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1. Introduction

In an earlier paper [2], the equivalence was established between convexi-

fication and dualization of an arbitrary mathematical programming problem.

Generalized linear programming (also known as Dantzig-Wolfe decomposition)

applied to such a problem was shown to be a mechanization of this result in

the following sense. If the sequence of linear programming master problems

generated by the method produces a convergent subsequence of optimal shadow

prices, any limit point of such a subsequence is an optimal solution to the

dual of the arbitrary mathematical programming problem. Moreover, the limit

of the optimal master problem objective function values equal the value of the

dual problem. These results hold whether or not there is a duality gap, or

what is almost the same condition, whether or not generalized linear programming

finds an optimal solution to the arbitrary primal problem.

A sufficient condition for generalized linear programming to converge

in this sense is the existence of an interior solution. This familiar

regularity condition, or constraint qualification, has the constructive effect

of bounding the set of optimal shadow prices produced by the master problems

thereby ensuring the existence of a convergent subsequence. Even if the

primal problem does not have an interior solution, however, the optimal master

problem objective function values converge to a limit in all non-trivial cases.

This is because the values are monotonically decreasing and bounded from below

by the finite optimal objective function value of the dual problem, which we
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denote by d. Clearly, the limit is at least as great as d. A loose end of

the analysis in [2] is a characterization of this limit, and the purpose of

this note is to give one. Our approach is to perform first a complete study

of the one constraint case, then relate the results to the multiple constraint

case. The problem has also been studied by Wang [4] who has developed some

results complementary to ours.

2. Review

This section consists of a brief review of the necessary results and con-

structions. The primal problem we will consider is

v = min f(x)

s.t. g(x) < 0 (P)

x X C Rn

where f is a continuous function from R to R, g is a continuous function from

R to R with components g, X is a non-empty, compact set. We have made these

assumptions about f, g and X to simplify the mathematical analysis, but the

results are valid in more general cases.

The dual problem is

d = sup L(u)
(D)

s.t. u>O

where

L(u) = minimum {f(x) + ug(x)}.
x X
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We let L(u,x) denote the quantity f(x) + ug(x). It is well known and easy

to show that L is a finite, concave function, L(u) < v, and d < v. The

relationship of (D) to (P) which we seek but may not find is embodied in

the global optimality conditions: For x X, and u > 0, these are

(i) L(u) = f(x) + ug(x)

(ii) ug(x) = 0

(iii) g(x) < 0.

If the global optimality conditions hold, then x is optimal in (P), u is

optimal in (D), and v = d = L(u) (e.g., see Shapiro [3]). We will also make

use of the following result.

Theorem 1 (Wang [4]): Suppose for each i, either gi(x) < 0 for all x c X,

or g(x) > 0 for all x c X. Then d = v.

Generalized linear programming is a method for optimizing (D). Given

the solutions x ,...,xK C X, the method proceeds by solving the linear pro-

gramming master problem
K
d =max w

k k
s.t. w < f(x ) + ug(x) k =1,...,K (1)

u >0

It is easy to see that

K k k
d = maximum minimum {f(x ) + ug(x )} > d.

u > 0 k=l,...,K

We can assume that a phase one procedure has been applied to the dual of (1)

k KK
to select some of the x so that d is finite. Let u denote an optimal

solution to (1). The method continues by solving

L(uK ) = minimum {f(x) + u g(x)}
xsXx f X

f(XK+l) + UKg(x K+l
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K K K. K
If L(u ) = d , then u is optimal in (D) and d = d . On the other hand, if

K K
L(u ) < d , the constraint

K+l K+l
w< f(x + ) + g(xK + )

is added to (1) and it is re-optimized.

Generalized linear programming optimizes (1) in the following sense.

Theorem 2 (Dantzig [11, Magnanti, Shapiro and Wagner [2]): If there is a
K.

subsequence {u 1}i I converging to a limit point u*, then

K
lim d = d = L(u*).
K

The convergence condition hypothesized in Theorem 1 can be constructively ensured

0
by finding an interior point; namely, an x X such that g(x) < 0 for

iG0

i = 1,...,m. The point is used to generate a constraint in problem (1). Employ-

ing the constraint qualification in this way bounds the set of feasible solutions

u since

0 0
w < f(x ) + ug(x0 )

implies

m

Z ui(-gi(x )) < f(x) - w,
i=1 '

0 where the right hand side is bounded by f(x) - L(u) for any u > 0, and the

coefficients on the left hand side -gi(x ) are all positive. By the same reason-

ing, the set of feasible solutions u will be bounded if the first m constraints
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~~~~~~~~~iin (1) are written with respect to x e X satisfying g(x) <0 and gi(xi) < 0

for i = 1,...,m. More generally, we always have

K 0
li d =d > d.
K

3. Solution of the One Constraint Case

In this section, we consider problem (P) with one constraint (m = 1) under

1 ~1
the assumptions that g(x) > 0 for all x X, and g(x ) = 0 for some x C X. In

1
addition, we assume generalized linear programming begins with the solution x .

At iteration K, we have

K k k
d = maximum minimum {f(x ) + ug(x )}.

u > k=l,...,K

A typical situation is shown in Figure 1 for K = 3. At iterations 2 and 3,

the Lagrangean calculation produces the solutions x X satisfying g(x) > 0

1 2 3 1
and f(x) < 0 implying d = d = d = f(x ) and the successive dual solutions

-__r o .. 1 2 3

a

3
u u

Figure 1

S$aLiSI- y

1 2 3
d =d 2 =d3 =f

f

f

u =o
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In general, we can see that at any iteration K,

K k
d = min f(x )

k
s.t. g(x ) = 0;

that is, dK equals the minimal objective function value of the feasible solu-

K
tions to (P). Moreover, we can choose any u to be optimal in the master

problem that satisfies f(xk ) + uKg(xk ) > dK or u > (dK - f(xk))/g(xk) for

k k k K
all those points x such that g(xk ) > 0, and f(x ) < dK . Thus, by inspection,

we take

K ~~~K -f(k)
u = max {O,max { df(x) g(xk) > 0}} (2)

g(xk)

to be the optimal solution to the master problem at iteration K.

Consider now the possibilities when we calculate

L(u K) =f(xK+l) + uKg(xK+ ) < dK .

K+l
On the one hand, if g(x ) = 0, then we have

v > d > L(uK ) = f(xK+l ) > v

which permits us to conclude immediately that L(u ) = f(x K + ) = v = d and

generalized linear programming terminates. On the other hand, if g(xK+l ) > 0,

then we must have f(xK+ ) < dK since generalized linear programming had not

K
previously terminated implying u > 0. We can summarize the behavior of the

method by the following.
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Theorem 3: Suppose generalized linear programming is applied to (P) with

m = 1 and g(x) > 0 for all x X. Suppose further that the method is ini-

1 1 1 1tiated with the solution x X satisfying g(x ) = 0 implying d = f(x ).

Two outcomes are possible.

K+1(a) At some iteration K > 1, the new solution x 1 generated by the

K~~l K~~Klmethod satisfies g(xK+ ) = 0 implying x is optimal in (P) and

K
lim d = d -= v, or
K

K+i +(b) For all iterations K > 1, the new solution satisfies g(xK+l) >0

implying for K 2,3,..

K 1
dK = d

and an optimal solution to the master problem is

K d - f(xK)
U K

g(x K )

Moreover,

K 1 1
lim d = d = f(x) > v = d
K

Note that we know v = d by applying theorem 3 to the one constraint

problem (P). Case (b) of Theorem 2 says that lim dK can equal the objective
K

1 
function value f(x ) of any feasible solution x. The next section gives a speci-

fic example of this occurrence. The remainder of this section isdevoted to results
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characterizing when case (a) obtains. As in the case when the constraint

qualification holds, the underlying idea is to bound the monotonically increasing

sequence {u}K 1 defined in (2) thereby eliminating case (b) as a possibility.
K=l1

Theorem 4: For problem (P) with m = 1, the following properties are equivalent.

(1) h(x) = (x) d is bounded from below for all x X satisfying g(x) > 0.
g(x)

(2) d = L(u) for some u > 0.

(3) If the generalized linear programming algorithm.is initiated with any

11K
x X satisfying g(x ) = 0, the sequence {u } given by (2) satisfies

K
lim u = u* such that L(u*) = d.
K

Proof: We show that (1) => (2) => (3) ~ (2) (1):

(1) => (2): Assume that there exists a real number A such that for all

x X such that g(x) > 0, we have h(x) > A. Then take any

u > Max {0,O- A} and consider x X:

* If g(x) = 0, L(u,x) = f(x) > v = d.

* If g(x) > 0, L(u,x) = f(x) + ug(x) > f(x) - Ag(x) > d

·hence

L(u) > d, and L(u) = d.

(2) p (3): We suppose that there exists a u > 0 such that L(u) = d.

Let x* X, g(x*) = 0. As explained in Theorem 3, if (a) occurs,

(3) holds. If (b) occurs, then our previous remark implies

L(u ) < d for all K > 1. But since L is a monotonously

increasing function over u > 0, we must then have, for all

K -
K > 1, u < u. Thus, the monotonously increasing sequence
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K
{ } is bounded by u, and therefore converges to some u* < u

which, by Theorem 2, will satisfy: L(u*) = d.

(3) ==-(2): Obvious, since there exists an x X such that g(x) = 0.

(2) ==>(1): We assume that there exists a u > 0 such that L(u) = d.

Take any x X with g(x) > 0. Then L(u,x) = f(x) + ug(x)

> L(u) = d. Hence, h(x) > - u, and h is bounded from

below over the set {x X g(x) > O} by -u.||

Alternatively, we could easily prove the following results: First,

we say that "property (H)" holds if any of the (equivalent) properties (1),

(2) and (3) of the theorem holds. Then, we could show:

(H) holds if the set {x Xg(x) = 0 and f(x) > v}

is closed in R .

More generally, we have

(3) == (4): Min lim( x S X\ y x
g(x) = 0 g(y) > 0
f(x)= v f(y) < v

h(y)} >- 

11
Corollary 1: If (H) does not hold, then for any x C X such that g(x ) = 0,

K 1 1
for ali K > 1, we have d = do = d = f(x ) > v = d.

Theorem 4 fulfills the task we assigned to it. It shows that the

occurrence of (a) or (b) in Theorem 3 is entirely independent on the choice

1
of the starting point x , and it provides a convenient criterion to predict

the behavior of a given problem.
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Thus, our results complement the results which can be obtained when

the constraint qualification holds. A counter-example (d > d) will be

constructed in the next section as an application of our theory, showing

that the sequence {uK }I may well go to (+ ) and that d may be strictly

greater than d when the primal problem does not have any interior solution.

4. A Counter Example

Since the behavior of the generalized linear programming algorithm depends

entirely on the function h over {x Xg(x) > 0}, we can choose it and f as

we wish, and obtain the desired results by the proper choice of g. In par-

ticular, we take x = [0,1], g(x) = 0 only for x = 0 and x = 1, and v = 0 is

attained only at x = 0.

I-2,7 x
f(x) =

1(-2/Y-l) +21+ x

h(x) f(x)Then, we have h(x) = g(x)

1
for all x [0, 1]

for all x E [ 1]

, for x (0,1). Since we want

lim
f x +0

x > 0

f (x) < 0

h(x) = -

we choose

g( I2x,

2 - 2x,

for x [0, 1]

for all x [1 1]

The functions f and y are shown in Figure 2.
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x

f (x)

Figure 2

1

-1
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Thus, criterion (4) is contradicted and (H) does not hold. The reader

will easily check that, in agreement with the predictions of Theorem 4,

K Ithe sequence {u } obtained from x = 0 or 1 will diverge to + I, whereas the

values d remain constant, equal to f(xl). Starting, for instance, with

1
x = 1, leads to d = 1 > v = d = 0.

Actually, one finds:

u - / for all u < -

-2L(u) 2 |- 2 ' for all u > 2

and L(O) = - ;~ thus d = 0 is not attained.

5. The General Case

We apply the results of section 3 to the multiple constraint case. One

way to accomplish this is to make use of the function

G(x) = maximum gi(x)
i=l, . . . ,m

Problem (P) is equivalent to the single constraint problem

v = in f(x)

s.t. G(x) < 0 (P)

X E XCRn .

Although the dual problem to (P) is not equivalent to (D), we can make use of

it in analyzing (P).
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Specifically, we define for u R the dual problem

d = max L(u)
(D)

s.t. u > 0

where

L(u) = minimum {f(x) + uG(x)}
u >0

m
L(u) < L( Z ui) implying d < d.

i=l

m
Proof: For any x X, L(u,x) < L( Z ui, x) since u > 0 and gi(x) < G(x)

i=l m m
implies f(x) + ug(x) < f(x) + ( Z ui) G(x). Thus, L(u) < L( Z ui)

i=l i=l
and taking the supremum of both sides gives us d < d. The inequality

d < d may be strict but there are some properties linking (P), (D)

and (D) that we can state.

Theorem 5:

(a) d < d < v

(b) If v = d (that is, there is no duality gap between (P) and (D))

then v = d.

m
(c) If d = d and d is attained at u* R , then L( u) = d.

i=l

As far as the generalized linear programming algorithm is concerned, we

can use the results of section 3 to construct examples in any dimension for

which the dual vectors {uK } do not have any convergent subsequence, no matterwhich the dual vectors {u } do not have any convergent subsequence, no matter
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1
what starting solution x is chosen, Indeed, we know that d cannot be attained

if d = d but d is not attained. In turn, Theorem 4 provides us with several

criteria guaranteeing that (H) does not hold for (P).
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