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ABSTRACT

Evaluation of public programming currently tends toward plans that are set

in advance of any sampling and adhered to throughout. Because increments in the

knowledge profile during the course of an evaluation might beckon adjustment of

the working procedure, fixed evaluation methodology may be cost-inefficient. It

is desired to develop a methodology that is adaptive to changes in the knowledge

profile. This might be most easily accomplished by borrowing ideas from some

of the disciplines in which relevant problems occur. The most promising fields

for this task include classical and Bayesian statistics, reliability theory, and

dynamic programming. This paper reviews the techniques in classical statistics

that seem most apt for handling the problem of adaptive changes in an evaluation

to updated knowledge profiles, and considers the paths along which future research

ought to be conducted.
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I. INTRODUCTION

Evaluation methodology is the tool policy-makers use to assess the effective-

ness, prospective or actual, of public programs. Those who put a program into

effect require feedback on the program's impact: who it is affecting, and to

what degree. In order to decide whether to continue, alter, or terminate a

program, it is essential to know what it has done already, and what it is likely

to do in the future. Answering these questions is the role of evaluation.

The brief description of evaluation in programming holds mainly in the

utopian world, The fact of the matter is., scientific evaluation often breaks

down in the face of program changes and other human concerns. Mathematical

techniques for the physical sciences applied to the task of evaluation often

produce cost-negligent methodology, and are sometimes abandoned for haphazard

guesswork when critical assumptions prove unfounded, The science of evaluation

research is still quite young, and only now are measures being developed for

combating the shortcomings of evaluation technology as it stands today.

One critical drawback in evaluation procedures is that they are almost

always of a rigid, totally preplanned design. The various pieces of the evalu-

ation process are laid out before the investigation takes place, and this design

is strictly adhered to (one exception: if something unplanned for occurs, who

knows what will be done next S). This strategy comes up short n two accounts-

it may be cost-inefficienti and changes. to the environment of the program or of the

evaluation might render evaluations, difficult or meaningless. These possibilities

beckon a more flexible approach, which we call adaptive evaluation design.

Adaptive evaluation ameliorates the weaknesses of fixed designs in two ways:

it uses the data already collected, sometimes as they arrive, to guide future

evaluation design; and it attempts to reduce its susceptibility to the destruc-

tion of its foundations arising from changes in the program and its environment.
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Adaptive evaluation designs can always be conjured and employed. An important

question to answer is, how do they perform? We want to answer this both in compari-

sons to other adaptive designs, and in comparisons to fixed designs. Concurrently

with our development of adaptive evaluation methodology, then, we need to develop

a set of performance measures that will enable us to evaluate the evaluations, so

to speak. These performance measures should provide the means to demonstrate the

advantages of flexibility in evaluation design. They should also be available to

the evaluator when he/she must decide which evaluation design to choose.

Performance measures, it may be conjectured, will be numerical-based aspects

of evaluation designs. It is important to keep in mind that strict adherence to

numbers may blind evaluation researchers toward the practicality of the methodology.

While an "optimal" technique, in some sense, is desirable, a simpler technique might

be more attractive than a more complex one with a higher value on a performance

measure. It should be recognized that not every evaluator is a statistician, decision

analyst, and computer programmer all rolled into one. Thus, evaluation designs ought

to be assessed through both their performance measure results and their practicality.

There are other considerations, too, but work in those areas is being undertaken by

Mr. Thomas Campbell, and will be bypassed here.
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~~~~II. ~OBJECTIVES

This paper is a survey of the techniques of classical statistics that might

be applied to adaptive evaluation design. The scope of the survey will be limited

to those techniques applicable toward the problem of adaptivity to updated knowledge

profiles. This includes the problem situations of adaptive switching of time

periods in an evaluation, and adaptive allocation of scarce evaluation resources;

one section shall be devoted to each situation. No attempt to formulate versions

of techniques ready for simulation testing or the like shall be made. Rather,

the paper is designed to present the possibilities, mull them over, and indicate

those techniques that seem most fruitful for further investigation.

The task outlined above cannot be adequately performed by mere description

of procedure. Discussion concerning assumptions of the technique and how they

might fit in with evaluation circumstances, plus appraisal of the practicality

and the performance of the techniques will accompany description. Also, sugges-

tions for performance measures arising from exploration of the technology will

be pointed out where relevant. A final section outlines the course of future

research.
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III. ADAPTIVE TIME PERIODS OF THE EVALUATION

Evaluation processes can often be partitioned into two or more distinct task

segments in time. A simple example is an evaluation divided into baseline and

experimental phases. The first time period is devoted to collection of data that

describe the situation before the start of the program, and the second is used to

measure changes caused through implementation of the program. Often, these time

periods are fixed in duration before the collection of any data. But these fixed

periods might not be the most efficient use of the resources (time, money) that

can be arranged.

Let us define the problem more concisely. The goal in each segment is to

measure a parameter of some probability distribution and thereby characterize the

situation. Each segment may be connected to a program variation for evaluation

or an assessment of the environment with no program in effect. We want to measure

shifts in the parameter's value under program/no program circumstances, or between

different variations of the program. Assume the whole evaluation period consists

of a certain number of daysu of sampling, with "days" clustered into the segments

of the evaluation. A "design"' is a method for arranging the sampling days into

evaluation segments.

A fixed design corresponds to a clustering of sampling days into segments

before any data collection is undertaken. Also, this design is not broken once

it is set, so the pre-evaluation plan is strictly adhered to throughout. It may

happen that the evaluators became reasonably sure of the value of the parameter

before the pre-determined end of the current segment. ("Reasonably sure" will

not: be defined for now). Under the fixed design, they would not be able to end

the current segment and begin the next one, or end the evaluation, whichever is

the case. This "switch" in time periods, if it could have been performed, would

-have enabled more time to be spent in investigation of the parameter in later
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time periods, and generally effect savings in time and money.

The above argument is the main rationale for developing evaluation designs

to adaptively determine switching times in an evaluation. Let us formulate the

adaptive approach to the switching problem. In this instance, we again have to

cluster the available sampling days into the time segments of the evaluation,

but we no longer have to follow the predetermined design, if in fact we created

one to begin with. At the beginning of each sampling day, we must decide whether

to:

a) extend this evaluation period for at least one more sampling day, and

thus continue sampling today; or

b) terminate this evaluation period and move on to the next, instituting

whatever program changes are called for, and sample (or conclude all data collec-

tion, if this is the last period).

The beginning of the '"day," in this formulation, connotes the point at which the

decision is made to extend or switch. The remainder of the day i devoted to data

collection with no such decisions. Our goal in this area is to develop a set of

rules, called switching or stopping' rules, to guide the decision-maker in decisions

of the above type.

Criteria for making the switching decision can arise from one or both of two

issues:

1) Interperiod considerations -- comparisons of costs and benefits, at present

against those in subsequent periods;

2) Intraperiod considerations -- achievement of certain prescribed levels of

significance (and interval width, in estimation).

In the formulation of any technique, we must see how the technique confronts these

issues. Testing all hypotheses at the 5% significance level totally ignores the events

and costs of future segments; indeed, it may squeeze those segments out of the evalua-

tion process. On the other hand, some intraperiod considerations are necessary, if
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only to calculate certain indices to compare with those of future periods.

Individual techniques might place more emphasis on one issue than the other.

We must always see how these issues are represented, for neglect of one can

render a procedure meaningless for practical usage.

A key concept in all this is cost, or loss. "Cost," as it will be used in

this paper, does not solely refer to the expenses of observation, but also to

losses incurred from the difference in value between the true parameter and the

estimated or hypothesized one. As such, it can be difficult to measure, for

there are many forms the loss may take. How does one measure the loss in under- or

overestimation of a crime rate, for example? The answer is highly dependent on

the environment of the program, which cannot be specified now, if this research

is to have wide-spread application. Yet cost-minimization is a very appealing

and very rational basis for making decisions. It is an easier concept for the

evaluator to understand and use than, say, the utility of significance levels

or confidence widths. So what we might hope for is a set of guidelines for loss

structures pertinent to program evaluation to develop cost-based decision techniques.

With this concept under our belts, let us reiterate our objectives in the adap-

tive switching problem. We wish to develop a methodology that will adaptively guide

us in determining the proper time to switch from one segment to another in an evalua-

tion. The implication at the time of the switch is that we are sure enough of the

value of the parameter to warrant commencement of study of a different aspect of

the program. How "sure" we need to be depends on overall budget constraints as well

as on the relative costs of inaccuracy from period to period; all this is implied

in the "cost" concept detailed above. Simply put, if the degree of certainty an

extra day of sampling is expected to add is not worth more to us than either the

additional time we can spend in subsequent periods or the savings in costs of observa-

tion in this period, we should switch periods. This is precisely what is meant by

"interperiod considerations."

A good application of this principle can be found in Willemain [16]. His
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paper takes a Bayesian approach to the adaptive switching problem, so his results

cannot be utilized directly here. We might, however, derive techniques from it

to "clean up" our classical analysis, so it is worth glancing at. Bayesian

analysis treats parameters to be measured as random variables. The original, or

prior, distribution of each parameter is initially constructed by the researcher.

Distributions are updated based on the data that comes in. Loss functions dependent

on the absolute distance between true and predicted values can then be manipulated

through the assessed distribution of the parameters involved. In Willemain's work,

even the impact of the program is assessed in a distribution, so that this component

fits in with the overall scheme. A utility function is added, and preposterior

analysis is used to assess the utility of each option in the continue/switch decision.

Classical statistics differs from Bayesian statistics in that parameters to

be investigated are treated as single unknown values rather than distributions.

When we make an inference about a parameter in classical statistics, we only say

either that it is "this" and not "that," or only that it is 'this," or that it

is "somewhere in here, but one can't say where it is more likely to be." The

first statement arises out of hypothesis testing, the second from the same or

from point estimation, and the last from interval estimation. We do not associate

probabilities, in the Bayesian sense, to these statements. We might indicate a

relevant error rate or confidence interval, but the inference itself carries no

weighting factor for what we say is so. Adding such weights to a statement draws

the inference out of the classical realm and into Bayesian theory.

This presents a problem in designing classical methods to take on interperiod

consideration. Should one project program characteristics of future periods, one

must be very careful in manipulating them. If one projects a possible set of

values for a period, then the assignment of probabilities each value has of occurr-

ing, no matter how small the set, is essentially Bayesian analysis. An alternative

manipulation might be a minimax procedure, where the action that performs the best

in the worst case of future values is chosen. This technique might be cumbersome,



-8-

though, and probably too pessimistic. In the author's opinion, classical statistics

will perform better in most respects if interperiod consideration are handled subtly.

Just how will be outlined shortly.

If we decide to employ classical statistics, we will need to choose a strategy

for working with the parameters. Classical statistics provides two main themes for

investigation of a parameter: hypothesis testing, and (point or internal) estima-

tion. Which theme we choose depends on what we want to find out, and the loss

structures involved. Suppose loss depends primarily on whether the parameter is

a certain value, or is significantly different from it. Then hypothesis testing

is probably all we need to answer the question. On the other hand, if we have

no preconceptions, and loss depends critically on how accurate we are, and increases

steadily with increasing error, we probably need to estimate the parameter.

The purpose of classical statistical analysis is to make inferences about the

data and the population(s) they came from. We cannot make perfectly accurate state-

ments about a population in all confidence unless we look at the whole population.

This option is normally too expensive to perform. Thus, we must make concessions.

We want our statements to be true, naturally, but we cannot assure perfect certainty.

So we specify some level of probability of our being wrong that we are willing to

tolerate. In hypothesis testing, this is the significance level. In estimation,

it is the confidence level associated with a confidence interval of a certain

width. Actually, this becomes a pair of tolerances, as the confidence interval

can be adjusted to the confidence level, too.

It was expressed before that classical statistics adaptations to adaptive

switching will probably have to concentrate on the intraperiod considerations, as

far as actual mechanics are concerned. If so, we will almost certainly have to

work with tolerances. And we will have to include overall evaluation constraints

somewhere in the technique. These two parameters are very closely related, especially

where interperiod considerations are shoved into the background. We would like to
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use the overall constraints, plus assessments of future behavior, to set the

tolerances within periods. This point will be reiterated and inspected later

in the paper, after we have looked at some sequential techniques.

Another reason for selecting intraperiod-based switching rules for study is

that the bulk of classical statistical literature is geared toward them. A common

application of these rules is in reliability theory. A typical example is to

estimate the proportion of defective items produced by a machine. The main

difficulty concerning adaptation of this sort of technique to switching rules is

that the applications describe stopping rules, If the choice is not to continue,

the experiment is terminated. There is little coverage of the case where, in the

example, the machine is adjusted and more sampling conducted, mainly because this

can be done simultaneously, with two such machines. Situations rarely arise where

it is possible to perform parallel testing in evaluation situations. The subjects

are mostly human, and the testing environments complex. We must therefore build

on the stopping rules described in the literature to create switching rules. The

first step in this process is to examine elementary techniques and their stopping

rules.

One of the first advances in sequential sampling theory was made by Wald [13].

He formulated a Sequential Probability Ratio Test (SPRT) to adaptively decide which

one of two hypotheses held for a particular situation. He proved several desirable

characteristics of the SPRT, including optimality for certain true values of the

parameter [with Wolfowitz, 14]. Although many more questions about it have remained

unanswered, and doubts have been raised about its actual performance, the SPRT seems

to be the backbone of classical sequential theory, at least as far as the literature

goes. Its position in the theory and the wealth of material on it makes the SPRT

the logical starting point of our investigation.

In its basic form, the SPRT is a test of two simple hypotheses. The quantity

tested is a probability ratio, or the log of one, of the value of the density function
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at the point sampled under the alternative hypothesis to the value there under

the null hypothesis. Bounds on the value of the cumulative product (sum if taking

logs) of these ratios are set. Sampling continues until the cumulative product

passes outside one of the bounds. Depending on which bound is exceeded, the null

hypothesis is or is not rejected.

In order to use the SPRT, the evaluator must frame his/her questions in terms

that hypothesis testing can handle. Two specific values of the parameter (three

or more in variations of the technique) must be proposed, and the value decided

upon will be one of these pre-specified points. In theory, this does not present

a problem. The questions that must be tackled concern the nature of the program

itself. It is reasonable to assume that costs of error are minimized if the value

of the parameter that comes out of this analysis is equal to the true value of the

parameter. But how do costs increase as the absolute difference between the true

and predicted values of the parameter increases?

Bayesian statistics can cope with a wide variety of cost schemes relatively

easily. Since the predicted value is expressed in a probability distribution,

rather than a point, deviation from the true value of the parameter (perhaps

using the expected value of the posterior) also can be embodied in a distribution.

This distribution serves to weight costs based on the difference to yield an expected

cost. This can be used to compare expected costs under both ends of the continue/

switch decision and choose a cost-minimizing plan.

On the other hand, the discrete set of possible parameter values arising from

an hypothesis test is very sensitive to the cost scheme. In the case of measure-

ment of a normal mean, especially with a known or anticipated large variance, there

is considerable room for the mean to vary. Costs increasing linearly or quadratically

with the error of prediction might require more detailed specification of prediction

than a small set of hypotheses would give. But if costs of error follow some sort

of step function, than the multiple-hypothesis test might compare favorably with

Bayesian techniques on relevant performance measures. Performance quality aside,
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the hypothesis test may be more intuitive to evaluators with a classical training.

An SPRT-based test might be simpler to implement, for the evaluator need not bother

with assessing personal opinions as distributions if, say, a minimax approach to

loss is used. The point is, there may be situations, contingent on the evaluation

environment, in which classical techniques are preferred to Bayesian ones, which

justifies further investigation of classical techniques.

Classical sequential theory extends much further than sequential hypothesis

tests. In particular, techniques for sequential estimation have been described

in the literature. Sequential estimation, in the classical sense, seems not to

have been explored to the degree that sequential testing has. It is not clear

whether it is because the questions are easier to answer, or that Bayesian techniques

dominate the classical ones, or whatever. Yet a number of classical techniques for

sequential estimation may be identified and investigated. These will be dealt with

later in the paper. For now, let us observe how the basic SPRT is used to create

more specialized techniques in sequential testing.

Wald left much unsaid concerning the SPRT. What he did was to work out the

elementary theory, and illuminate it through two distributions for examples: the

binomial, and the normal mean. Even in these examples, some important questions

were answered by suggestions for working procedure, with little or no analysis of

the procedure's behavior. For instance, a budget constraint might limit the total

number of observations. Wald gives a rule for resolving the decision, but does

not: examine what effect this resolution has on the error rates. Truncation is a

very important consideration in any practical application of the SPRT. Luckily,

much has been written about the SPRT since Wald's work came out, filling in some

of the gaps with useful material.

A closer look at what is bound up in the SPRT lends some idea about how difficult

it would be to compose an all-encompassing work on it. One should be able to compare

it to other techniques which might be cheaper to use and/or more accurate. This

has been done through comparison of OC and ASN curves. The OC (Operating Characteristic)
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curve plots the probability that the null hypothesis will be accepted against the

true value of the parameter being tested. The ASN (Average Sample Number) curve

depicts the expected sample size through use of the SPRT as a function of the true

value of the parameter.

The OC and ASN curves are by no means straightforward to determine, as they

often involve solutions of non-closed form equations and the like. And the character

of the solution varies according to the working distribution of the data, the hypothe-

sized parameters, and the error rates projected. Often, the values on the curves

can only be examined at a select number of combinations of hypotheses, error rates,

and true values, for a particular distribution. Depending on the distribution,

sometimes only empirical or asymptotic analyses are possible. And this does not

say anything about the variance of the expected sample size for the ASN curve, which

is a crucial piece of information for judging the ultimate practicality of the

technique.

As was mentioned above, this problem has been somewhat alleviated through the

subsequent works on the SPRT. Those articles and books generally concentrate on

individual aspects of the SPRT. Some cover a distribution or two and assess

expected sample sizes and their variances, operating characteristics, or other

characteristics of interest. They generally select representative or wide-ranging

sets of true values, hypothesized values, and error rates, and variance of the

distribution for examination. Others explore variations of the SPRT. Often,

these works are presented in response to undesirable behavior brought to light by

works of the first type. Some are attempts to adapt the SPRT to situations it was

not: initially designed to handle. All works on the SPRT, as well as on other

sequential techniques, may have something to offer us, and it is hoped that as

many of them as possible may be surveyed in the coming months during the process

of assembling adaptive evaluation methodology and performance measures. The author

has been rummaging through the literature, in order to present a collection of the

most likely candidates for future implementation.
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The first problem that comes to mind regarding the basic SPRT is that only

two hypotheses are being tested. This procedure could not even adequately handle

a test of three hypotheses, perhaps standing for "low," "medium," and "high."

Armitage [1] and others have described the use of the SPRT on two or three of the

possible hypothesis pairs in the three-hypothesis case. The procedures have nice

graphic interpretations that may be of use to evaluators, but little is known

about the operating properties of these techniques. Two-sided tests of certain

parameters have also been investigated. Often the number of SPRT's necessary to

perform can be reduced in these tests. But again, the tests can turn out to be

uncertain quantitites, as far as performance goes.

It is this uncertainty, and the general possibility that, for some parameter

values, open tests of this sort may occasionally lend to intolerably high sample

sizes, that has driven many potential practitioners away from the SPRT. In

response, variations have been devised and studied. One desirable feature of a

sequential test would be to impose a constraint on the number of observations

allowed. Several papers with proposals for and analyses of truncated SPRT's

have been published [7,5]. The results show significant improvement upon the

SPRT in certain situations that the SPRT has proven weak in.

The major principle of truncation is to create boundaries that vary with

the sample size, which "cuts off" observation at a pre-determined number. Boundaries

can be tailored to curtail the sampling period to adapt to the circumstances of the

evaluation. Another method, suggested by Wald, would be to operate the SPRT normally,

but cease sampling after a specified number of observations, and make a final decision

based on the cummulative sum of logs, if a boundary has not been exceeded. However,

this method alters error rates in an unspecified fashion, and has been disregarded

for the most part in later studies.

Another variation designed to improve the operating properties of the plan is

the partial SPRT. In this method, a number of observations are taken before any



-14-

sequential testing is performed. This number is based on the difference in hypo-

thesis values. Billard [2] claims that this "has the advantage of providing a

well-defined and mathematical structure to the scheme...before serious sequential

comparison of the hypotheses is undertaken." He goes on to compute OC and ASN

functions for the binomial case and to compare these with Armitage's truncated

procedure. This also looks favorable for use, but the study was conducted only

for the binomial case. We might require additional research to make the technique

as widely applicable as possible.

There also exist techniques, some SPRT-oriented, for performing sequential

2
t-tests, X tests (for testing variance), ANOVA through F-tests, and correlation

coefficients. Further research could probably turn up more applications of this

sequential theory. The point is, many tasks that might crop up in evaluation

research can be handled sequentially. The characteristics of the relevant procedures

are not always fully known, but it may be possible to construct assessments of parti-

cular characteristics to our satisfaction, where necessary. The drawback of the

techniques mentioned above is that they are techniques for hypothesis testing.

If we need to perform estimation at some point, all these techniques just will

not do. We therefore need to develop a sequential estimation-oriented approach

to adaptive switching to complete our arsenal of evaluation methodology.

SPRT theory outdistances sequential estimation methodology in terms of

the sheer number of articles on each subject. But this may be due to the number

of gaps left in the SPRT theory. Sequential estimation is not very different

from fixed sample size estimation, with respect to the inferences made about

the results. Results are usually best expressed as a point estimate with

associated standard error, or an interval estimate. We can discard contemplation

of how the behavior depends on the hypotheses, because there are no hypotheses.

We need only concern ourselves with the estimator, the stopping rule, and the

method for making point or interval estimates.
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Another possible reason for the comparatively small volume of work in classical

sequential estimation theory is the technological proximity of it to Bayesian theory.

The Bayesian attack also produces a point estimate. This one is designed to minimize

expected loss. If cost minimization is our primary concern, how different can classi-

cal sequential estimation be? According to Wetherill [15, p. 115],

"Both point and interval estimation can be based on either of
two approaches, that through 'sampling distributions,' or that
through 'likelihood.'

The likelihood approach consists of Bayesian, Bayesian decision-theoretic, and "pure"

likelihood procedures. Thus, for the purposes of this paper, we shall be concerned

with sampling distribution-based sequential estimation.

The first step in techniques taking this approach is to state a cost function,

for the goal here is to minimize costs. Then an estimator must be chosen. Optimally,

we would prefer an estimator that yields minimum expected cost over the distribution

of possible samples and the cost associated with each sample. This is not possible

to do uniformly; certain restrictions on the properties of the estimator must be

specified. One selects an estimator after imposing these conditions, that will

minimize the expected loss. Next, a stopping or switching rule must be devised.

It might be based directly on costs in subsequent periods (in either a projected

or a minimax sense), or indirectly on these through the specification of tolerances

in interval width and the associated confidence level, or in the sample variance.

A procedure for making inferences must also be formulated. It will be based on

the estimator, the stopping rule, and the character of the distribution.

The last paragraph is really a compression of several different classical

approaches to sequential estimation. It summarizes the major avenues for develop-

ment of sequential estimation methodology. Research exists which explores these

avenues. But, as mentioned before, Bayesian methods find more favor in the eyes

of the researchers, so the emphasis in the literature is on Bayesian techniques.

To utilize classical methodology in evaluation research, we might be called upon
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to undertake some original research. References in classical sequential estimation

work are among those listed at the end of this paper.

There is one procedure that can be applied toward both hypothesis testing and

estimation, and is appealing because of its relative simplicity. It is called

double or two-stage sampling. The idea of this procedure is to take one sample

of prescribed size, and following this, take another sample whose size may be

dependent on the first sample. For hypothesis testing, this may result in a

savings, because the second sample might be by-passed if results from the first

sample are conclusive enough. Or, the total sample size might be smaller than

that in the corresponding fixed sample size test. In estimation, this same

possibility for savings holds. This may be classified as a partially sequential

technique, but it can result in considerable conservation of resources. Also,

the theory is more tractable than most fully sequential techniques. It has been

researched, both generally and in particular cases.

While double sampling has all this to offer, there are some noticeable short-

comings. Several particular methods do not make use of all the information collected.

Having already looked at fully sequential techniques, one might not feel satisfied

with the one sequential-oriented decision made at the end of the first sample. And

not: as much work has been done in double sampling as in, say, the SPRT. But each

of these drawbacks can be mitigated to a degree. Methods can be found, or developed,

which can make use of all the data. The reduction in the number of decisions may

actually be a benefit, contingent on the evaluation process and the evaluators

involved. And, once again, the SPRT was originally put forth in a rather vague

manner, leaving many holes to be filled. The double sampling technique, in its

simplicity, can be covered with less work. The biggest question is, is it adequate

to handle the problems that arise in the evaluation of public programs? This cannot

be answered firmly until a thorough survey of those problem situations can be conducted

and studied. The author is inclined to think that it might prove very useful.
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The final topic in this section covers tolerances. Tolerances have been

brought up on occasion in this paper, only to be pushed aside till later. Yet

the tolerance ought to be the heart of the stopping rule. If we are attempting

to estimate an interval, sequentially, we can make an estimate after the first

observation. It would probably be quite large, though. Our goal would naturally

be to sample until the width of the confidence interval falls below some critical

value. However, we could also reduce the confidence level to shrink the interval

width. Thus, we need combinations of tolerances in confidence level and interval

width to define meaningful stopping rules. In hypothesis testing, the tolerance

manifests itself in type I and type II error rates which are incorporated into

the determination of the boundaries. Our development of adaptive evaluation

methodology, if not based on strict comparisons between costs in present and

in future periods, must provide for a rational basis for setting tolerances.

The simple-minded approach for tolerance generation might be to enforce

the same tolerances in every period; i.e., design stopping rules to yield

equal significance levels or confidence levels and interval widths in each period.

This would be the easiest way to go about it, but probably not the most efficient

way. We can detect ways to improve tolerance assignments by looking at disadvantages

in the simple-minded approach:

*The cost of sampling might be much higher in one period than in another. If

that is the case, it would make sense to settle for less stringent tolerances where

sampling cost is high.

*Different assessed variances for future periods may make tolerance assignment

by period, based in some way on the projected variance for the period, a more loss-

minimizing approach. This is especially true when overall loss depends on the differ-

ence between estimated and true values of a parameter.

*In the two-hypotheses case, we might express expected loss as:

E(Ila,8) = e1 + e2 + c E (nie 1,e 2 1ac,)
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where a is the probability of deciding for the alternative hypothesis when the null

hypotheis is true, e the loss associated with that wrong decision, the probability

of deciding for the null when the alternative holds, e2 the loss in that decision, cO

the cost per observation, n the number of observations, e the null hypothesis, and

e the alternative. The expected sample size is almost always a function of the
2

hypotheses and error rates. The expected loss-minimizing choices for a and depend

on the other costs involved, and probably are not equal, so uniform calibration of

error rates across the whole evaluation is simply too naive an approach.

*Assessments of costs, variances, etc. themselves may change during the course

of an evaluation, so a sequential scheme for setting tolerances may be desirable.

This last point brings us to a theory that looks very much like dynamic program-

ming. The study of dynamic programming is beyond the scope of this paper, but it

looks as though it will prove very useful in adaptive evaluation. Dynamic programming

might also help us in deciding how to sequence segments of the evaluation when that

is not forced by the circumstances of the problem. Tolerances could be interpreted

in information theory terms to produce the best design. This is all conjecture,

but enlightened conjecture. Ideas such as these, and other prospects such as taking

tolerance assignments as states for use in Markovian decision processes, will require

much inspection before models for testing may be set up. The configuration of the

sets and the goals involved may be incompatible with the domains of the dynamic theories.

They are brought to mind in order to make this survey more thought-provoking and more

exhaustive.

This concludes our preliminary survey of candidates for methodology to manage

the problem of adaptive switching of time periods in an evaluation. While the

literature seems to lean towards Bayesian methods more and more nowadays, classical

theories should not be dismissed without a fair trial. When we have produced a

set of performance measures, we will be able to compare techniques. But as the
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calculation of performance measures is not likely to be simple for these techniques,

the most promising ones ought to be tapped for further research.
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IV. ADAPTIVE ALLOCATION OF SCARCE RESOURCES

At any particular time during the course of an evaluation, information of

interest might be coming in from a variety of sources. It does not simply walk

in and present itself. It must be actively gathered, requiring the consumption

of scarce information-gathering resources. We desire a scheme for adaptively

allocating these resources to bring in the most needed and most substantial

information we can acquire.

The adaptive allocation of resources problem is strongly reminiscent of

the adaptive switching problem. It looks much as if the latter problem had

been "turned over on its side." Accordingly, we might think to bend what we

have produced for handling adaptive switching to fit the adaptive allocation

problem. However, the difference is more pronounced than that, operationally.

In the former case, only one segment may be measured directly; the rest must

be projected. In the latter, all segments are under investigation at the time

of the decision. In effect, we are performing sequential estimation or testing

on all segments at the same time. While it may seem we must start all over

again in tackling it, the problem does bear a close resemblence to some situations

that well-established statistical techniques have been designed to handle, possibly

making matters much easier for us.

After looking at the nature of the adaptive allocation problem, the first

idea that comes to mind is to call it a Markovian decision process (DP). The

basic principle of this theory is to portray the experimental process as one

of entering and exiting various states. One receives a certain reward upon

entering a particular state. One then chooses an action, exits the state, and

enters a new one randomly according to a probability distribution that is dependent

only on the previous state and the action chosen. For our purposes, the interpre-

tation of "state" would be our state of knowledge collected, the "action" would
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involve the selection of a sampling plan, and the "transition" would be the next

set of data to come in, updating the knowledge profile.

The classification of "reward" in the MDP is the troublesome spot. One of

MDP's most common applications is the "two-armed bandit" problem. A gambler

plays a two-armed slot machine, and can pull only one of the arms on any trial.

Winnings are based on same distribution whose underlying parameter is unknown,

and are dependent on which arm is chosen. The gambler wants to maximize his

winnings over the term of the game. This type of problem, generalized to K arms,

has broad applications in fields such as medicine. MDP theory may be used in

the screening of a set of drugs to find the most effective one.

Markovian decision theory falls short for the adaptive allocation problem

as it now stands. There are two reasons for this. First, the theory is aimed

at selecting only one segment to examine on a particular trial. Second, it is

unclear what we would be trying to find the "best" of. So, we will leave Markovian

decision theory alone for now, and shift gears completely.

Perhaps the most attractive theory for adaptation to the adaptive allocation

of evaluation resources problem is stratified sampling theory. Stratified sampling

is designed to minimize the sample variance of a global mean estimate through

the division of the sampling population into strata. These strata essentially

represent the variations in some characteristic of the population. There should

be little variation in the characteristic within each stratum, and lots of varia-

tion between strata. Substantial reduction in the standard error of the overall

estimate can be achieved through judicious selection of strata. The author

believes that, through careful interpretation and priority setting, stratified

sampling theory can provide all the basic tools for the adaptive allocation

problem.

Strata selection and strata sample size assignment are the two preliminary

tasks which must be performed in stratified sampling. As such, they are the
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most frequent topics treated in the literature. If we were to implement stratified

sampling into adaptive evaluation methodology, we need only concern ourselves with

the second question. A "stratum" may be interpreted as one of the information

sources or groups. For instance, if teachers, administrators, students, and

other citizens are being interviewed during an evaluation, each set of interviewers

may be considered a stratum. This removes the task of organizing the population

into homogeneous groups.

The second problem is almost as easily solved in the general theory, but

there are several catches involved. With respect to certain knowledge and

priorities, there exists an optimal scheme for selecting strata sample sizes.

If the size of stratum h is Nh sampling units, Sh the square root of the true

variance in h, and Ch the cost per observation sampled there, then the number

of units from stratum h to be sampled should be proportional to:

N S

h

Ch

A design of this type will minimize the variance of the overall estimate for a

specified cost, and minimize the cost for a specified variance [3].

This is a very nice result, and very easy to use, but as indicated before,

there are catches. The first is of concern to any who use stratified sampling.

What does one use for true variance, if this is not known? If some sampling

has been conducted already, one might try to use the sample variances. But not

all sampling theorists condone this, especially if only a small number of observa-

tions have been taken. Some prefer an approach where sample sizes are taken more

proportional to stratum sizes, Double sampling can also be applied here, in a

sense. The first sample would establish working sample variance estimates for

use in determining the second sample sizes.

Observe that stratified sampling is not necessarily a sequential technique.

I
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The sample sizes selected are intended to be one-time samples. However, it seems

plausible to extend the double sampling principle of the preceeding paragraph to

a K-stage sampling procedure. Notice, also, that the optimal sample size described

above is specified only in "proportional to" terms. A scaling factor must be injected

into the selection of sample sizes. If there is an overall budget constraint imposed

on the evaluation, the constraint maybe apportioned over the time segments of the

evaluation process. At each decision point, we would work with the budget constraint

for the next period, plus the current knowledge profile, to determine sample sizes

for the next period. The method of apportionment can range from simple to complex:

equal distribution over all periods; distribution according to the "importance"

of the measurement, or some other weighting factor, in each period; even a dynamic

programming-based allocation, possibly with sequential updating. The literature

does not go much further than double sampling insofar as sequential techniques

go. Procedures of this sort will probably demand original research.

Another area in which "importance" becomes significant is in stratum weights.

In a school program evaluation, there might be one hundred times as many citizens

as teachers who might be sampled. Yet we would probably not want to interview one

hundred times as many citizens as teachers, assuming other factors were equal.

The teachers' opinions are probably worth more to us than those of the citizens.

Accordingly, there must be some adjustment to stratum sizes for the importance of

the information coming out of the stratum. This can be incorporated into the

stratum sizes themselves. In fact, Nh is often expressed as Wh, the stratum

weight, in the optimal allocation formula. There is no quantitative difference

here, for this re-expression can be derived by dividing all Nh's by N, the total

population size. We might think to take "stratum weight" more literally, as a

measure of importance. Weights might be assessed by the stratum's participation

in the program, its loss associated with acceptance or rejection of the program,
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or some other relevant factor. It would probably be contingent on the program and

the environment. If such a transformation of stratum weight were made, one must

then be very careful with the meaning of "sample size" and "cost per observation,"

as these quantities are likely to change.

Transformations of this type also bring to mind the final quirk in our adap-

tation. The object of stratified sampling is to estimate some parameter in an

entire population. Strata are employed mainly to reduce the variance of the

estimate. In contrast, we might want to examine each stratum as a distinct

entity. Strata are not introduced by choice, but by the nature of the population

of interest. If this is the case, we must look at the priorities stratified

sampling assumes and see whether the approach is valid. We must articulate our

priorities if stratified sampling does not use them, and design techniques that

will be aware of them. We have to identify these aspects of the analysis we

are trying to control or minimize. This might involve setting tolerances in

error magnitudes and rates. Again, the problem of tolerance assignment is a

critical one, and a key to developing effective adaptive techniques using

classical machinery.

The foregoing arguments are not intended to dismiss any statistical technique

other than stratified sampling from consideration for the adaptive allocation of

resources problem. The characteristics of the problem do seem to match well the

conditions under which stratified sampling operates, however. As stated before,

Markovian decision theory is designed to select the best out of a set of alterna-

tives, rather than to collect information on all groups. That is the main reason

it has been bypassed thus far. Yet the MDP techniques might be put to use in

this problem, if we alter our definitions of the components. Suppose the alterna-

tives consisted of the sampling plans, and the states are all the possible

combinations of numbers to be sampled from each stratum during the next period.

Markovian decision theory might then provide us with a "best sampling plan" for
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the next period. Although stratified sampling might be our basic tool for this

problem, let us not limit ourselves in our set of accessories.

To conclude this section, let us backtrack to the adaptive switching problem.

What if we were to look at it as the adaptive allocation problem, "turned over

on its side?" We might be able to apply assessed variances, costs, and weighting

factors to future periods and synthesize an "N" for the coming sampling day. Of

course, we can only sample from this stratum at this time, where "stratum" no

longer means "sampling group" but "sampling period." This is probably no answer

to the adaptive switching problem, but we should be open to ideas that we generate

through formulation of adaptive allocation techniques.
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V. PROPOSAL FOR FUTURE RESEARCH

The generation of ideas for devising solutions to a problem can be an unending

process; no progress is made until the ideas are fitted to the physical aspect of

the problem, the ill-fitting ones discarded or altered, the promising ones measured

and tailored to meet the needs of the user. That is the current situation of the

classical approach to the formulation of adaptive evaluation methodology. Many

ideas have been presented for handling the problems specified. What is needed

now is one or both of two responses: identification of the more promising

techniques for further development; and/or provision of representative evaluation

cases that can supply a clearer picture of the requirements that the methodology

must measure up to.

There are several main directions in which future research may head. One

of the more favorable ones at this point is in the direction of adaptive allocation

of evaluation resources. The opportunities for methodology development seem more

clearcut in this area, and the possibility was raised that techniques implemented

here might aid us in the development of methodology in adaptive switching times

of an evaluation. Yet it is difficult to evaluate what will work in practice

after the theory is developed. We need some sense of what is actually going to

be out there when it comes time to use the techniques. What is being measured

(in terms of parameters and the distributions they arise from)? What are the

risks (loss functions)? Where do our priorities lie (weights, objects of the

evaluation)? If cases cannot be supplied, we should at least have some guidelines

for handling the questions asked above. Only then can effective, practical techniques

be developed.

Of course, the same questions should be answered even if we were to proceed

right to the adaptive switching problem. But more is needed here. The proliferation

of techniques, with all their pros and cons, makes it difficult to move forward.
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Some thought must be lent to the approaches and the procedures touched on in this

report. It would be desirable to have an evaluation-oriented appraisal of the

subject matter presented, with the top candidates earmarked for further study.

In particular, feedback on the hypothesis test/estimation question, including

comment on the associated loss structures, is necessary. Perhaps we should

continue to look at both themes. The field of classical sequential theory is

simply too wide and too inconclusive for something to appear that is uniquely

well-suited to the problem.

Research in the coming months is thus likely to include a closer look at

the promising techniques and their assumptions, assessed in an evaluation-oriented

context. Also, noting that the development of a set of performance measures for

comparison and selection of techniques is a short-term goal of this project,

characteristics of the techniques will be examined broadly for possible adapta-

tion to performance measures. At this point, two characteristics which have

some potential for this purpose are the Operating Characteristic and Average

Sample Number curves described in Section III. Capsulization of these curves

into a value or set of values for ease of comparison will also be explored. On

a more economic scale, expected loss comes across as a particularly meaningful

candidate, but may require more input than the classical approach normally

allows for. Other ideas for performance measures shall also be invited and

investigated.

One tool that might be employed to assess some of the techniques proposed

is the computer. A small project that has been started would produce a computer

demonstration of the inefficiency of the "always test at 5%'' approach, through

comparison of this and loss-minimizing approaches, and/or simulation. The

prospect of simulation also arises for testing some of the other techniques in

sequential estimation and adaptive allocation. Computer programs would allow

k r
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for the user to specify the parameters of the problem, and provide a wide variety

of results. Computers may also be used to supplement the development of perfor-

mance measures.

The author looks forward to working with Mr. John VandeVate in the coming

months. Mr. VandeVate is exploring Bayesian approaches to the problems handled

in this paper. It is hoped that Bayesian and classical methods may be compared

head-to-head, which may weed out some of the inferior designs and save us from

pointless, time-consuming analysis. Also anticipated from Mr. VandeVate is a

mini-case study that might help to crystallize the salient concerns of adaptive

evaluation research.

� I
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