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ABSTRACT

We consider two approximation formulations for the single product capa-

citated lot size problem. They correspond respectively to a restriction of

the number of production policies and to the rounding of demands up to

multiples of a constant. After briefly reviewing the literature within a new

% ~ framework, we discuss the relations between these approximation formulations.

Next, we provide relative error bounds and algorithms for solving the approxi-

mation problems. We demonstrate that these approximation formulations require

a significantly smaller number of calculations than the original formulation,

and that the relative error bounds are satisfactory for practical purposes.

Key words: Lot size problem, approximation schemes, worst case analysis,

computational complexity, pseudopolynomial algorithm.
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1. Introduction

In this paper we study the following single product capacitated lot size

problem:

T

(P) v(P) = Min{ Z [ht(t ) + Pt(Xt)] + f(X1,X2,. ..,XT)}
t=l

s.t. Itl +Xt I = d t=l,2,... ,T

0 < Xt < mtK t=,2,...,T
t t t

It - m t=l,2,... ,T

I = 0
0o

where:

X = production in period t

I = inventory at the end of period t,
t

h(I ) = inventory holding cost for 0 < I u and shortage cost for
t t t=t

t I f < 0, in period t,
t t

Pt(Xt) variable production cost to produce Xt units in period t,

dt = demand in period t,

mtK = capacity available in period t; mt is a given non-negative integer

and K is a known constants

Zt = lower bound on inventory in period t (- t is the upper bound on the

number of backorders in period t if 9t < 0),
t

ut = upper bound on inventory in period t, and

f(X1 ,... ,XT) = cost penalty usually associated with changes in production

quantities. In section 2 we will discuss several forms of f().

Problem (P) is of interest for several reasons. In practice, it is

useful in situations where similar items share the same productive resources

and can be aggregated into a single product. From a theoretical point of
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view, the analysis of the single item problem has been used to study the

computational complexity of more general production problems and to gain

insight for developing algorithms for such problems. References [1] to [4],

[8], [10] to [17], [19], and [22] provide exact algorithms for a variety of

single item capacitated lot size problems.

In this paper we concentrate on approximation formulations to (P)

because the latter has been shown to be NP-hard ([5]) except for very

special instances ([2] and [4]). We provide fast algorithms to solve the

approximation problems and show that the worst case error bounds should be

acceptable for most practical instances.

Approximation Problems

We analyze two approximation problems. The first is inspired by

practical situations where production in any period is restricted to be

equal to a multiple of K. That is, in period t Xt can only assume a

value in the set {,K,2K,...,mtK}. This is the case, for example, when there

are n machines, numbered 1 to n, whose capacities are multiples of K; in each

period, machine i can be used only if machine j, for j < i, is being fully

utilized. The restricted production policy problem is written as follows:

T
(RPP) vRpP = Min{ [ht(It) + Pt(Xt)] + f(XlX 2 .'XT)}

t=l

s.t. It_ 1 + Xt - It = dt t=l,2,... ,T

<t I < It t=1,2, ... ,T

Xts{OK,2K,... ,mtK} t=l,2,... ,T

I = 0
0

We provide in section 5, O(m2T2), O(mT2),0(mn3T2), and O(m2n2T2) algorithms
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to solve (RPP) depending on the functional forms of the objective function,

where m and n are respectively the maximum of mt for t=l,2,...,T and the total

number of machines available. Note that n < m and that if the capacity of

each machine is qK, then m = qn.

The second approximation formulation is based on the "softness" of the

demand constraints. That is, if the standard deviation of the forecast errors

is large enough to justify rounding the demands up to the nearest multiple of

K then the resulting problem (RUD), described below, can be interpreted as

an approximation of (P).

t t-l 0
Let d' =[ d -[Z d 1 for t=,2,...,T, where Z d =0 and []

Tl = 1 l z=1
denotes the smallest multiple of K greater than or equal to a. The approxima-

tion formulation with demands rounded-up to the nearest multiple of K is

written as follows:

T

(RUD) vR = Min{ [ht(I t) + Pt(X] + f(X1X 2
t=l

s.t. It-1 +X t = d t=1,2,...,T
t-l t t

t It < -t=1,2,2...,T

0 < X < mtK t=1,2,...,T
- t= 

I = 0
o

If K is smaller thanor isof the same-magnitude as the standard deviation

of the forecast error in every period, to solve (RUD) may be as meaningful

as to solve (P). As we show in section 3, (RUD) and (RPP) are equivalent

under mild assumptions. Therefore, the same fast algorithm to solve (RPP)

can be used to derive a solution to (RUD).

The plan of this paper is as follows. In section 2 we briefly review

the literature categorized in terms of the different functional forms of f(-)
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and present a list of assumptions and measures of computational complexity of

the existing algorithms. In particular we introduce a unified functional form

of f(-) that subsumes the three forms previously used in the literature. In

section 3 we establish the desired relations between (RPP) and (RUD). In

section 4 we compute the worst case error bound when (RPP) is used as an

approximation to (P). Finally, in section 5 we provide algorithms to solve

(RPP) and compute a measure of their computational complexity. Concluding

this section, we make the following assumptions that will hold throughout the

paper:

pt(Xt) is non-decreasing for t=1,2,...,T;

ht(It) is non-decreasing for It > 0 and non-increasing for It < 0 for t=1,2,...,T.
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2. Brief Review of the Literature

In this section we review and classify a representative sample of the

research done on problem (P) in terms of the functional form of f(.). Four

categories are identified. They are not necessarily mutually exclusive;

rather, they reflect an increase in generality.

(i) Sequence-independent Set-up Costs

T
(Fl) f(Xl',X2,...,XT) = Z st6(Xt )

t=l

where 1 if X > 0
6(Xt) = t

otherwise

and st is the set-up cost in period t.

Problems in this category are formulated by using in (P) the form (F1)

of f('). Florian and Klein [3] characterized the optimal solutions of problems

in this class assuming t = 0, ut = o, and Pt( - ) and ht ( -) concave. For

mt = 1, i.e. constant capacity, they derived an 0(T4) algorithm. For the

same class of problems, but with mt # 1, Lambert and Luss [12] presented an

0O(m2T4) algorithm (where m = max mt).
tt-l,... ,T

Jagannathanand Rao [8] derived an 0(m2T4) algorithm to solve (P) with

Pt( ) piecewise concave, reflecting the difference in costs between regular

and overtime labor, where the breakpoints are multiples of a constant. Also,

for a piecewise concave Pt(-) arising out of the use of multiple identical

machines, Lipman [15] reported an O(T5) algorithm for (P) with t = 0 and

ut = K = . Assuming ht(-) is concave on (-o,0] and [0,oo), Florian and Klein
t

[3] and Jagannathan and Rao [8] showed that their algorithms with no backorder

allowed can be easily extended for the case where backorders must be satis-

fied within periods. This condition has been previously used by Zangwill 22]

for (P) with t = and ut = K = o. Further, for ht(-) concave on (-o,0] and [0,),
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K = and either ut
= o and t = 0 or ut = 0 and it

= -, Love [16] provided

a characterization of optimal solutions and an (T 3) algorithm. Swoveland

[19] generalized Love's characterization to the capacitated lot size problem

with piecewise concave Pt (-) and ht (-). When the breakpoints of Pt (-) are

written as multiples of a constant, Swoveland showed that the computational

complexity of his algorithm is 0(m
2Q2T4), where Q is the maximum number

of breakpoints of ht(-)..-t

When the production capacities are neither constant nor multiples of

a constant, problem (P) is usually NP-hard. Florian et al [4] discussed

the computational complexity of this problem. Bitran and Yanasse [2] studied

several cases with Pt(.) and ht(-) linear and proposed polynomial algorithms

when the parameters of problem (P) satisfied certain special conditions.

Exponential algorithms have also been developed for the problem with

general capacity constraints on production. Baker et al [1] provided an

T.
0(2 ) branch and bound algorithm for t = 0, ut = O, Pt(Xt) = pXt,

ht = hit X < Ct, t=l,2,...,T. A similar type of algorithm was-:developed

by Lambrecht and Vander Eeken [13] with almost identical conditions except

that pt(Xt) = PtXt and ht (It ) = htIt .

(ii) Single Machine/Sequence-dependent Set-up Costs

Problems of type (P) in this category assume the existence of a single machine

and have the following form of f(-) which incorporates sequence-dependent as well as

as sequence-independent set-up costs:

T

(F2) f(XX 2 ,,XT) 
= Min (stYt + etZ t )

t=l

s.t. Yt > 6(X) t=1,2,... ,T

Zt > Yt Yt-l t1,2,...,T

Yt and Zt E {0,' t=1}2,...,T

Y = 0
0
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where

1 if the machine is on in period t, and

Yt {•Qt { otherwise,

1 if the machine state changes from off to on in period t, and
Z= f

{0 otherwise,

et = sequence-dependent start-up cost in period t, and

St = cost of having the machine on in period t; this is a sequence-independent

cost. For example, st may represent a rental fee.

Karmarkar et al [10] introduced this model and pointed out two advantages

of defining Y < 6(Xt) rather than Yt = 6(Xt) in (F2). First, in this formulation,t =t t.

the machine may be on whether or not there is production. This strategy can be

more economical in some cases since the company need not incur the sequence-

dependent costs. Second, unlike the case where Yt is required to be equal

to 6(Xt), f(Xl,X2 ,...,T) is concave.

(iii) Production Smoothing

Instead of considering sequence-dependent set-up costs, the third

category of functions f(-) incorporates :a penalty for changes in the production

level. (F3) is written as follows:

T
(F3) f(XlX 2 ,..,X) [s t6(Xt) + ft (Xt-Xtl)]

t=l

If Xt is measured in labor hours, ft(- ) penalizes variations of the labor

force. Usually, such costs are associated with training, hiring and firing.

Problems of type (P) with the functional form (F3) for f(-) are

extensively studied in the literature. Authors have frequently assumed

linear objective functions. Readers are referred to Silver [18] for a

tutorial on this problem category.

For concave objective functions, Zangwill [23] addressed the production
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smoothing problem with t = 0 and ut = K = . He characterized optimal solu-

tions when ft(-) is concave on (-,0] and [0,) and demands are non-decreasing,

and provided a dynamic programming algorithm using a penalty functionof the form

ai if Xt > Xt_,

ft (X t-X t-1) = 0 if Xt = Xt-

bi if Xt < Xt 1

Korganker [11] extended Zangwill's results for problem (P) to the casewith constant

production capacities, non-decreasing demands, it = -o and ut = o, and

presented an exponential time algorithm.

(iv) Multiple Machines/Sequence-dependent Set-up Costs

Lasdon and Terjung [14] formulated problem (P) assuming the existence

of multiple identical machines and sequence-dependent set-up costs. In

their model, they used the following functional form for f():

T

(F4') f(Xl,X2 ,...,XT) = Ct Max(Xt Xt_ 1,0)
t=l

where Ct is the cost of starting a machine in period t, X0 = 0, and Xt is

an integer quantity representing the number of machines utilized in period t.

Schrage [17] provided an 0(m3T2) algorithm to solve that problem.

In this paper we consider a more general form of f(-), designated as (F4),

and defined below; (F4)is more general in ~the-sense that its .feasible set-contains

those of (F1),- (F2), and (F4') and that of (F3) whenever the production quantities

are restricted to integral numbers. It allows for fractional production and

for keeping the machines on even if they are not being used. It is useful

to note that this type of formulation does not preclude the shut off of a

machine, if it is not being used, in case such strategy is more economical.
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T n T n n

(F4) f(Xl,X 2,...,XT) = Min[ Z [ Yt.+ Z f(E Y ZY )1
t=l i=l ti ti t=l i=l Yt-1 i=lYti

n
s.t. Z qiKYti > I t= ]P2 ... ,T

i=l

tl Yt2 _ *[@ _ Yn t=1,2,p...,T (2.1)
ti > Yt > S > Ytn

Yti £_ 091} i=l,2,...,n;
~Y~s {0,1} t=1,2,...,T

where

n = number of machines, n < m,

qiK = capacity of the it machine where q is a positive integer,

v I1 if machine i is on in period t, and

v ti
ti O otherwise

ti= sequence-independent cost of keeping machine i on in period t, and
sti -

ft(a,b) = cost of changing the number of machines on from a to b.

Note that constraints (2.1) require machines 1,2,...,i to be on whenever machine

i+l is on for i=l,2,...,n-1.

The functional form (F4) of f(-) will be used in sections 3 and 4. The

following proposition will be useful in our development. Let J denote the

it-l1 Jt

interval [ qiK Z qiK] for it= 1,2,...,n and t=l,2,...,T, where
i=l i=l

0
Z qK = 0. By using an argument similar to the one used by Karmarkar et al
i=l 1
in [10] we can prove that:

T
Proposition 2.1: The functional form (F4) of f(-) is concave on J. for

=1 

it=,12,...,n and t=1,2,...,T.//

Assume that t 0= , u t for t=1,2,...,T, and the objective function
T T T

of (P) is given by Z st6(Xt) + Z vtXt + Z htI t where the vt's are non-
t=l t=l t=l

increasing, then there is an optimal solution which satisfies I tlXt (mt K-Xt) = 0
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for t=1,2,...,T (see [1] and [2]). The following proposition is an extension

of this theorem to problem (P) where f(Xl,X2,...,XT) takes the functional

form (F4).

Proposition 2.2: Assume that for t=l,2,...,T, T = 0, Ut = o Pt(X) = vtXt

the vs are non-increasing, and f(Xl,X2,...,XT) takes the functional form

(F4) in (P). Then there is an optimal solution which satisfies:

n j
ItlXt ( qi K - Xt) = 0 for t=l,2,...,T.

j =l i=l

To conclude this section we summarize in Table 2.1 the main characteristics

of the problems addressed and the algorithms presented in this paper and

in those cited in our brief review of the literature.
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Table 2.1: Assumptions and Orders of Calculations of Algorithms in the Literature

Inv. Shortage Production Capacity Inventory 
costs costs costs limits

Authors ht(I') h (It) P (Xt) f(x) Ct t ut calculation

It>0 It <0

Baker T
et al hI vX F1 G Z o 0(2T)t t

Bitran &
Yanasse ht It o vtXt F1 G Z o
[2] 

G NI NI ND Z O 0o(T4)

G co NI NI C Z o 0 (T3)

Z o C C G Z o 0 (T logT)

Z c ND ND NI Z o 0 (T)

Florian &
Klein CC o CC F1 C Z oo 0(T4 )
[3]

Florian & (a) (a) & T T
Rinnooy PL o PL F1 G Z o O( Z dt Z Ct)Int. 
Kan [4] t=1 t=

Jagannathan ND, N NI, (b)
& Rao & CC F1 (bK -0 c O(m2 4)

Lambert &
Luss CC oo CC F1 mtK Z o 0(m 2T4)
[12]

Swoveland (c) (d)

[19][191 PCC PCC PCC F1 mtK G G 0 (T 4Q2m 2)

Karmarkar (e)
et al hI 00 v X F2 G Z 
[10] htIt o vtXt

S chrage (f
[17 ] totSchrage htIt 0 vtXt F2 C Z o0 o(T4)

X . ~~~~~~~~~~~~~~~~~~(g)'
Korganker (g)CC co CC F3 C z co

--̀-�u��^�� �-�'�------ - -- -·--·-·-
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Table 2.1: Continued

Abbreviations:
Z = zero
C = constant
G general
NI= non-increasing
ND = non-decreasing
NN = non-negative

CC =

PL =

PCC =
Int. 

concave
piecewise
piecewise
integers

MOK = multiples

(a) The breakpoints are integers.
(b) gt: non-decreasing concave; f: non-negative piecewise linear conyex

and continuous and the breakpoints occur at equal interval K.
(c) The breakpoints are multiples of K.
(d) Q: maximum number of inventory breakpoints.
(e) Lagrangean relaxation method.
(f) The algorithm is not specified.
(g) Demands are assumed to be non-decreasing. The number of calculations

is exponential.
(h) The algoirthm is not specified. X is integer for t=1,2,...,T.
(i) The number of calculation is t Q(m3T4) if set-up times are incorporated.
(j) Approximation algorithm. n: the number of machines.
(k) Demands are multiples of K.

...... Inv. Shortage Production Capacity Inventory
costs costs costs limits

Authors ht(It) ht(It)> Pt (Xt) f(x) Ct t ut of

___ _I t<-0 I <0 __s ~~ t t--

i Lasdon & G (h)
Terjung G G Z F4' C Int. Int.
[14]

SchrageG& G& (i)[Schrage h I h'It Z F4' C 0 nt nt (m T2)
[11 tt t II (i)t.

This paper ND NI ND F2 mtK MOK O(m2 T2)h~~~~~~~~~~~~~
tt

(i)
ND NI ND F4 mtK MOK O(m 2 T2 )

(k)
htIt N PCC F4 mtK MOK O(m2n2 T2)

t ____ V t(k)
h tIt 0 VtXtX F2 mtK MOK O(mT)_ _ _ _ _ _ _ _ _ h I t P C C _ _ _ _ _ _ _ _ _ _ _ . . . . . _ _ _ _ _ _ _ _ _ _ _ _ _ _V X ~~~~~~~~~~~(k)

___ _ _ I Vt:NI F4 mtK MOK O (mn3T2 )_ _ _ _ _ _ _ _ _ _ _ _ _ h t _ _ _ _t t : _ _

linear
concave

of K
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3. Relation Between (RPP) and (RUD)

In this section we explore relations between (RPP) and (RUD). In parti-

cular, we show that under mild assumptions the two problems have common

optimal solutions. Throughout this section and the next we assume that the

functional form of f(.) is given by (F4).

As a vehicle to study the relation between (RPP)l-and (RUD) we introduce

the following problem which is the restricted-production version of (RUD):

(RUD') vRUD =

s.t.

T

Min{ Z [ht(I t) +t(Xt)] + f(Xl,...,XT)}
t=l

I + X - I t = d' t=1,2,.
t-l t t t

t < I t < ut

Xt {OK,2K,...,mtK}

I
0

t=1,2,...,T

t=1,2,...,T

= 0

For convenience

been made

of notation we assume that the following substitutions have

t
It = Z (X -dT) in (P) and (RPP) and

T=1

t

It = Z (X -d') in (RUD) and (RUD').
T1=

lence, the feasible set S of (RUD) can be written as

t t t
S = {X-RT Z d'++ t< Z X < Z d'+utx < mtK, X > 0T Tt T t----

T4i T1i T1ti

for t=l,2,...,T}.

Assume that i t and ut are multiples of K for t=l,2,,..,T and let

I --·IIU-·-n-· I~LU·^I1,._ .-U ~~1 1_ ....

..,T
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W = {wR 2T I w = (al'a2 .aT bl b2,...,b T ) where atb {1,2,... mt},

btE {1, 2,...,(ut-it)/K} if ut > t, and bt = 0 if ut = t for t,2, ,T

S = {XR T K(at-l) < X < Kat,w t = t'=

t t t
Z d' + + K(bt -1) < Z X < Z d' + +Kb

T1~l T t t T=1 -C = T~l T t t

t t
if b > 1, and X = Z d + . if bt = 0

--- T T t
T=1 T=1

and (al,a2 ,...,aT,bl,b2, ...,bT) = w}.

for t=l,2,...,T

Therefore, S = U S . The next proposition will play an important role in
wWW

establishing the relationships between (RUD), (RUD'), and (RPP).

Proposition 3.1: If t and u are multiplesofK for t=l,2,...,T, then the
trpi o a m t

extreme points of Sw are multiples of K.

Let 

Sw

Proof: Let = {ERT I x =
w

Sw = {X'R AX < b, X > .w

unimodular matrix and b is an

of Sw are multiples of K (see

to one correspondence between

results follows.

X/K for XS }. S' can be written as
w w

It is not difficult to show that A is a totally

integer vector. Therefore the extreme points

[6], [7], and [21]). Since there is a one

the extreme points of S' and S the desired
w w

Proposition 3.2: Assume that t and u are multiples of K and that h (I )
t t t t

and Pt(Xt) are piecewise concave functions whose breakpoints are multiples

of K. Then, vRUD = vRUD,, and the optimal solutions of (RUD') are also

optimal in (RUD).

Proof: Problem (RUD) can be written as:

T t T
min min { Z h [ Z (X -d')] + Z pt(X ) + f(X ,X2,...,XT)}
wEW XS t=l T 1 tt t=

w

I _ __��_ ___(
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By proposition 2.1, f(XX2...XT) is concave on S. Therefore, the

objective function of (RUD) is concave on S . This fact together with
w

proposition 3.1 implies that there is an optimal solution X in (RUD) whose

components are multiples of K. Hence, X is feasible in (RUD') and since

both problems have the same objective function, and the feasible set of

(RUD') is contained in the feasible set of (RUD), it follows that

vRUD = vRUD',; hence the optimal solutions of (RUD') are also optimal in

(RUD). / 

In order to establish the relation between (RPP) and (RUD) we first

prove the following result that relates (RPP) and (RUD').

Proposition 3.3: Assume that ht(It = htIt, t is a multiple of K and

ut = for t=1,2,...,T. Then, X is optimal in (RUD') if and only if it

is optimal in (RPP). Moreover,

T t t
= v - - ht ([Z d Z d).RUD RPP T t=l T=i t=l

T t t
Proof: Suppose that XR is feasible in (RUD'). Then Z X > Z d' + t

t t t T=l T = 1 
By the definition of d t Z X > Z d'+k > Z d + . Hence, X is' %= T t~ t 

T =1 T 1 T t
feasible in (RPP). Conversely, suppose X is feasible in (RPP). Then,
t t t t t
X > Z d + t . By the definition of d Z d'+Z < Z d +K+k < Z X +K.T~l 1=1T ---- =1T t T t - T

T1 T~~~~~~~= T t%1% T1i 
Since X d' and are multiples of K for t=1,2,...,T,Sic X t, t't 

X > d' + t . Therefore, X is feasible in (RUD') and the feasible
=1 =1

set of (RPP) and (RUD') are the same. Since the objective function values
T t t

of (RPP) and (RUD') differ by the constant Z h (r Z d 1 - Z d ) for any
t=l T= T=1

given feasible solution, the desired result follows. 

Corollary 3.1: Assume that for t=1,2,...,T, Zt is a multiple of K, ut = ,

ht htlt, and Pt(Xt) is a piecewise concave function whose breakpoints

are multiples of K. Then, if XR is optimal in (RPP), X is optimal in (RUD)

__11__�1_1_1______1�LI��I(·IIUI�
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and

T t t

VR~ - v- Z ([ Z dl]- Z d)h t.v~D vRPP t-Z T-f T 1T t
RUD V~P t==1 T T=1

The results of this section show that under 
mild conditions, (RUD), (RUD')

and (RPP) are essentially equivalent. Therefore, if the forecast errors of

the demand are of the same magnitude as K, 
the practitioner may opt to solve

one of these three approximation problems 
instead of (P). We show in the next

section that even when this is not the case, 
these problems are good approxima-

tions to (P).

~~__~~ 11111~~--·-··11^1~~~~-·1^I(------~~~~~ 
·-~~-11s- Idof w �11_-1_1
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4. Error Bounds for Approximations to Problem (P)

In this section we relate the optimal values of (RPP), (RUD'), (RUD)

to the optimal value of (P). Suppose t and ut are multiples of K for

t=l,2,...,T. Let Ht (Pt) be the maximum value of the differences in ht(-)

(Pt(')) for two consecutive multiples of K, i.e.,

Ht = max{ih t(Kqt+K) - ht(Kqt) I for qt6{t/K, (t+K)/K ...(ut-K)/K)}}

P = max{p (Kq +K) - Pt(Kqt) for q {01 ,...,m-1}} for t=l ,2,...,T
P~~~t = m {ttK - P t(Kq

and let

T T
Q = max{ Z [pt(Xt)-Pt(Xt-Yt)] for Xt£{K,2K,...,mtK} for t=l,...,T and Z Yt<K

t=l t=l

Denote by v(X) the objective function value of (P) or (RPP) when that function

is expressed in terms of the production quantities.

The next proposition provides an error bound when an optimal solution

of (RPP) is used as a solution to (P).

Proposition 4.1: Assume that (P) is feasible, and that t and ut are

,
multiples of K for t=1,2,...,T. Then, if XRpP is an optimal solution to

T
(RPP), v(XRpp) - Vp < Z (Ht+Pt).

t=l

Proof: Since (P) is feasible and has a bounded feasible set, it follows

that (P) has an optimal solution, say X. Let

t t-l
X' = [ Z X - [ Z X for t=12,...,T.
t T T '' ' T

It suffices to show that X' = (Xi,...,X),is feasible in (RPP) and that
T 

v(X') < V + Z (Ht+Pt) since (XRpp) < v(X') trivially implies that

* t=l t
v(X ) < VP + 2 (H+P).

t=l
We first prove that X' is feasible in (RPP). Note that, for t=l,2,...,T,

t t t t t
Z X Z X > Z X > Z d + . Since Z X' and are multiples
[=1 T T=i T = T t TtT1 T1 T~~~~~~/1 T 
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t t t t
of K, Z XI> + = [ Z d + = d' + t . To show that

T t T t T t
T=1 T=1 T=l T=1

t t t t

Z X < Z d' + u suppose that Z X > Z d' + u + K. Then,
T=1 =l T= T= 1

t t t t t

Z X > [ X -K = Z X' - K > Z d' + u > Z d + ut contradicting
T 7 T T t T +

T1 T Ti 1 TT1 T1 i T-1

t t

the feasibility of X in(P). Since Z XT' Z d' and u are multiples of K,
T T

T=1 T=1

t t
it follows that Z X < Z d' + u It remains to show that X < KmtT=i T ~ T t t t

T=1 1
for t1,2,...,T. Suppose that X > K(mt+l) for t=1,2,...,T. Then,

t = t

t t-l t t-1 t t-1
Xt = Z X- X > f X - [ Z X - K =Kt T7 X T77 -T

z=1 =1 T=1 T=1 T=1 T=1

= X t - K >Km for t=l,2,...,T, contradicting the feasibility of X in (P).
t t

Therefore, X' is feasible in (RPP).
t

It remains to show that v(X') < v + Z (Ht+P By constructio) of X',
t=l

rX1 < [X1 for t=1,2,...,T. Hence, by (F4), f(IX,...,X) < f(X X,...x ).t tiv, ... 19 2.

Since Pt ( ) is non-decreasing and X < X +.;K with Xt being a multiple of K,
Pt& isan = t g utpl fK

pt(Xt) < pt(Xt)+Pt holds for t=l,2 ...,T. Still by construction of X'

t t t t t
E X < E X' < Z X + K implying that ht( Z X - E d) <
=l T1 T=l T=1 T=T

t t T

< ht( XT- X dT ) + H. Therefore, v(X') < Vp + Z (H+Pt). -t =1 71T t t tl
T-1 '1=i t=l

Proposition 3.3 and Proposition 4.1 imply the following corollary.

Corollary 4.1: Assume that (P) is feasible and that h (It) hIt, t is
t t t t t

a multiple of K and ut = o for t=l,2,...,T. Then if X UD, is an optimal

solution of (RUD'),
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T

V(x RUD,) - VP < Z ( t Pt).
t=l

The error bound for the case when an optimal solution to (RUD) is

used as a solution to (P) can be computed as follows. Let X D be an optimal
RUD

solution to (RUD).

Proposition 4.2: If (P) is feasible, t is a multiple of K, ut = oo, and
T

ht(I t ) htIt for t=1,2,...,T, then v(XRUD) - v < K( Z ht ) + Q and
tt t t RD t=l

the bound is tight.

Proof: Since (P) is feasible and its feasible set is bounded, it has an

optimal solution X. To prove the result we will construct a feasible solu-
T

tion X' to (RUD) from X and show that v(X') - < K( ht) + Q. Since
t=l

ht(It ) is linear for t=l,2,...,T and X' is feasible in (RUD), v(XRu) < v(X'). Hence,
t tT RUD

* ~T
it will follow that v(XRuD) - V < K( h t) + Q.

t=l
Let (Xt ,X ,...,Xt) be the sequence of positive production quantities

2 q
of X. Set X = 0 if t {tl,t2,...,t } A R. Determine X' Xt ,...,X' by

t 2 ... tq~ t* t29 tq

the following recursion equations.

(a) a = K
t1

(b) X' = min{X + a, [X 1} and
ti ti ti

1 1 1 1

(c) a a - (Xt - X ) for i=l,2,...,q.
ti+l ti t. t~~~i 1

Then, the following relations hold for t=l,2,...,T.

(i) X > X
t - t

(ii) Xt] = rXt]

(iii)°_ tmK(i)0 < X < tK,
t t

t t

(iv) < XT + K, and
TC=l T-1

t t t t

(v) If z X + K > z X, then Z XT] = Z X' .
1C=1 T=l~ T=1 T~TT1l t=l 1 l T1l
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(i) through (iv) are easy to show. To prove (v), suppose that
t t
Z X + K > Z X' for some t. Let i = max{jlt. < t}. Since Xt = Xt =0

T1 T T= T i i t t 
for tR, it suffices to show that r Xt = X . By (a) and (c),

j=l j j=l 

i
a =a - (XtI X) K - Z (Xt - X ) > 0. By (c) and (i),

t ti t . t t.
m+ 1 1 j=l j J

0 < a < a < ... < a . (c) and a > 0 imply X' < X + a for
ti+l t .= - t. t. t .

1 j+ 3 1 3 3
j=1,2,...,i. Therefore, (b) implies X = [Xt for j=1,2,...,i. Note that

t. t
3 3

i i i i i
Z X + K> Z X = Z IX . Since K > Z [X - Z X > 0,

t t . t. 't. t . '
j=l j j=l j j=l j=l j j=l j

i i i
I Z X 1 = [X t 1= X
j=l j j=l j j=l j

Next, we prove that X' is feasible in (RUD). Since (iii) holds, it
t t t t

suffices to show that Z X > Z d + t . From (iv), X < Z X + K
T---T T= TT= T= i T= T

for t=1,2,...,T. Hence, two cases are possible:

t t t t t
Case 1: Z X + K = Z X'. Since Z X > Z d + > Z d' + - KT TT= T t T t

T=1 T=, =l T=l t = T t

t t t
holds, Z = Z X + K > Z d + t for t=1,2,...,T.

T TTT= T T T= T t

t t t t
Case 2: Z X + K > Z X'. By (v), Z X' = r Z Xl. Since

T= T T T
T1= L T=1 T T=1 T=i 1

t t t t
Z X > Z d + and t is a multiple of K, [ Z Xl > [ Z dl + t =

T t t TT t
T= i T= T=l T=l

t t t
- d' + Therefore, Z X > Z d + U=l T t' = T T
T1l Tli T1i

T
It remains to show that v(X') - v < K( Z h) + Q.

P = t (ii) implies



-21-

f( X',...,X4) = f(Xl,X2,...,XT). (iv), the linearity of ht(-) and the
t t t t

definition of H imply h( Z X - Z d ) < h( Z X - Z d ) + Kh
t t T~ TT T = T 'T t

T1 Ti T1 T1i

Also, (i), (ii), (iv), the monotonicity- of P(.) and the definition of Q
T T T

imply that Z Pt(Xt) < Z Pt(Xt) + Q. Therefore, v(X') < vp + K( ht) + Q.
t=l t=l t=l

The following example shows that this bound is tight. Suppose that

Pt(Xt) = vXt, t = m for t=,2,...,T, d = , and dt = for t 1.

Then, Q = Kv. Suppose is less than K. Then, X = Xt = 0 for t ~ 1

is optimal to (P) while X = K, Xt = 0 for t 1 is optimal to (RUD).

* t
V(XRUD Vp Z ht (K) + v(K

t=l

T T

= K( Z ht) + Q- ( Z ht + V).
t=l t=l

T

As c -- zero, v(XRUD) - vp - K( h) - Q tends to zero.
t=l

If Q is hard to calculate, then a weaker bound can be computed as
T T T

follows: v( D) - vp < K( Z ht) + Z Pt' since Q < Z P Under
t=l t=l t=l

stronger conditions than those of Propsoition 4.1 a tighter bound can be

computed on the difference between v(XRpp) and p.

~tProposition 4.3: Assume that for t=1,2,...,T, Qtis a multiple of K, ut - ,
ht(I t ) = htIt, and Pt(Xt) is a piecewise concave function with breakpoints which

are multiples of K. Then

,*~~ T
V(XRpP ) - Vp < K( Z ht) + Q.

t=l

Proof: The proposition follows immediately from Corollary 3.1 and

Proposition 4.2.

It is important to note that the error bounds described do not depend

on set-up related costs. This means that the approximations are particularly
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good if the set-up costs are significant.

The relative error bound implied by proposition 4.3 can be fairly tight

in practical settings. Assume that for t=1,2,...,T, t = 0, ut = o, mt = m,

h (It) = htIt, Pt(Xt) = vtXt, f(X X ...,XT) takes the form of (F4), and denotet t t t t t'. T 1 2'"

the capacity utilization rate, Z dt/mKT, by q. In practice it is common
t=l

to compute the holding costs as a fraction of vt, i.e., ht = ivt/T where i

is the inventory carrying factor over the planning horizon T. It reflects

the opportunity cost of the capital tied up in inventory as well as other

costs like handling, insurance, pilferage, etc. We have that

T T
vp > ( Min vt) dt = ( Min htT/i) Z dt

t=l, ... ,T t=l t=l,... ,T t=l

= ( Min ht) qinmKT 2/i .
t=l,... ,T

By proposition 4.3,

*,~~ T
V(XRpP) -V< K( ht) +Q =

t=l

T
= K h + K Max v < KT(l+ l/i) Max h

t t ~~~~~~~~~~~~t
t=l t=l,...,T t=l,.. ,T

Therefore

v(X* v Max ht Max ht
RPP P t=l ...,T KT(l+l/i)i t=l,.. ,T 1 + i

vP = Min h qmKT Min ht qmT
t=l, ... ,T t=l, T

Typically i = 0.3, T = 12, and Q = .8. In this case

[V(X>p P) - Vp]/Vp < ( Max ht/ Min ht)0.14/m
XP t=l,...,T t=l. .. ,T

Note that, if ht = h for t=1,2,...,T, then the relative error bound is

proportional to 1/T. If the planning horizon is partitioned into months,

then the relative error bound is given by .14/m. However, if the planning
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horizon is partitioned in weeks, then the relative error bound becomes

0.031/m. Therefore, the finer the partition of the planning horizon, the

tighter the bound will be.
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5. Algorithms to Solve (RPP)

To simplify the explanation we first provide an algorithm to solve (RPP)

with the functional form (F2) for f(s).

Let a point (ty,w) correspond to a state where the time period is t,

the cumulative production is Ky and

1 if the machine is on in period t,
w f
W ={ otherwise.

In the following algorithm St denotes the set of feasible points, in period t,

and g(t,y,w) denotes the cumulative costs from (0,0,0) to (t,y,w). Consider
T

the following layered network (N,A) where N U St and A consists of the
t=l

following arcs:

(i) from (t,y,O) to (t+l,y',l) if y < y' y mt+l,

(ii) from (t,y,0) to (t+l,y,0),

(iii) from (t,y,l) to (t+l,y',l) if y < y' < y + m+,

(iv) from (t,y,l) to (t+l,y,0),

where the origin of each arc must be in St and the destination in St+l. Note

that arc ((t,y,l),(t+l,y,l)) corresponds-to the alternative that there is no

production in period t+l but the machine is on, The costs associated with

the arcs defined in (i) - (iv) are, respectively:

t+l
(i) ht+l(Ky - Z dT) + t+l [(y'-y)K] + St+l + et+l'

T=1

t+l
(ii) ht+l(Ky - Z d ),

T=1

t+l
(iii) ht+ (KY - Z d ) + (y'-y),

T1 T t+l y+T=i

t+l
(iv) ht+l(Ky - d).

T=l

The following algorithm solves a shortest path problem in (N,A).
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Step 0. Set S = {(0,0,0}, g(O0O,O) = 0 and h = p = = e = 0. Let
t t

St = {(tyw) 0 < y < Z m t < Ky - Z dT < ut, y integer and
T 1 T =1 T

wE{0,l}} for t=l,2,...,T-1. Also, let ST = {(T,y,w)I yE{r Z dt + T/K'...
T T t=1

[ Z dt /K} and wc{O,1}} if T < 0 and ST = {(T, r Z d + T/Kw) w1}
t=l t =1

if T >0.

Step 1. For t = 0 to T-1, compute

t+l
(t+l,y',w') = Min {g(t,y,w) + ht+l(Ky- Z d ) + t+l[(y'-y)K] +

T=i

+ st+l 6(y'-y) + et+l (l-w)w'}

s.t. (t,y,w) E St and y' -Mt+ y 

for any (t+l,y',w') St+l.

It is not difficult to show that

v = Min g(T,y,w) .
(T,y,w)EST T t

T ~~ ~~T t

The number of nodes in graph (N,A) is at most 1 + Z [2-( m )+l] <
t=l T=1 

1 + mT(T+l) + 2T. The number of arcs incident to a node is at most m+l.

Therefore, the total number of steps in the above algorithm is (m2T2).

Assume that f(Xl,X2,...,XT) takes the functional form (F4). Essentially,

the algorithm for this case is the same as the one just described for (F2).

Let w represent the number of machines kept on in period t, i.e. w0,l,2,...,n.

Then, the number of nodes is (mnT 2). Since the number of arcs incident

to a node is O(mn), the total number of calculation is (m2nZT2). Note

that if there are no sequence-dependent set-up costs in (F4), w can be dropped

from the description of the state in the dynamic recursions. Therefore, the

number of calculations for this case is (m2T2).

Assume that for t=l,2,...,T, t 0, Ut = and pt(Xt) = v X and the vt's

are non-increasing Then, by proposition 2.2, t timal solution
are non-increasing. Then, by proposition 2.2, there is an optimal solution
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n j
which satisfies I 1X t ( qiK-Xt) = 0 for t=1,2 ,...,T for the functional

j=l i=l
form (F4) and It Xt(mtK-Xt ) = 0 for t=l,2,...,T for the functional form (F2).

Since we need to consider only (n2) arcs incident to a node for (F4) and

two arcs for (F2), the total number of calculations is reduced to O(mn3T2)

and (mT~) for (F4) and (F2), respectively.

Assume the sequence-dependent set-up costs are zero in (F4). For

t=1,2,...,T, let C(Xt) be the cost associated with X and let Ct(Xt) denote thet t t t t

piecewise linear function whose breakpoints occur on multiples of K with

C'(Xt ) = Ct(Xt) for any X which is a multiple of K. If C(Xt) is convex

for t1,2,...,T, we can use the algorithm proposed by Johnson [9] and

Veinott [20] to solve (RPP) optimally. The algorithm takes 0(mT2) calculations

if > 0 and 0(mT3) calculation if < 0.
t ---- t
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6. Conclusions

The proposed approximation formulations cover a large class of

problems and require a significantly smaller number of calculations than

those required to solve optimally the original problem. The approximation

formulation (RUD) is motivated by fluctuations and inaccuracy of demand

forecasting. We claim that if the standard deviation of demands is larger

than a scaling constant, to solve (RUD) is as meaningful as to solve the

original problem (P). Since (RUD) and the other approximation formulation

(RPP) are equivalent under mild conditions, (RUD) can be solved by the same

algorithms provided for (RPP). We provide a validation of the approximation

formulations (RPP), (RUD), and (RUD') through worst case analysis of the

error bounds under the assumption that all inputs are accurate. Note that

the algorithms for (RPP) are pseudopolynomial in the sense that they are poly-

nomial with respect to a constant m which is closely related to the scaling of

the unit of demand quantities. A point to observe is that the relative error

bound is proportional to 1/m while the order of calculations is proportional

2to m or m . For practical purposes, we showed that there exists a satis-

factory trade-off between them. This suggests that the combination of pseudo-

polynomial algorithms and the worst case analysis is fairly effective for the

single product capacitated lot size problem. Our current research indicates

that this approach can be extended to other practically important problems such

as the multiple product capacitated lot size problem and the multistage lot

size problem.
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