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ABSTRACT

For a network of G/oo service facilities, the transient joint distribution of the facility
populations is found to have a simple Poisson product form with simple explicit formula for
the means. In the network it is assumed that: a) each facility has an infinite number of
servers; b) the service time distributions are general; c) external traffic is non-homogenous
in time; d) arrivals have random or deterministic routes through the network possibly
returning to the same facility more than once; e) arrivals use the facilities on their route
sequentially or in parallel (as in the case of a circuit switched telecommunication network).
The results have relevance to communication networks and manufacturing systems.
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Section 1. Introduction
Networks of M/G/ queues with probabilistic routing are BCMP networks [Baskett et. al.

(1975)] with simple known ergodic distributions. However, the dynamics of such systems in the

presence of traffic whose rates vary with time has not been well documented although the analysis

is not as intractable as one might guess.

The tractability of stationary BCMP networks arises from the Poisson character of input

arrival processes and the resulting Poisson character at ergodicity of the exit processes from each

service facility. The key to our analysis is that the transient exit process from an infinite server

facility is also simple in form even when arrival rates vary with time. To show this, one must first

characterize a Poisson processes with time dependent arrival rate. This inhomogeneous Markov

point processes, to be called an M(t)-Poisson process for brevity,will be characterized in Section

2. Using very simple arguments it will be shown that an M/G/oo queue with an M(t)-Poisson input

has two properties:

i) the output process is also M(t)-Poisson with a hazard rate that is simply stated;

ii) the population in the system is Poisson with a mean that is simply stated.

These properties serve as stepping stones for the analysis of a network of M/IG/ queues. For

networks where customers visit a specified sequence of facilities, the transient joint distribution

of the number of customers at each facility is of product form. Each marginal distribution is

Poisson distributed with a simple mean. For communication networks where arriving customers

(calls) use a set of facilities (trunk lines) simultaneously, the transient joint distribution of the

number of calls at each facility is again Poisson.

Related work has been considered by others. In Kambo and Bhalaik (1979) and

Ramakrishnan (1980) the transient population is found for a single infinite server facility with

exponential or deterministic service times, respectively. In Brown and Ross (1969) the transient

population distribution of a non-homogeneous M/G/oo queue with batch sizes and service times

that depend on the arrival time is shown to be a product form Poisson distribution. By studying the

measure on carefully constructed Borel sets, Foley (1982) applies the work of Renyi (1969) to

find the transient population distribution and inter-departure time of a non-homogeneous M/G/o

queue. Foley then extends the analysis to tandem M/G/oo queues to derive a product form Poisson

population distribution.
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In this paper new and simple methods are employed to address more general networks and

to exhibit means in an intuitive form.

Section 2: The M(t)/G/oo System

2.1 The Output Process

For what follows, some notation and nomenclature are needed. In particular the idea of a
time-inhomogeneous Poisson point process must be formalized. One also wishes to speak of an
input process with i.i.d. service times associated with these epochs.

Definition 1. An inhomogeneous Markov point process on the index set (0,oo) will be said to
be M(t)-Poisson if it is governed by hazard rate (t) for occurrence of an epoch at time t. The

associated counting process K(t) giving the total number of epochs in the interval (O,t] will also be
said to be M(t)-Poisson.

Definition 2. A service facility with infinitely many servers whose arrival process is M(t)-
Poisson with arriving customers having i.i.d. service times will be said to be an M(t)IG/oo

system. Its input process will be said to be M(t)/G, and the service facility will be said to be

Gl/oo.

As will be seen (cf Lemma 4 and Theorem 5) when the arrival process to an infinite server

facility is M(t)-Poisson with i.i.d service times, the departure process from the facility is also

M(t)-Poisson An important ingredient for demonstrating this is the following lemma.

Lemma 3. The superposition of independent M(t)-Poisson processes with hazard rates j(t) is

a M(t)-Poisson process with hazard rate X(t) = Xj(t).
J

Proof: Let Kj(t) be the number of epochs in the interval (O,t] for the j'th M(t)-Poisson process

with hazard rate Xj(t). The process Kj(t) is a markov analogue of a pure birth process on the lattice
of non-negative integers. The independent sum K(t) = Y.Kj(t) is also markov and is an

J
M(t)-Poisson counting process. Since the hazard rate for competing independent hazard rates is the
sum of these hazard rates, the lemma follows¶¶
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Lemma 4. Suppose that one has an M(t)-Poisson point process of rate ¢(t). Let each epoch xj

of the point process be given a random i.i.d. delay Tj with generalized p.d.f. aT(x) so that for
the resulting point process one has epochs xj = j + Tj . Then the resulting process is M(t)-

Poisson with hazard rate

(2.1) 0(t) = (t) * aT(t) = I (t-x) aT(x) dx
0

where * denotes the convolution operator.

Proof. Suppose that Tj is a mixture of K (deterministic) values with Prob[Tj = X] = Pk

The M(t)-process may then be viewed as the superposition of K independent M(t)-processes, the
k'th having hazard rate Xk(t) = pkX(t) and deterministic delay xk. Clearly, the output of the k'th

M(t)-process having a deterministic fixed delay xk is an independent M(t)-process with a hazard

rate pkX(t-xk) ( c.f. Ramakrishnan (1979)). From Lemma 3, the output process is M(t)-
K

Poisson with hazard rate 0(t) = pk(t-xk). Since the limit of a sequence of such M(t)-Poisson
k=l

processes with rate Xi(t) is clearly M(t)-Poisson with rate X(t) = lim i (t), the lemma

follows.¶¶

Theorem 5 Let the system M(t)/G/oo be such that:

a) its input process is M(t)-Poisson with hazard rate X(t);

b) its service time has general distribution with generalized pdf aT(x);

c) the system is initially empty.

Then the output process is also M(t)-Poisson with hazard rate 0(t) given by (2.1).

Proof: An M(t)/G/oo system is equivalent to a delay system so the result follows directly from

Lemma 4. ¶¶
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2.2 A Single M(t)/G/oo Facility

It is well known that the ergodic number in system for M/G/ has a Poisson distribution.

We show below that No(t), the number in the system at time t of an M(t)/G/o facility that is

initially empty, is also Poisson for all t.

Theorem 6. Let an M(t)/G/o facility, initially empty, have an input process with hazard rate

X(t) and let No(t) be the number in system at time t. Then the distribution of No(t) is Poisson for

all t with pgf

(2.2) E[uNO(t) ] = exp( -C(t)(l-u))

where

(2.3) 4(t) = E[No(t)] = X(t) * AT(t)

where AT(t) is the survival function of the service time.

b

Proof. It is known that the number of Poisson arrivals in (a,b) is Poisson with mean Jf(x)d: =
a

t

L(a) - L(b) where L(t) ;X( ()d . When the service time T is deterministic, No(t) is the number

of arrivals in (t-T,t) and has Poisson distribution with expectation L(t) - L(t-T). When the service

time has a discrete distribution, i.e., Prob [T = xk] = Pk then the input M(t)/G process of rate X(t)
may be viewed as a superposition of independent M(t)/D processes with rates X(t) Pk and

deterministic service times Xk. For each such M(t)/D process, the number in system is Poisson

and hence the number in the system for the superposition process is also Poisson. But the

parameter for a Poisson variate is its expectation. This expectation is given by the sum of the
expectations of the substreams, i.e., [L(t) - L(t-xk)] Pk. A general service time distribution

k

with cdf AT(X) may be viewed as the limit of a sequence of discrete distributions. In the limit,

No(t) has Poisson distribution with mean
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(2.4) E[No(t)] = j [L(t) - L(t-x)] dAT(x).
0

The equivalence of (2.4) with (2.3) then follows from Laplace transformation since

X(s) 2(s) 1 - 0(s)
L[E[No(t)]] = s - a(s) = (s) = L[(t)* AT(t)]

where COr(S) is the Laplace-Stieltjes transform of AT(X) and X(s) = L[R(t)]. ¶¶

Remark: From (2.3), E[No(t)] is also equal to p(t) * aT(t) where aT(t) = E[T] is the pdf of

the forward recurrence time of the service time and p(t) = X(t) E[T].

Corollary 7:
For M(t)/G/oo with N(O) = 0, N(t) increases stochastically with t when X(t) is non-

decreasing with t.

Proof: The proof is immediate from Theorem 6, since 4(t) is non-decreasing with t, and a

Poisson variate increases stochastically with its parameter.¶¶

Note that Corollary 7 applies to M/G/o as a special case when X(t) = X.

2.3 Initial conditions

When the system does not start empty, there will be instead a set of customers { C1, C 2,

C 3, .. CnO} present with residual service times Y1, Y2, Y3, .. .Yn and no and the yi's will be
randomly distributed. These customers may be assigned to special servers that will have no

subsequent arrivals. As they complete service, their population will decrease and go to zero as t
goes to infinity. If that part of the population is denoted by NI(t) and its pgf by 7ri(u,t), the pgf of

the total population will be given by

(2.5) ;u(u,t) = nI(u,t) exp[-C(t)(1-u)]

with C(t) given by (2.3).

The next theorem and corollary show that Poisson distributions play a broader role in the

evolution of the distribution of system population over time.
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Theorem 8. For the system M(t)/G/oo, let the initial population have Poisson distribution with

parameter a and let all residual service times be independent with P[Yj > t] = AR(t). Then the

distribution of the number N(t) in system is Poisson for all time with parameter 4(t) given by

(2.6) 4(t) = a AR(t) + X(t) * Ar(t)

Proof: If at t = 0, there are m customers present, the pgf of NI(t) is [ 1 - AR(t) + AR(t)u]m . By
e-0aam

assumption, the probability of m present at t = O is m! ' Hence the pgf of NI(t) is

oo

EI(u,t) = 

m=O

e-xam
m![ 1 - AR(t) + AR(t)u] m = exp[- a AR(t) (1-u)]

and, from (2.5) the result follows. ¶¶

Corollary 9. For the system M(t)/G/oo: a) let the initial population be a mixture of Poisson
m

Pi e-°ti a 
m

distributions with P[NI(O) = ml =
i=1

m! ; b) let all residual service times be

independent with P[Yj > t] = AR(t).

Poisson distributions with

P[N(t) = m] =

Then the number in system at time t is also a mixture of

Pie- ; i(x) Ci(t)m
m!

m

i=l

where

#i(t) = ai AR(t) + X(t) * AT(t)

Proof: If NI(O) is a mixture of Poisson distributions then the infinite servers can be partitioned

into m infinite sets each of which is associated with one of the mixtures of NI(O). From Theorem

8, NI(t) associated with each partition will be Poisson and the theorem follows.¶¶
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Remark: The class of mixtures of Poisson distributions is very broad. It contains the negative

binomial distributions and is clearly closed under mixing and independent summation . For any
2

variate N(t) in this class, one has oN(t) > (t) See for example [Keilson 1977] -

Section 3: Networks of M(t)/G/oo systems

The simplest example of a G/oo network is that with two G/o facilities in tandem. The service

times of a customer at the two facilities need not be independent. The answers are still simple in

structure. The D/oo case will be considered first.

Lemma 11.
Suppose an M(t)-Poisson arrival stream goes through two D/oo service stages in tandem

having service times xl and x2 . Then,the occupancy levels Nl(t) and N2(t) are independent and

the joint occupancy distribution has product form

(3.1) 7(Ul,U2,t) = exp[ -E[Nl(t)](l-ul)] exp[ -E[N 2(t)](1-u 2)]

where

(3.7) E[Nl(t)] = L(t) - L(t-xl)

and

(3.8) E[N2(t)] = L(t-xl-x2) - L(t-xl)
t

where L(t) = (x)dt.
0

Proof.
Let the service time at the first stage be xl and the second be x2. Then, at time t, Nl(t) is

the number of arrivals to stage 1 in the interval (t - xl,t] and N 2(t) is the number of arrivals to

stage 2 in the interval (t - x2,t], i.e. the number of arrivals to stage 1 in the interval (t - xl - x2, t -

xl]. Since the latter interval is disjoint from (t - xl,t], Nl(t) is independent of N 2(t). But, the

random number of arrivals of an M(t)-Poisson stream in an interval (a,b] has a Poisson distribution

with mean L(b) -L(a). Hence, the lemma follows.¶¶

The next theorem is a special case of the main result, Theorem 15. It is given for clarity of

exposition.

Theorem 12.
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Suppose an M(t)-Poisson arrival stream goes through two G/oo service stages in tandem

with service times X1 and X 2. Then, for arbitrary joint service time distribution,equation (3.1) is

still valid, i.e., the occupancy levels Nl(t) and N2(t) are independent so the joint occupancy

distribution has product form and each distribution is Poisson. However, now

(3.4) E[Nl(t)] = ,(t) * ATl(t)

and

(3.5) E[N2(t)] = X(t) * aTl(t) * AT2(t),

where aTl(t) is the pdf of X1 and ATl(t) and AT2(t) are survival functions of X 1 and X 2,

respectively.

Proof: Suppose the joint distribution of the service times XI and X 2 is discrete with a

finite number of points k = (xlk,x2k) of probability Pk, k = 1,2, .. K. The Poisson input stream
of rate ,(t) may be regarded as a superposition of K independent M(t)-Poisson input streams, the

k'th having rate ,(t)pk, deterministic service times xlk and x2k, a population Nlk(t) and N2k(t) at

stages 1 and 2 respectively, and a joint pgf Rk(ul, u2,t). For each input streams the populations

N lk(t) and N2k(t) are independent from Lemma 11. Moreover the bivariate populations

[Nlk(t),N2k(t)] are independent for different k since the input processes are independent and there
are infinitely many servers. Let the total joint population be [Nl(t),N 2(t)] with Nl(t) = XNlk(t),

k
and N2(t) = :N2k(t). Let the joint total pgf be r(ul, u2,t). Then, from Lemma 11,

I(ul, u2,t) = 1k Rk(ul, u2,t) = nk exp {-E[Nlk(t)](l-ul) -E[N2k(t)](l-u2) }

= exp { - kE[Nlk(t)](1-ul) } exp { - z kE[N2k(t)](l-u2) 

= exp[-E[Nl(t)](l-u 1)] exp[ -E[N2(t)](l-u2)]

The assumption that the joint service time distribution is finite and discrete may be removed by

viewing the joint distribution as the limit of a sequence of joint discrete distributions of finite

support. Hence, (3.1) follows.
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Equation (3.4) follows from (2.3). The hazard rate of the M(t)-Poisson process into the second

stage is the hazard rate of the process out of the first state. This, from (2.1) is given by X(t) *
aTl(t). Hence, (3.5) follows from (2.3). ¶¶

Remark: Alternatively (3.5) could be derived first by applying (2.5) to the total tandem system to
find that E[Nl(t) + N 2(t)] = (t) * P[X1 + X 2 > t] and then use this and (3.4) to compute (3.5).

As will be seen, the theorem above and c) generalize to finite networks of G/oo servers and any

set of independent M-processes passing through the network.

Definition 13. Number the service facilities 1,2,.. ,M and define B = (ml,T1; m 2 ,T 2;..;

mJ,T ) to be a route where mi is the number of the ith service facility visited in the route and Ti is

the service time required during the ith visit. Note that a route may start at any facility and that a

facility can be visited more than once.

Definition 13. A sequence (o) = (ml(c),Tl(co); m 2 (co),T 2();..; mJ(c)T(Co)) of facilities

visited and service times spent at each facility will be said to be a tour sample. The corresponding
random vector = (ml,T 1; m 2,T 2; .. ; mJ,T) will be said to be a random tour. The associated

random vector Iml = (m l , m 2, . ,mJ). will be said to be the route of the tour. Note that a

route may start at any facility and that a facility can be visited more than once.

Theorem 14. Suppose one has a set of random tours, each with deterministic route and random

service times which may be correlated. Let the k'th random tour be initiated at epochs of an
independent M(t)-Poisson arrival process with rate Xk(t). Let N(t) = (Nl(t), N 2(t), N 3(t), ..

NM(t)) be the vector of populations at the service facilities with N(O) = Q. Then the multivariate

population distribution of N(t) is Poisson with all facility populations independent, i.e.

(3.6) R(Ul,u2,. . ,UMrn t) = exp [-XE[Nk(t)] (1-uk)]
k

where

(3.7) E[Nm(t)] = L k(t) * akn(t) * Akn(t) for all m.
n

n
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Here an(t) is the generalized pdf for tour k of the time from initiation of the tour until facility m

is visited for the nth time and An(t) is the survival function of the service time at facility m

when visited for the nth time.

Proof: Suppose that there is only one tour. An infinite server facility revisited in the tour can be

viewed as being split into more than one infinite server facility each of which is visited only once in

the tour. By construction this modified tour has no facility revisited and is equivalent to that for a

multiple stage tandem queue. This can be analyzed using the method of Theorem 12 to show that

the multivariate population distribution for that route is the product of independent Poisson

distributions. When the split revisited facilities are recombined this result is maintained. For more

than one tour, equation (3.6) is still true since the associated input processes are independent and

there are infinitely many servers at each facility.

The proof of (3.5) can be used to show that the average number of customers from the kth route

that are visiting facility m for the nth time is Xk(t) * amk(t) * Akn(t). Hence Equation (3.7)

follows.

Theorem 15 Suppose one has a network of M/G/oo facilities with:

(i) an external independent M(t)-Poisson arrival process with hazard rate Xm(t) to facility m

(ii) a service time with pdf aTm(t) and survival function ATm(t) dependent only on facility and

not on the entry point into the network

(iii) routing probabilities Pjm specifying the probability that facility m will be visited after

facility j and Pjout for the probability of leaving the network after service at facility j.

Let N(t) = (Nl(t), N 2(t), N 3(t), .. NM(t)) be the vector of populations at the service facilities with

N(O) = 0. Then the multivariate population distribution of N(t) is Poisson with all facility

populations independent, i.e. equation (3.6) is still valid. Here,

(3.8) E[Nm(t)] = m(t) * ATm(t) for all m,

where 0m(t) is a solution to

(3.9) Om(t) = Xm(t) + Pjm [j(t) * aTj(t) .
j

page 11



Proof: For each facility m construct the countably infinite set of (deterministic) routes Lkm
consisting of all possible tours that begin at facility m. The system defined by (i) - (iii) is equivalent
to one where the initiation of tour klm is an M(t)-Poisson with hazard rate )h(t)pk where Pk is

the probability that a customer entering facility m will follow route lkm . In this sense the system
defined by (i) - (iii) is a special case of Theorem 14 and hence (3.6) follows. Let 4m(t) be the

hazard rate of the total, (the internal and external) traffic entering facility m. From (2.1), pjm (j(t) *

aTj(t) is the hazard rate of traffic entering facility m immediately after leaving facility j and Xm(t) is

the hazard rate of traffic entering facility m externally. Hence, (3.9) follows and, from (2,3)

equation (3.8) follows.¶¶

Until now it has been assumed that service had a sequential character, i.e., that a customer

used a facility until service completion and then left the facility and entered a new facility. In a

circuit-switched telecommunication network, all facilities (trunk lines) on the route of a call are

used simultaneously. As shown in the next theorem, such a system employing sets of servers

simultaneously can be accommodated within the framework of the tools developed.

Theorem 16: Suppose, for k = 1,2,..., K, k (t) is the hazard rate of arrivals of calls that

simultaneously use the set of facilities Pk for a duration with survival function ATk(t). Then, if

the system is initially empty, the joint probability generating function of the number Nm(t) of

customers using facility m at time t is given by

M K
(3.10) I( l1 , u2, ..., UM,t) = E[ uUmNm(t)] = exp[-Ck(t)(l- Um)]

m=l mePk
k=l

where

(3.11) k(t) = Xk(t) * ATk(t).

Proof: From Theorem 6, the number of calls of type k in progress at time t, Ck(t) is Poisson

distributed with mean E[Ck(t)] = ~k(t) where k(t) is defined in (3.11). Hence,

K K

f( Zl, Z2, ... , zK) = E[ nzkk(t) ] = n exp[-Ck(t)(1-zk)].
k=l k=l
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M
But Ck(t) = J Nm(t) so ( ul, u2, ..., U M) = E[ umNm(t)] = f( lUm, HUm, ... , Hum)

mePk m=l meP1 mP 2 mEPK

so the theorem follows. ¶¶

Remark: A steady state version of this theorem is known as well as the remarkable result that, in

the presence of a finite number of servers at each facility, the multivariate population distribution is

a renormalized form of the truncated distributions.
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