decision-
maker can adjust them and re-direct the exploration to a different range of
efficient solutions.

Economic Interpretation of Efficient Solutions

Frequently, one of the objective functions in the Existence Problem, say

cl, refers to money (e.g., maximize net revenues). In such a case, each

efficient solution generated by optimizing the Lagrangean function (5) lends

itself to an economic interpretation. Consider 7x with k > 0 for all k,

and let x* denote an optimal solution to (5). Furthermore, let t* = Cx*. It

is easy to show that x* is optimal in the linear program

max cl x (15.1)

s. t. ckx > tk k = 2,..., K (15.2)

Ax < b (15.3)

x > 0 (15.4)
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THEOREM 3: The quantities

- k
* I (16)

I 1

are optimal dual variables for the constraints (15.2) in the linear program (15).

Proof: The dual to (15) is

K

min I
k=2

Rktk + ob

K
S.t. I XkCk + oA

k=2
< cl

Rk < 0, C 2 0

Now the vector is optimal in the Lagrangean (5) which is a linear

program. Let >

(17)

0 denote the vector of optimal dual variables on the
constraints Ax < b. By linear programming duality,

oA < C

or

K

-x
k-1

Xkck + a A < 0.
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Dividing by 7t1 > 0, and rearranging cl, we obtain

K

k=2

k
* Ck

1+ *
+ -a A cl 

Thus, the solution
1

7rk < 0 for k =2,...,K, and -* 
71

*

is feasible in (17).

To prove that this dual solution is optimal in (17), we establish that
complimentary slackness holds for the dual solution and the primal solution

x*. First, by optimizing (5), we have

( C - * A) x = 0

and dividing by rtl, we have

C1
K

- Z
k=2

1 k Ck --- A x

1 1.)
= 0

which is the first of the two required complementary conditions.

Second, we have

- t}

K

k=2
= 0-(:f (|Ck Xk
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since tk = Ckxk, and

1 (b - Ax*) = 

because a* (b - Ax*) = 0 from optimization in (5). ·

Thus, when the objective function cl refers to revenue maximization
or some other money quantity, each time the Lagrangean is optimized with

all Irk > 0, the quantities k for k=2,...,K givenby (16) have the usual
linear programming shadow price interpretation. Namely, the rate of
increase of maximal revenue with respect to increasing objective k at the

value tk spanned by the efficient solution x* is approximated by

-X k

The quantity is only approximative because the RIk may not be unique
optimal dual variables in the linear program (15) (see Shapiro [1979; pp. 34-38]
for further discussion of this point.)

Subgradient Optimization Algorithms for Selecting Lagrange Multipliers

Subgradient optimization generates a sequence of K-vectors (T)
according to the rule:

1. If L(ntw) < 0 or w and w satisfy the optimality conditions (14),

stop. In the former case, the Existence Problem is infeasible. In the latter case

w is optimal in MODP and L ( w) = 0 = D. Otherwise, go to Step 2.
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2. For k=1,...,K

Xw+l,k = maximum 0, w, k - j (18)

where w is any subgradient of L at w, e < aW < 2 - 2 for e > 0 and

£2 > 0 , and II II denotes Euclidean norm. The subgradient typically chosen
in this method is xw = Cxw - t where x w is the computed optimal solution

to the Lagrangean at w .

At each cw , the algorithm proceeds by taking a step in the direction

- x w; if the step causes one or more components of xi to go negative, rule
(18) says set that component to zero. The only specialization of the standard
subgradient optimization algorithm for the MODP is the assumption in the
formula (18) that its minimum value D = 0 , and therefore that the step
length is determined by the value L ( w) which is assumed to be positive.

The following theorem characterizes convergence of the algorithm as we
have stated it. The proof is a straightforward extension of a result by Polyak
[1967] (see also Shapiro [19791). We present it here for completeness.

THEOREM 4: If the Existence Problem is feasible (t is attainable), the

subgradient optimization algorithm will converge to a x such that

L ( ) = 0 . If the Existence Problem is infeasible (t is unattainable), the

algorithm will converge to a such that L ( ) < 0 .

Proof: We need only consider the situation when the algorithm generates an

infinite sequence {Zw) by Step 2. Let x* > 0 be any dual solution such that

L(*) < 0 . First we show that j{/w - I is monotonically decreasing. Let

Vw+1 be defined by
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awL(- W)
Vw+l,k = w+l,k 1 1WL 2 w,kII'tw12

and let 0 w = w L ( w) for future reference. We have
IIw11 I2

- w+l = - w+ + Vw+l - w+l

where fw+l - w+l < 0 by construction.

Thus,

IF *

x- w+l < - Vw+l

or

IIxw+l- n*112 Iw+l - *112

It suffices then to show that IIvw+l - *112

IIvw+l - *112

_ IlRw - *112

II w- 112

+ 0w lwll2- 20w(w - 1*) w

+ 0ollwll - 20w [L(nw) - L(xt)]

+ llwll2 - 2wL(;rw)

14

I_w- -112

= w- Oww

(19)

. Consider

- XI'11



-= Ilw * -- 7 +1
( w 2ow)[L(,rw) 2

llwll2

where the first inequality follows because w is a subgradient of the convex

function L, the second inequality because L (*)

the final inequality from the definition of w .

Letting

< 0 and w > 0 , and

_ [L ( w)]2 >

I I W 12

= w(aw - 2)A

2 1 and 6Yw

< -E 1 E 2 A (21)

< 2 - E 2 . Combining (20) and (21), we have

II w+l- 112 < 11 r - C112 [L(Nw)]2
- ElE2iiwl

11 Z 112

or from (19),

< Iww - l 2 (22)[L (xw)]2
- E1E2 2

The implication of (22) is that the sequence of non-negative numbers

|1 |1 - 112 is monotonically decreasing, which in turn implies

15
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0

we have

( 2
lOW

Since w

II2w+ - '112

- 24A



lim - *112
W -) oo

exists. The existence of this limit implies from (22) that

lim [L (w)] 2 =

win 11 ll2

because otherwise there would be an infinite subsequence of the r w - 112
decreasing at each step by at least some E 3 > 0 which is clearly impossible.

Since there are only a finite number of extreme points of the bounded

polyhedron (x I Ax b, x 0 ) the 11xw112 are uniformly bounded.

Thus, we can conclude that

lim L(rw) = 
W - oo

Finally, the sequence (w must have at least one converging

subsequence because the w are restricted to the bounded set

{R I 11 - l -< I - Xll)

If (7q) is such a subsequence converging to , we have since L is a

continuous function that

lim L(TrW) = L(lim w) = L(i) = 0. (23)
W -- oo w -) oo
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This establishes the desired result.

The reader may note that if the Existence Problem is infeasible and the
subgradient algorithm does not converge finitely, then the proof of
Theorem 4 indicates that the algorithm generates subsequences converging to

xr such that L ) = 0 . Thus, in this case, the algorithm fails to indicate
infeasibility. Of course, it is likely that the procedure will terminate finitely by

finding a w such that L ( w) < 0 . Alternatively, if we knew that the

Existence Problem were infeasible, we could replace the term L (Nw) in (18) by

L(xw) + for > 0 and the algorithm would converge to ix such that

L (*) < - . In effect, this is equivalent to giving the subgradient

optimization algorithm a target of - 8 < 0 as a value for L. The danger is
that if we guess wrong and the Existence Problem is feasible, then the
algorithm will ultimately oscillate and fail to converge.

Railroad Car Redistribution Problem

We illustrate the Lagrangean method for multi-optimization of linear
programs with a specific example drawn from the railroad industry. A
railroad company wishes to minimize the cost of relocating its railroad cars
for the coming week. Distribution areas 1 through 6 are forecasted to have a
surplus (supply exceeds demand) of cars whereas distribution areas 7 through
14 are forecasted to have a deficit (demand exceeds supply). Unit
transportation costs are shown in Table 1, surpluses for distribution areas 1
through 6 in Table 2, and deficits for distribution areas 7 through 14 in
Table 3. Storage of excess cars at each of the 14 locations are limited to a
maximum of 20.

17
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7 8 9 10 11 12 13 14

1 58 86 150 100 130 110 80 85
2 77 58 62 90 92 114 110 125
3 170 142 112 114 100 97 127 128
4 160 130 72 140 120 145 150 175
5 160 135 55 75 60 75 90 103
6 150 130 141 92 94 70 80 58

Unit Transportation costs cij

Table 1

Distribution Area 1 2 3 4 5 6

Surpluses 102 85 60 25 78 44

Surpluses Si

Table 2

Distribution Area 7 8 9 10 11 12 13 14

Deficits 48 31 30 6 27 25 44 39

Deficits Di

Table 3

Management is also concerned with other objectives for the week's
redistribution plan. First, they would like to minimize the flow on the link

from location 2 to location 8 because work is scheduled for the roadbed.
Second, they would like to maximize the flow to locations 7 because they
anticipate added demand there.

The relocation problem can be formulated as the following multi-
objective linear program.

Indices:
i

i
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Decision Variables:

xij = number of cars to be transported from distribution area i to

distribution area j.
Ei = number of excess cars at distribution area i.

Ej = number of excess cars at distribution area j.

Constraints:

14

I Xij + Ei = Si
j--7

6

Z xij - Ej = D
i=l

0 < Ei, Ej < 20

xij 0

for i = 1, ... , 7

for j = 7, ... , 14

for i = 1,..., 6; j = 7,..., 14.

for i = 1, ... , 6; j = 7,..., 14.

Objective functions:

* Minimize cost

6 14

Z1 = cxijx
i=1 j=7

* Minimize flow on link (2, 8)

Z2 = x28

* Maximize flow to distribution area 7

19



6

Z3 = xi7
i=l

We begin our analysis by optimizing the model with respect to the first

objective function. The result is

Objective: Minimize Z 1 (cost)

Solution:

Z 1 = 19222

Z2 = 51

Z3 = 48

This data is used by the decision-maker in setting reasonable targets on the

three objectives:

6 14

E cij ij 20000
i=1 j=7

X28 < 30

Z Xi7 58
i=l

Taking into account that the cost and flow objectives are minimizing

ones of the form ck x < tk, we multiply by -1 to put the Existence Problem
in standard form. In addition, to enhance computational efficiency and

stability, we scale the cost targets and objective function by .001 to make them

commensurate with the other two. We now form the Lagrangean as detailed
in the previous chapter and apply the subgradient optimization algorithm.

(Actually, we applied a modified and heuristic version of the algorithm
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outlined above that ensures x vectors with positive components are
generated at each iteration. For further details, see Ramakrishnan [1990]).

The results of nine steps are given in Table 4. Each row corresponds to
a solution. The first column gives the value of L () and the next three
columns contain Z 1 (cost), Z 2 (flow on link (2, 8)) and Z 3 (flow to area 7)
respectively. The percentage increase over minimal cost (PIC) is also
provided to help the decision-maker's evaluation.

RR Car Redistribution Problem -

Table 4
Second Run

The results in Table 4 point out a deficiency of the subgradient
optimization algorithm for minimizing the piecewise linear convex function
L. Among the ten distinct dual vectors that were generated during the
descent, we find only three distinct efficient solutions to the Existence
Problem. This is partially, but not entirely, the result of the small size of the
illustrative example.

An alternative descent algorithm for MODP that would largely
eliminate this deficiency is one based on a generalized version of the primal-
dual simplex algorithm (see Shapiro [1979]). The generalized primal-dual is a

local descent algorithm that converges finitely and monotonically to a xI
optimal in MODP. Moreover, it easily allows the constraints

21

No. L () Z1 Z2 Z3 XI;1 /2 13 PIC

1 12.976 21029 0 68 0.334 0.333 0.333 9.4
2 6.569 21029 0 68 0.516 0.113 0.371 9.4
3 4.175 19556 35 68 0.608 0.001 0.391 1.7
4 7.347 21029 0 68 0.654 0.228 0.118 9.4
5 3.711 21029 0 68 0.757 0.103 0.140 9.4
6 1.878 21029 0 68 0.809 0.040 0.151 9.4
7 1.919 19572 31 68 0.835 0.008 0.157 1.8
8 1.937 21029 0 68 0.887 0.086 0.027 9.4
9 0.979 21029 0 68 0.914 0.053 0.033 9.4

10 0.721 19572 31 68 0.928 0.036 0.036 1.8

'~-·..~- 1 . .. _· .
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I Xk

to be added to MODP. It has, however, two disadvantages: (1) it is
complicated to program; and (2) for MODP's where L has a large or dense
number of piecewise linear segments, the algorithm would entail a large
number of small steps. Given the intended exploratory nature of the multi-
objective proceeding, it appears preferable to use the subgradient optimization
algorithm and present only distinct solutions to the decision-maker.

The generalized primal-dual algorithm can be viewed as a constructive
procedure for finding a subgradient satisfying the optimality conditions (14)
by taking convex combinations of the subgradients derived from extreme
points to X. Indeed, we may only be able to meet all our targets by taking
such a combination of extreme point solutions. This suggests a heuristic for
choosing an appropriate convex combination of the last two solutions in
Table 4. For example, if we weight the solution on row 9 by .032 and the
solution on row 10 by .968, we obtain a solution satisfying all three targets
with the values

Z1 = 19619

Z2 = 30

Z 3 = 68

Taking the same convex combination of the multipliers associated with
solutions 9 and 10, and applying the result of Theorem 3, we obtain

2 = $48.30 as the (approximate) rate of increase of minimal cost with
respect to decreasing the flow on link (2, 8) at a flow level of 30, and

3 = $37.50 as the (approximate) rate of increase of minimal cost with

respect to increasing the flow to distribution area 7 at a delivered flow level of
68.

22
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Future Directions

We envision several directions of future research for the Lagrangean
approach to multi-objective optimization developed in this paper. From a
practical viewpoint, the approach needs testing as an effective decision
support tool for analyzing multi-objective problems in an interactive mode.
In this regard, the railroad car distribution example presented above is an
actual application where we hope the technique will be used. The technique
was successfully applied in the construction of a pilot optimization model for
allocating budgets to acquire, install, and maintain new systems for the U.S.
Navy submarine fleet (Manickas [1988]). For this class of problems, the
multiple objectives were various measures of submarine performance with
and without specific system upgrades. Unfortunately, the project did not
continue beyond the pilot stage to the implementation of an interactive
system for supporting decision making in this area at the Pentagon.

Interactive analysis of the Existence Problem would allow the
underlying preference structure, or utility function, of the decision-maker to
be assessed by asking him/her to compare the most recently generated
efficient solution with each of the previously generated ones. The
information about preferences gleaned from these comparisons could be
represented as constraints on the decision vector x (see Zionts and
Wallenius [1983] or Ramesh et al [1989]). Alternatively, we could apply the
method of cojoint analysis developed by Srinivasan and Shocker [1973] to
identify the decision-maker's ideal target vector t from the pairwise
preferences.

Although we dismissed the generalized primal-dual algorithm as a
method for computing the Lagrange multipliers, further experience might
indicate that the primal-dual is more effective than subgradient optimization
for some applications. Finally, research remains to be performed on the
application of Lagrange multiplier methods to multiple objective problems
with mixed integer and nonlinear structures. Multiple objective
optimization involving measures of cost, time and customer service is highly
appropriate for mixed integer programming models of production scheduling
(Shapiro [1989]).
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