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ABSTRACT

We introduce a transportation equilibrium model that simultaneously

predicts trip generation, trip distribution, modal split, and traffic

assignment by algorithms that are guaranteed to converge to an equilibrium

and are computationally efficient for large-scale systems. The model is

formulated as an equivalent optimization problem, yet it allows realistic,

flexible and behaviorally acceptable demand models.



1. INTRODUCTION

During the last ten years, much of the research in transportation

planning has focused on ways to improve predictive modelling. One

of the most predominant themes of this research has been an effort to

develop comprehensive models, and related computational procedures, for com-

puting short-run transportation equilibria. These integrated models recog-

nize that user decisions concerning trip frequency, destination mode and

route choices are inherently interrelated. By combining these user decisions,

the models aim to provide better predictions of transportation systemst per-

formance (delay times, costs) and user travel behavior (demand patterns).

This trend toward integrated modelling contrasts sharply with earlier

methods for predicting traffic equilibria. The earlier procedures, which

have been applied to hundreds of transportation studies throughout the world

for the past 30 years and still are in use today, have viewed transportation

planning as a sequential process, often with four stages--trip generation,

trip distribution, mode, and route choice. The Detroit Metropolitan Area

Traffic Study [1955], the Chicago Area Transport Study [1960] and the Cairo

Urban Transport Study [1981] illustrate this practice, as do guidelines pre-

pared by the U.S. Federal Highway Administration [1970, 1972] and the U.S.

Urban Mass Transit Authority [1976]. Unfortunately, the sequential approach

has an inherent weakness; its solution need not be internally consistent.

That is, because each stage in this type of sequential planning depends upon

the others, the performance or demand levels that one needs to assume as given

inputs at any one stage need not agree with those that one determines as

outputs from the other stages. This deficiency has precipitated attempts to

model all of the stages simultaneously.
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Research intended-to meet this objective of model integration has

proceeded in three directions. One of these lines of investigation has sig-

nificant computational advantages; the others permit richer modelling of user

behavior. Regrettably, to date none of these approaches has generated models

that are both behaviorally acceptable and computationally tractable for

large-scale applications.

The first of the simultaneous approaches, which originates with the

early and seminal research of Beckman et al [1956], views the equilibrium

model as an equivalent optimization problem that when solved yields the

desired equilibrium solution. The primary advantage of this formulation is

that the equilibrium problem becomes a convex optimization problem (assuming

monotonicity of demand and performance) that can be solved efficiently by

any of several convergent algorithms (Bruynooghe, Gibert, and Sakorovitch

[1968], Bertsekas and Gafni [1981], Dembo and Klincewicz [1981], Leblanc

[1973], Nguyen [1974, 1976a, 1976b], Golden [1975] and Florian and Nguyen

[1974]). The main disadvantage of this formulation is behavioral. It

requires strong modelling assumptions that frequently are unrealistic,

particularly an assumption that demand between each origin-destination (O-D)

pair depends solely upon the performance between that O-D pair.

The basic equivalent optimization formulatior has several modelling

enrichments. Evans [1976] extended the formulation to include trip distribu-

tion, assuming fixed trip generation and an entropy model for trip

distribution. Using the fact that an entropy distribution model implies

a logit mode-split model, Florian and Nguyen [1978] further extended the

formulation to include modal split. Each of these extensions shares the

computational advantages of the equivalent optimization formulation. Again,
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the deficiencies are behavioral; the entropy model is not based upon any

behavioral principles. Moreover, those modelling extensions are rigid.

Because the formulations incorporate entropy distribution and fixed trip

generation, the models are not flexible enough to accommodate situations in

which a goodness-of-fit test with observed data shows that the entropy model

is not a correct functional form.

The second simultaneous approach views the equilibrium conditions as

a system of equations and inequalities to be solved directly. In this form,

the equilibrium conditions can be interpreted as describing a nonlinear

complementarity problem (Aashtiani and Magnanti [1981]), a stationary point

problem (Asmuth [1978]), or a variational inequality problem (Smith [1979],

Dafermos [1980]).

This approach has substantial behavioral advantages, but is limited

computationally. It permits general demand or performance functions and

yet insures existence and uniqueness of an equilibrium, even with only mild

continuity and/or monotonicity assumptions imposed upon the data. In

principle, this general model can be solved by convergent fixed point

algorithms (Hearn and Kuhn [1977], Asmuth [1978]) or, by projection

algorithms (Dafermos [1980, 1981], Pang and Chan [1981]). The fixed

point algorithms are limited, however, to very small problems. Similarly,

computational experience has suggested that the proposed projection algorithms

are inefficient for this type of application (see Fisk and Nguyen [1980]).

The general model can also be solved by an efficient Newton type algorithm

(Aashtiani [1979]), but this algorithm only guarantees local convergence

(Pang and Chan [1981]).

A third line of investigation enriches the modelling of user behavior

by permitting user perception of performance to be stochastic. Sheffi and

Daganzo [1980] view this stochastic equilibrium problem as a traffic
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assignment problem on an extended network and cast the model as an equivalent

optimization problem. They use a disaggregate probit model for demand

and combine both deterministic and stochastic assignment of trips to paths

on the extended network. Although their algorithm is convergent (with some

restrictions imposed upon the probit model specification), the procedure

is limited in practice because it requires substantial computational effort

for even modestly-sized problems.

This summary of previous studies illustrates the tradeoffs between

the realistic (behavioral fidelity), technical (convergence), and practical

(computational efficiency) aspects of modelling the equilibrium problem.

None of the previous models has been successful in addressing aZZ these

issues.

Our goal in this paper is to develop a model that comes closer to

achieving all three objectives. It is intended to strike a balance among the

realistic, technical, and practical considerations of the problem. We

propose an equilibrium model that is behaviorally acceptable; moreover, it

has a unique equilibrium that can be computed efficiently by a convergent

algorithm.

In spite of prevailing views of many researchers concerning the behav-

ioral limitations of the usual optimization approach, we have formulated an

equivalent optimization problem that relaxes two of the major behavioral

restrictions imposed upon transportation demand. In our formulation, trip

generation can depend upo'n the system's performance through an accessibility

measure that is based on the random utility theory of users' behavior; in

addition, trip distribution is given by a logit model. The formulation is

a convex program that can be solved efficiently by convergent algorithms

(see Safwat [19821).
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In the next two sections, we describe our equilibrium model and formu-

late an equivalent optimization problem. In the fourth section, we prove that

these two forms of the problem are equivalent by deriving yet another equiva-

lent optimization formulation which is stated in a form that is more likely

to be familiar to the reader. The fifth section shows that singly and

doubly constrained gravity models are, respectively, special and limiting

versions of our demand models. The sixth section contains discussion and

conclusions.



-6-

2. A SIMULTANEOUS TRANSPORTATION EQUILIBRIUM MODEL (STEM)

In this section we present the underlying theory and the basic assumptions

of an equilibrium model that describes users' travel behavior in response to

system's performance on a transportation network. We first introduce some

notations:

(N,A),

i,

i,

i ,

P,

a,

I,

D i,

R,

Pij 

P.,

Now let

of our STEM moc

a directed graph (i.e., any transportation network) consisting

of a set N of nodes and a set A of links;

an origin node in the set N;

a destination node in the set N;

an origin-destination pair;

a simple (i.e., no node repeats) path in the network (N, A);

a link in the set A;

the set of origin nodes (I c N);

the set of destinations that are accessible from a given

origin i (D. c N):

the set of origin-destination pairs;

the set of simple paths from origin i to destination j;

the set of simple paths in the network (P = U {P..ij:ieI,JED.}
1J 1

us describe the basic assumptions for the different components

[el.

2.1 USER UTILITY FUNCTYONS

We assume that a typical user travelling from a given origin i asso-

ciates a utility vij with each destination j in the set D. of destinations
13 1

perceived to be accessible from i. Because users do not usually have perfect

information concerning the system and analysts cannot quantify all the factors

that influence users' utilities, we assume that utility functions are random
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and may be decomposed into a measured (observed) utility component plus an

additive random (error) term; that is,

vij Vij + ij' for all ijeR (2.1)

where

v..ij = utility of travel from i to j;

V..ij = measured (observed) utility of travel from i to j; and

eij.. = random (unobserved) utility of travel from i to j.
1J

We further assume that the measured utility is a function of socio-

economic characteristics of both the destination (e.g., consumption levels,

population) and the user (e.g., income, profession, education) as well as

the system's performance, and may be expressed as follows:

W
V.. -OU. + I 06 g (A 

ij ij + gw( wj )1J 13 w=l wj

= - e ui + Aj, for all ijER. (2.2)

In this expression,

u.o = the "perceived" cost of travel from i to j,
1J

th
A = the value of the w socio-economic variable that influences

wj

trip attraction at destination j;

th
g (A ) = a given function specifying how the w socio-economic variable,

A j, influences trip attraction;

Aj = the composite effect that the socio-economic variables, which are

exogenous to the transport system, have on trip attraction at

destination j.

The quantities 0 and 0 for w = 1, ..., W are coefficients to be estimated.
w

Notice that is a positive coefficient; the negative sign associated

with it reflects the behavioral assumption that, everything else being equal,

the utility decreases as travel cost increases.
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During the time period required to achieve short-run equilibrium,

which we are predicting, the socio-economic activities in the system will

remain essentially unchanged. Consequently, we assume that the composite

effect of these activities, Aj, is a fixed constant. That is, for a given

specification of the socio-economic system, we assume that the observed

utility of travel from i to j depends solely on the perceived travel cost,

uij, that is,

Vij = Vij (ui ), for all ijeR.

We will also assume that the perceived cost of travel from i to j on

any route is the sum of travel costs on the links that comprise that route.

We will elaborate on how transportation policies and the system's usage in-

fluence perceived travel costs as we present the basic assumptions concerning

link cost functions, modal split, and traffic assignment.

2.2 ACCESSIBILITY

Accessibility is a term that is widely used, but rarely defined (and

measured) rigorously and satisfactorily [Dalvi and Martin (1976)]. In order

to overcome this deficiency, Ben-Akiva and Lerman (1977) have defined

accessibility as "some composite measure which describes the characteris-

tics of a group of travel alternatives as they are preceived by a particular

individual". They also have considered accessibility measures in the context

of the random utility theory of users' behavior, which assumes that utility

functions are random and that users are utility maximizers. Based on this

theory, they have suggested that accessibility may be appropriately measured

by the expected maximum utility to be obtained from a particular travel

choice situation [other researchers such as Williams (1977) and Daganzo (1979)

have also suggested and studied this measure].



-9-

Following this same line of thought, we define accessibility as a

composite measure of the transportation system's performance and the socio-

economic system's attractiveness as perceived by a typical user travelling

from a given origin. Accessibility of an origin will then be the value of

the expected maximum utility obtained by travelling from that origin; that is,

Si = E [max v i..], for all iI (2.3)
jeD. j

1

where

S. = accessibility of origin i,
1

E is the expectation operator,

and the maximization is taken over all destinations D. accessible from
1

origin i.

Recall that the utility (as defined in section 2.1) has a random error

term. In order to obtain an operational measure of accessibility, we must

assume some probabilistic distribution for the random terms in the utility

functions. A well-known and often used assumption in travel demand analysis

is that the error terms are independent and identically distributed as a

type-I extreme value distribution (we will elaborate on this assumption

when discussing trip distribution). Making this assumption, the references

cited earlier show that accessibility is given by the natural logarithm of

the sum of exponentials of measured utilities to all accessible destinations;

that is,

S. =,n I exp(Vij), for all iI (2.4)
jE Di

1

where V.. is given by (2.2).
13
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2.3 TRIP GENERATION

We assume that trip generation is a function of socioeconomic activ-

ities, socio-economic characteristics of the users, and the transport system's

performance. Specifically, we assume that trip generation is given by a

general linear model with the measure of accessibility as one of its

variables. That is,

L
G. = aS. + Ya f (E.i)
1 i f_ Q Z2.i

2=i

- aS. + E., for all icI (2.5)
1 1

where

Gi = the number of trips generated from i;

E .thevalu of he thEAi the value of the socio-economic variable that influences

trip generation from origin i;

fA (Ei) = a given function specifying how the th socioeconomic variabl

Egi, influences trip generation; and

Ei = the composite effect that the socioeconomic variables, which

are exogenous to the transport system, have on rip generation

from origin i.

The quantities a and a2 for = 1, ... , L are coefficients to be

estimated.

As noted earlier, since the socio-economic activities are essentially

unchanged in the short run, we assume that their composite effect, Ei, is

a fixed constant. That is, for a given specification of the socio-economic

system, we assume that trip generation is dependent solely on the system's

performance as measured by the accessibility variable; that is,

Gi = Gi(Si), for all icI.

e
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Since the accessibility variable S in our model is a natural logarithm
1

(expression (2.4)), its value may vary, in theory, between - and +c. In

practice, however, accessibility has some finite upper limit (i.e., the systems

attractiveness when travel costs are zero throughout the system); we argue that

it also has some finite lower limit. Specifically, we assume that our specifica-

tion of the network, and particularly our definition of origins, implies that

each accessibility variable is nonnegative. A sufficient, though not nec-

essarily required, condition for S to be nonnegative is that the measured
1

utility of travel from i to at least one destination j in the set D is
1

nonnegative (i.e., Vij > 0 for some jeDi). That is, at least one destination

in the system is "attractive" to users at any given origin, an assumption

that should be satisfied in many, if not all, realistic systems. Suppose

to the contrary, that the minimum travel costs to all destinations in the

set D are sufficiently large to give negative values for all measured
1

utilities. Then either (i) no trips will be generated from i and thus,

we might as well have deleted that origin from the analysis, or (ii) some

trips must be generated from origin i regardless of the system's performance.

In the later case, we assume that when accessibility in (2.4) becomes neg-

ative it no longer affects the number of trips generated; instead, the exogenous

socio-economic composite variable E in (2.5) becomes predominant. That is,
1

Ei trips must be generated due to socio-economic forces. Hence, we assume

that accessibility is nonnegative and specified as follows.

S. = max {0, n E exp(-Ouij + A) , for all iI. (2.6)
jcD.1

1

I _ _ __�_�
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2.4 TRIP DISTRIBUTION

Adopting the random utility theory of users' behavior, we say that

the probability (PRij) that a typical user at any given origin i chooses

to travel to any given destination j in the set D is equal to the proba-
1

bility that the utility of travel to j is greater than (or equal to) that

of any other destination k in the set D.. That is,
1

PR..ij = Probability [v..i > vik for all kD.J.
1] ~~ij - ik 1

Different assumptions on the probabilistic distribution of the random

(error) terms of the utility functions lead to different trip distribution

models. Since we are assuming that the error terms are independent and

identically distributed as type-I extreme value (Gumbel) distribution, trip

,
distribution is given by the well-known "logit" model:

T.. = G exp(-Ou.. + A.)
ij i J - , for all ijeR. (2.7)

E exp(-Ouik + Ak)
keD.

1

Here Ti.. equals the number of trips travelling from to .
1J

The type-I extreme value distribution describes the limiting distri-

bution of the largest value of n independent and identically distributed

random variables as n becomes large, assuming that the common distribution

has an upper tail that falls off "in an exponential manner" as in the normal

distribution [see Gumbel (1958) for more details].

These assumptions are invoked frequently in travel demand analysis

and the resulting "logit" model is known to be very robust, practical and

analytically tractable. These desirable features account for the model's

popularity. In addition, as we will demonstrate later, our logit distributioh

*

See, for example, Domencich and McFadden (1975) for the derivation of the
logit model.
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model is quite flexible and general, compared to other gravity models which

may be viewed as special cases.

2.5 MODAL SPLIT AND TRAFFIC ASSIGNMENT

Several alternative assumptions on both modal split and traffic

assignment may be considered within the framework presented in this paper

[see Safwat (1982)]. However, to simplify the development and notation in

this paper, we assume that each user chooses the mode and route combination

that minimizes his total perceived cost from node of origin to node of

destination. Implied in this assumption is the possibility of transferring

from one mode to another in the middle of any given trip.

We assume that perceived travel costs are represented at the link

level by a set of link cost functions. Each link cost function is assumed

to depend upon the flow over that link and to be continuous and nondecreasing.

These frequently invoked assumptions reflect congestion effects on perceived

costs.

The above assumptions on modal split, traffic assignment, and system's

performance imply a Wardrop user equilibrium model of path choice, That is,

the perceived costs on all used paths (i.e., mode-route combinations) between

any given O-D pair are equal and not greater than those on unused paths:

= u.. if H > 0
1J p

Cp = ap
aeA

C a (F a )a a , for all pEPi.. and ijeR (2.8)
l0

> u.. if H = 0
- 1J p

where
I

Cp = the total perceived travel cost on a path p joining origin i

and destination j;

C (Fa) = the perceived travel cost on link a as a function of the link flow

F ;
a
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H = the flow on path p; and
P

{1 if link a belongs to path p

ap 
0 otherwise 

2.6 THE STEM MODEL AND THE EQUILIBRIUM PROBLEM

Combining the modelling ingredients described so far gives the

following simultaneous transportation equilibrium model.

(STEM):

G. = S + E. for all i
1 1 1

Si = max {0, n 
jeD.

1

ij i

C =up = ij

C > u..
p - 3

exp(-euij + Aj) , for all iI

exp(-Ou.. +A.exp(-uij Aj) , for all ijeR

Y exp(-euik + Ak)
kED.

1

if H >0)
p 5 for all p

if H - 0
p

where

C = 6 · C (F ) 
P aA ap a

The equilibrium problem now becomes one of predicting G and S for
1 .1

all iI, Tij and uij for all ijER, and F and C for all aA
ij ~a a

(1) simultaneously,

(2) with a procedure that is guaranteed to converge to an equilibrium

that is proven to exist and to be unique, and

(3) efficiently (in the computational sense).
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As noted in the introduction to this paper, in spite of prevailing

views of many researchers concerning the behavioral limitations of the usual

optimization approach, we propose to model and solve this equilibrium prob-

lem by formulating an optimization problem (ECP) and showing that under mild

assumptions on demand and performance the (ECP) problem has a unique solu-

tion that is equivalent to the (STEM) model.

In the next section, we introduce the (ECP) formulation and state

a theorem which shows the equivalence between (ECP) and (STEM). In the

fourth section, we prove this equivalency as well as the existence and unique-

ness of equilibrium, by deriving yet another equivalent optimization formu-

lation which is stated in a form that is more likely to be familiar to the

reader. The fifth section describes some limiting and special cases of the

(STEM) model. Safwat (1982) develops and tests a convergent algorithm for

solving the STEM model.
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3- AN EQUIVALENT CONVEX PROGRAM (ECP)

Consider the following (convex) optimization problem (ECP):

Minimize Z(S,T,H) = J(S) + (T) + (H)

subject to:

T.i = a S. + E1j

H =T.,
p ij

S. > 0,
1 -

T.. > 0,
1j -

H >0,
p -

, for all icI

for all ijeI

for all icI

for all ijER

for all pep

J(S) = y
isI

(T) = X I
icI jcD

S2 + S ( S + E) n( S + E)],
2 1 1 i i 1 1

[T.ij n T.. - A. T..13 13 3o 13 - Tij],

Fa

¢(H) = X | C(w) dw, and
asA o

F = X 6 H .
a ap p

P

(3.4)

The constraints (3.1) and (3.2) are the flow conservation equations

on the transport network, stating that the number of trips distributed from

a given origin to all possible destinations should equal the total number

generated from that origin and that the number of trips on all paths joining

a given origin-destination pair should equal the total number distributed

from that origin to that destination. The constraints (3.3) state that all the

decision variables should be nonnegative as postulated earlier. The

j Di

EPPij

(3.1)

(3.2)

where

(3.3)

1
�
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expression (3.4) defines the link-path incidence relationships stating

that the flow on a given link equals the sum of flows on all paths sharing

that link.

The objective function Z has three sets of terms. The last of these,

4(H), corresponds to the familiar transformation introduced by Beckmann

et al (1956). The second set of terms, (T), is similar to those used by

Evans (1976) and by Florian and Nguyen (1978), as well as in other related

models. The first set of terms, J(S), is new. In fact, what distinguishes

our formulation from other models is the definition of the accessibility

measure Si, its introduction as a decision variable in the optimization

problem, and the specification of the first set of terms J(S) in the objec-

tive function of (ECP).

The importance of the (ECP) optimization problem is that even with

very mild assumptions imposed upon the problem data, it is a convex program

which has a unique solution that is equivalent to the (STEM) equilibrium

model. Formally, the equivalence theorem may be stated as follows:

THEOREM 3.1 (EQUIVALENCY):

Suppose that > , 0 < < E for all iI, and that C is continuous and11 ~~~~a

a nondecreasing function of Fa for all aA. Then (ECP) is a convex program

whose optimaZlity conditions are equivalent to the simultaneous transpor-

tation equilibrium model (STEM).

Because of this equivalency, it is possible to study the qualitative

characteristics of the STEM model (i.e., existence and uniqueness) and com-

pute an equilibrium by studying and solving a nicely structured optimization

problem (i.e., ECP). We pursue the first of these objectives in the next

section.
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4. DERIVATION OF RESULTS

In this section, we prove that the optimization problem ECP and the

STEM equilibrium model are equivalent and show that the STEM model has a

solution which is unique.

Rather than establishing these results, as is possible, directly

from the formulation of ECP given in section 3 [see Safwat (1982) for these

proofs], we derive and study another optimization problem ECP*, whose form

is more likely to be familiar to the reader. In order to formulate ECP*, we

first derive several properties of our demand functions. More specifically,

we show, even with very mild assumptions imposed upon the problem data, that

the demand function has an inverse, and that the Jacobian matrix of the inverse

demand function is symmetric and negative definite.

iFor notation, let u = (ui:jeDi) be the vector of travel costs from

origin i to its destination Di. Similarly let Ti(ui) = (Tij(ui):jcD) denote

the vector of trips distributed from origin i as a function of travel costs

jiand let t -- (tij:jcDi) denote a given vector of trip distributions.

PROPOSITION 4.Z For each origin i, the demand function Ti(u ) with

components

exp (-eu..i + A (
2T. .(u (ot S + Ei) .1.

I exp (-euik + Ak)

kD .

has an inverse u (t) = (urj(ti ):jeDi) over the domain t = (tj:jeD i ) > 0.

i ii
The components u (t )of Ct) are given by

u 9,n tF4 - + , E.)
U. .i tik a ik - (4.2)

kcD. kD. -

1 2-
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PROOF:

Let Tij(u i ) = t be given. Adding equations (4.1) over the destina-
1j ij

tions accessible from origin i and substituting for 
S gives

tij = a S + E = a kn X exp (-euij + A ) + E

j EDi j eD.i
1 ~~~~1

Using the leftmost equality to substitute for a S + E. in (4.1) and using
i i

the equality of the outermost expressions to substitute 
for the denominator

of (4.1) in terms of the tij, gives

/! \ ) exp (-Ou.] + A.)

i ti k i -
kF-D. exp 

a t ik-

EDi

Taking the natural logarithm of both sides of this equality and solving

for u.o gives (4.2).[]
13

PROPOSITION 4.2 For each i, the Jacobian V u it
i ) of the inverse

ii
demand function u (t 

i ) is symmetric.

PROOF: If Q # j, then

u..
i= i _ (4.3)

ti tik a

keD;
1

a u.. U:
_Therefore, _i_ for all j and Q. l

Therefore, t..
a t it :3 t ij

PROPOSITION 4.3 For each i, the Jacobini V u (tz) of ui(ti) is negative

definite at any point t ti) 
definite at any~ point t -= (t..) > 0 satisfying t > a

1"7 keD . ik -
,Z,
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PROOF: First note that for any fixed origin i

U..
_ u1j = II 1= + : 1 _ 1

atii tik c t ik
kE:D ikwDi

which combined with (4.3) shows that

Vui(ti ) = 1 1 E - D

\Etik /k D.1

where E is a matrix of ones and D is a diagonal matrix with diagonal

_1
entries d.. - .

JJ tij
1J

Thus for any IDil-dimensional column vector y,

y V u (t )y = X t y~~~~~~~~ j i

j eD. 13 I
1

This expression is negative whenever y 0, 
j eDt

tij > a, and each tij > .
1 -

Since each inverse demand function u (t ) defined by (4.2) has a

symmetric Jacobian, it can be integrated as a line integral. Also, since the

Jacobian is negative definite, if mild assumptions are imposed upon the

data, the integral is a concave function.

Based on these properties of the demand functions, we can formulate

the following optimization problem.



F t

ECP*: Minimize (H,t) C (w) dw- U (T)d (4.4)
a oi 0

Subject to: Hp = t..ij for all i,j (4.5)
PEP. Pij

E tij > E for all i (4.6)
jeD.

1

tij > 0 for all i,j (4,7)

H > 0 for all p (4.8)
p -

Fa ipIP ap p-

This formulation comes closer than ECP to the formulation stated

by Dafermos (1980) and, in somewhat different form, by Aashtiani (1979),

which are essentially generalizations of the usual optimization problem

stated by Beckmann et al (1956). However, the ECP* problem differs from

that stated by Dafermos (1980) in several ways. First, the inverse

ii
demand function u(t) decomposes into a separate inverse u (ti) for each

t
origin i; as a result, the single line integral f u(-)dT in her formula-

0

tion becomes a sum of line integrals, one defined for each origin. Second,

this formulation contains the additional constraint (4.6) imposed upon the

trips tij made from origin i. Third, the variables tij are restricted to

be positive, rather than merely nonnegative. Moreover, our formulation uses

a specific functional form for u (t ), rather than a more general and un-

specified form used by Dafermos.

t The inverse demand functions u are not defined if any component of ti

equals zero. Therefore, let the lower limit on the line integral in (4.4)
be defined by setting each component of at value c > 0 and interpret the
line integral as the limit as approaches zero.
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In fact, our main purpose in introducing the line integral formulation

(ECP*) is to show that the symmetry conditions required on demand functions

are not nearly as restrictive as previously thought.

Below we establish equivalency between ECP* and STEM, and prove

existence and uniqueness of equilibrium on our STEM model. We then note

that ECP and ECP* are indeed equivalent.

THEOREM 4.4 Assume that and are positive. Then the Kuhn-Tucker conditions

for ECP* are identical with the STEM model.

PROOF: Let v and A. > 0 be Kuhn-Tucker multipliers for constraints (4.5)
13 1--

i
and (4.6). Let k = Di and let v (Vil v i Vk ). Also, let e

be a vector of ones with II components. Then the Kuhn-Tucker conditions

for ECP* are:

_- v.. > 0 for all i,j,P (4.9)

[W ~vij H =0 for all i,j,P (4.10)
-v i ~p

i
VtiD(H,t) + v - X.e = 0 for all i (4.11)

XiECD t.ij -Ei= =° for all i (4].2)

and (4.5)-(4.8).

Since each t > 0, equation (4.5) implies that H > 0 for some path P
13 p

joining origin i to destination j. This fact, and the fact that - is given
' ~~~~3H

p
by

6 C (F)
U1 a ap a a'
p a
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implying from (4.9) and (4.10) that vi.. = min C (F)l where the minimum
13 a ap a alaj

is taken over all paths p joining origin i and estination j. These are the

mode split and traffic assignment conditions of STEM.

Since V i(H,t) = -u (t ), conditions (4.11) become
t

u (ti ) = v lie.

Letting u = i- Xi and inverting u(t i ) we have from (4.1)

exp (-Qv.. + OXeli + A.)

t = (aS + Ei) 1 1 - e (4.13)
ke D. p ( ik + i + Ak)

1

where

Si = n X exp (-Ovij + OXi + A)
J EDi i 

= + n D exp (-Ovii + A). (4.14)

1

Eliminating the common factor exp(01i) from its numerator and denominator,

we see that expression (4.13) reduces to the trip distribution function (2.7)

of STEM with v in place of uij. Summing (4.13) over JeD, and invoking

(4.6) gives

aS + E tj > E,
i~~~~ai + i 3 ti -- iJED i

Since a > 0, this inequality implies that Si > 0. Moreover, if Xi > 0, the

complementarity conditions (4.12) implies that the last inequality holds

as an equality and thus S = 0. But then, these facts, the hypothesis
1

3 > 0, and (4.14) imply that whether X > 0 or X = 0,
i i '

S. = max{O, n Y exp(-0vij + A.)}
1 jeD.

I
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Consequently, after we have eliminated the variables Xi., the Kuhn-Tucker
1

conditions (4.5)-(4.12) become the conditions of the STEM model.

This theorem shows that any solution to the STEM model satisfies the

Kuhn-Tucker conditions of ECP*. We have yet, however, to show that ECP* has

an optimal solution or that any solution to STEM corresponds to an optimal

solution to ECP*. The second of these properties requires some additional

hypothesis on the performance functions C and the data E that will insure
a 1

that ECP* is a convex program.

THEOREM 4.5 (Equivalency,Existence, and Uniqueness)

Suppose that e > 0, that E > a > 0 for all i, and that each perfor-

mance function C (Fa) is real valued and nondecreasing over the domain F > 0.
a a a -

Then STEM and ECP* have a solution and solutions to STEM correspond in a one-

to-one fashion with the optimality conditions to ECP*. The performance costs

u.. and trip distributions t.. in the STEM model are unique. If C (F ) is
147 1$j a a

strictly increasing, the arc flows F of STEM are unique as well.
a

PROOF:

Equivalency:

Since each E. > a, proposition 4.3 shows that Vu (t ) is negative
1 -

definite over the feasible region to ECP*. Consequently, if C (F ) is
a a

nondecreasing, the objective function of ECP* is convex over the feasible

region. But then, ECP* is a convex program and its Kuhn-Tucker conditions

are sufficient as well as necessary. Therefore, Theorem 4.4 demonstrates

the one-to-one correspondence between solutions to STEM and the Kuhn-Tucker

conditions to ECP*.
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Uniqueness:

Since Vui(ti ) is negative definite, its line integral in (4.4) is

i
strictly concave as a function of t , implying that the optimal values of

i
t in ECP* are unique. Since the Jacobian of the constraints (4.5) and (4.6)

of ECP* has full row rank, the Kuhn-Tucker variables associated' with any given

optimal solution to the problem are unique. But since the Kuhn-Tucker

variables for any convex program are independent of its optimal solutions

since they are subgradients for the perturbation function of that problem

(see Rockafellar [1970]), the Kuhn-Tucker variables v.. to (4.5) and Xi.

to (4.6) are unique and hence so are the uij's given by u vij 

If C (F ) is strictly increasing, then the objective function in ECP*
a a

is strictly concave as a function of the arc flows F and so these arc flows
a

are unique.

Existence:

To complete the proof, we must show that ECP* has a solution. First:,

let us evaluate the line integral in (4.4).

Let Lik {T ijTij T= tij for j < k, 0 < tik < tik , and ij =0 for > k

For each i, we evaluate the line integral over the path defined by Lil, Li2, L1 3, ...

In the region Lik,

ui(t)d T = ! Tik T n T + T +

L
ik

+ ( t ij + ik) Ti n ( tij + T ik - 2 - 2[ - EI T ) tk
<k j<k j<k t ik=

= [ ti- tkik £n tik 2a tik + 2 ( tj E)t ( t En( ti
L Atik 'i tii j<k i j<k _ j<k 

- ( X ij Zn tij ] .
j<k j<k

More precisely define L with -r.i = E for j > k and later take the limit as c

approaches zero in (4.15). See the previous footnote.
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Summing these integrals for k = 1,2, .., we see that the last two terms tele-

scope and, therefore, that the objective function ,(H,t) in (4.4) becomes

~(H,t) = a C (w)dw A.t + t,j , j -G tip) i ( ti
a a e z0tjt i t i

a ' J

+ t.. - E E (4.15)
2 a tij - Ei Ei.1

Now define 4(H,t) when any tij = 0 by setting 02nO = 0 and let t > 0 replace
ij ~~~~~~~~~ij

the constraints ti.. > 0 in ECP*. Then the feasible region becomes closed and

~(H,t) is continuous on the feasible region. First note that this modified

problem has an optimal solution. For if (Hp, ti ) for k = 1,2,... is any sequence

of feasible solutions whose norms approach +o, then some tij approaches +.

But then since the first term in the definition of ~(H,t) is nonnegative

and since the quadratic term in (4.15) is asymptotically dominant in the ti

k k
terms, q(H ,t ) approaches +X. But this norm condition implies that the

modified problem has an optimal solution (for example, see Ortega and Reinboldt

[1970, theorem 4.3.3]).

Thus far we have established existence of a solution with tij > 0. We next
IJ -

show that each tij > 0 in any optimal solution to the modified problem. Let

(H*, t*.) be any feasible solution to the modified problem with some tj = 0.
p LJ iJ

Let (H',tij) be any other feasible solution with all t!. > 0. Consider the
p ij I

solutions

(Hp(z) tij(z)) = (1-z)(H*,t*.) + z(Hp, 't)
p iJ p lJ p ij

for 0 < z < 1. Then letting p(z) = p(H(z),t(z)), we see that

d(z) = X 6 C (F )(H -H*) - FA n t(z)+Zn t.(z) (t-t)
dz~~ t j .Dij ) ij]j (tij -ti j)| idz ap a a p p . . jJa i j jD.

ti(- E ~ (t'- t
ijFD Di . ij z]
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Since some t = 0 this derivative approaches - (via the term
ik

[9R n]t t ( [n tik(z)]) as z approaches 0 and thus tik(z)
~~~~ik k k ik i

approaches t = 0. (Note that no term in this derivative approaches +1k

because Y tij (z) > E). But then, since is continuous,
jeD i

4(H(z),t(z)) < (H*,t*) for sufficiently small but positive values of z.

Consequently, ti.. > 0 in any optimal solution to the modified problem

and thus ECP*, and so STEM, has a solution. 

We conclude this section by noting that ECP* and ECP are alternate

forms of the same problem; thus, as a byproduct of this section, we have

established the equivalence between ECP and STEM. To see that ECP and ECP* are

equivalent, use the constraint I T.. = S + E. in ECP to solve for
j eD i

1 1 1
S. in terms of T... Substituting this value for S. in the objective func-
1 13 1

tion to ECP gives (4.15) plus the constant I Ei E, Consequently,
1 i 1

the two objective functions differ only by a constant. Since > 0, the

constraints X Tij = aSi + E and S > 0 are equivalent to the constraints
1 1 1 --jo D.

(4.6) of ECP*. Therefore, ECP and ECP* are equivalent optimization problems.
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5- SPECIAL AND LIMITING CASES

In this section we illustrate the generality and the range of applications

of the STEM model. We first show that a singly constrained gravity model

with an exponential delay function may be used within the STEM model to

describe trip distribution. This trip distribution model is a special case

of the more general logit model. We also show that the STEM model can be

used to approximate as closely as desired any given doubly constrained gravity

model with fixed productions and attractions.

Let D. > 0 be the number of trips attracted to destination j. Also

let A. = nD.. Then the distribution model (2.7) becomes
JJ

-Ou..
D.e ij

T.. = G. J
j 1 X Dke-Uik

k

This is a gravity model with an exponential delay function.

Now suppose that the number of trips generated at an origin i, 0 > 0,

is fixed, the number of trips Dj attracted to any j is fixed, and that

E 0. = X D,.
0, 3i J

We show that by a judicious choice of the data A, a. and Ei., the STEM
.3 1

model approximates these productions and attractions as 9 approaches 0.

First note that if all costs C are nonnegative, then all u.. are non-
a

negative. Thus, if 0 > 0,

-Ou.. + A. A.
S. n E e 1 < in X e .

I j eD jeD.
1 1

Therefore,

A.

G. < K (a n e J+ E).
i ~i j ED.

1

Assuming that Ca(Fa) is continuous implies that

K' = max max min C (F)
i,j 0<F <K peP P-a- ii
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exists. Here Pij denotes the set of available paths joining origin i and

destination j and C (F) = . 6, C (F). Since u < C (F) for any p£Pij'0 < ui j < K.
p a a ij - p -
a

Therefore,

- uij + A < A.,

e u.. + A > -K' + A.,
ij j-- J

and as approaches 0,

-6u. + A. + A..
lj 3 J]

Consequently,

-6u..+A.
exp (-Ouij + A.) approaches exp (A) and S = n e 13 i approaches

A. 13 jcD.~n~~~i J j E1
Qn e Jas 0 approaches zero. Thus

exp(-eui.. + A.)
T.. = (aS. + E.) J J
13 1 1 exp(-euij + k)

k

approaches

A exp (A.)
T*. = (a n e j + E.) - -J

1~ ;i 1 X~ exp (k)
k

Now let A = Qn D., let a > 0 be chosen sufficiently small so that
.3 .3

a n ~ D. < 0 for all i, and let E = 0 - a n ~ D. Then

T*. = a n D. + E. = 0. for all i
.j .j 1 1
J3 ] D.

and Tj = ( 0) = D. for all j.
1 1 i D

k

Therefore for 0 > 0, but sufficiently small, the STEM model approximates

the doubly constrained gravity model as closely as desired.
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6. SUMMARY AND CONCLUSIONS

Review of previous studies illustrates the tradeoffs between the real-

istic (behavioral), technical (convergence), and practical (computational

efficiency) considerations in modelling the equilibrium problem. None of

these studies has been successful in addressing all aspects of the problem.

In this paper, we have presented an equilibrium model, STEM, that per-

mits trip generation, trip distribution, modal split and traffic assignment

on transportation networks to be predicted simultaneously by convergent

and computationally efficient algorithms. In the STEM model, trip genera-

tion can depend upon the system's performance through an accessibility

measure that is based on the random utility theory of users' behavior,

and trip distribution is given by a logit model. Modalsplit and traffic

assignment are user optimized; however, several alternative assumptions

can be considered within the framework presented in this paper. We have

proven existence and uniqueness of equilibrium by formulating an equivalent

optimization problem and studying its qualitative characteristics. We have

demonstrated the richness of the STEM model by showing that it can approx-

imate as closely as desired other commonly used demand models which may be

thought of as limiting or special cases.

Safwat (1982) studies computational aspects of this equilibrium

problem and the formulation ECP. Currently, a joint project between M.I.T.

and Cairo University,in cooperation with the Egyptian Ministry of Transport,

is applying an extended version of the model to the intercity multimodal

transport system of Egypt.
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