
rf f < < : : f-- :: :: 00; : 

::-:::~~ :: :-:; :; ,r,,, · :: :-: : :: : ff 00f 

~'I:: : :::·!:i :" ::·- -:::i::: .:: -L I, ; ::.

X ASSACH ;UST-T:': : NSI ';- T
RII;* OSF At EHNTSOOGY I,: S; E:I 

r t -- 0 - o THIN t :::, L

··- · �-
·i

·.� . �· .L-�l

;i
)i i· .1 -·I-·�·-'·

:·

i·
··,··

··'·;·I
i·l

: :

·:
:j·

; 1
i':.·:· ·

·. :



OPTIMAL SERVER LOCATION ON A NETWORK

OPERATING AS AN M/G/1 QUEUE

by

Oded Berman

Richard C. Larson

OR 100-80 July 1980



ABSTRACT

This paper extends Hakimi's one-median problem by embedding it in a general

queueing context. Demands for service that arise solely on the nodes of a network

G occur in time as a Poisson process. A single mobile server resides at a facility

located on G. The server, when available, is dispatched immediately to any demand

that occurs. When a demand finds the server busy with a previous demand, it is

either rejected (model 1) or entered into a queue that is depleted in a first-

come, first-served manner (model 2). It is desired to locate the facility on G

so as to minimize average cost of response, which is either a weighted sum of

mean travel time and cost of rejection (model 1) or the sum of mean queueing delay

and mean travel time. For model 1, one finds that the optimal location reduces

to Hakimi's familiar nodal result. For model 2, nonlinearities in the objective

function can yield an optimal solution that is either at a node or on a link.

Properties of the objective function for model 2 are utilized to develop efficient

finite-step procedures for finding the optimal location.



Ever since Hakimi's work in 1964[1] and 1965,[2] there has been considerable

interest in the problem of optimally locating one or more facilities on a network.

Consideran undirected network G(N L) where N is the-- set o nodes (NI n) and L -is the

set of links, having a fraction hi of all-service demands originate at node iN. (No

demand originates on the links). If d(x,i) is the distance between the facility at xG

and node iN, then the average travel distance associated with a random service

demand is

n
J(x) = Z hi d(x,i).

i=l

Hakimi's "l-median" problem is to locate a facility at a point x G such that for

all xG, J(x*)< J(x). Hakimi showed that an optimal location existed in the node

set N, thus reducing a continuous search to a simple finite one. An analogous result

regarding nodal locations was given for the multi-median problem.

While the median problem exhibits certain mathematically appealing properties,

its implied operational assumptions can be somewhat limiting in practice. In parti-

cular, the median problem incorporates only one of two types of probabilistic

behaviors often seen in applications: it does include the probabilistic spatial

nature of service demands, using h. as the probability that a random service

demand originates at node i; it does not include the probabilistic temporal nature

of service demands, which in certain operating systems can result in service demands

either being rejected ("lost") or placed in queue due to unavailability of the

server associated with the facility. The probability of being rejected or placed

in queue is often far from insignificant: if the server is busy servicing demands

50 percent of the time, and if service demands arrive in time in a Poisson manner,

then 50 percent of the arriving service demands find the server busy and are either

rejected or placed in queue. With the queueing option, the mean in-queue waiting

time is often much larger than the mean travel time, the quantity emphasized in

the median problem. Thus one is motivated to formulate and analyze location
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problems in which temporal as well as spatial uncertainties are incorporated.

In this paper we consider two formulations that add temporal uncertainty to the

Hakimi model in a general and, we think, natural way. We consider the location on

a network of a single facility that garages a mobile server. Service demands occur

at nodes in a random (homogeneous Poisson) manner, and in response to each demand,

the server (if available) travels to the demand to provide on-scene and perhaps

off-scene service. If the server is unavailable at the time of a service demand,

the demand is either lost or entered into a queue that is depleted in a first-in,

first-out (FIFO) manner. From a queueing point of view, the system is an M/G/1

system (meaning Poisson input, general [independent] service times, and a single

server) operating in steady state, with either zero queue capacity (when demands can

become lost) or infinite queue capacity.

For the infinite queue capacity case, the objective is to locate the facility

so that the sum of the mean in-queue delay and mean travel time is minimized. For

the zero queue capacity case, the objective is to minimize an appropriately weighted

sum of mean travel time (for those demands that are serviced) and cost of rejection

(for those that are lost). For both extremes of queue capacity, we find the optimal

location of the facility. For the case of zero queue capacity, we find that the

optimal facility location reduces to Hakimi's familiar nodal result. For the case

of infinite queue capacity, nonlinearities in the objective function can yield an

optimal solution that is either at a node or on a link. Exact finite-step procedures

for finding the optimal location are developed.

I. Problem Definition

Let G(N,L) be an undirected network with node set N (IN=n) and link set L.

Service demands occur exclusively at the nodes, with each node i generating an
n

independent Poisson stream with rate Xhi ( Z h. = 1). Travel distance from point
i=l
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xeG to node iN is d(x,i). Travel distance on link (i,j) is d ij. The distance

required to travel a fraction of link (i,j) is assumed to be dij. In all cases

travel time is equal to.travel distance divided by travel speed v.

A single mobile server is stationed at a facility located at xG. The

server is free or available whenever it is located at x and immediately ready to

service a demand. Given a service demand from node iN, and given that the server

is free, the server is immediately dispatched to node i, incurring a travel time or

travel cost d(x,i)/v. At node there is an on-scene service time R, having mean
_ 2

Ri and second moment Ri < . Following the on-scene service time, there is an

additional travel time (-l) d(x,i)/v, where 8 > 2, followed by an additional off-

scene service time Wi, having mean Wi and second moment Wi < . The total service

time associated with a serviced demand from node i is

Si= d(x,i)/v + Ri + (-1) d(x,i)/v + Wi = f d(x,i)/v + Ri + Wi (1)

The server is busy during any of the four phases of service (see Figure 1). When-

ever a demand is generated and the server is busy servicing a previous demand, the

new demand is either lost (which usually implies service by a back-up service system),

- incurring a travel cost y > 0, or it is entered into a queue that is depleted in a

FIFO manner.

As an example, if =2 the model could represent an ambulance garaged at a

hospital located at xG; d(x,i)/v is the travel time. to a patient at node i; Ri

is the time to stabilize the patient and place him (her) in the ambulance;

d(i,x)/v = d(x,i)/v is the travel time back to the hospital; and W is the

time to deliver the patient to physicians and to prepare the ambulance for the

next service demand. If the system has zero queue capacity, here y might

represent the travel time required for a back-up server (perhaps in an adjacent
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Total service time = Si

travel time on-scene follow-up off-scene
to the scene service travel time service

time time

<+--d(x,i)/v~ --Ri >lf-($-l)d(x,i)/v i )time

Service
demand
occurs
from
node ni

Figure 1: Time Sequence for a Demand for Service

community) to reach any patient who demanded service while the primary ambulance

was busy. Values of greater than 2 could result if speed back to the hospital

were necessarily slower than the rapid speed of initial response and/or if the

return route followed other than a minimum distance path, but a path proportional

in length to d(x,i).

To simplify notation, we define and R as the mean and variance,

respectively, of the nontravel-related service time. Clearly,

n

E hi (Ri+ W) (2)
i=l

2 n - - n 2 n -2aW =E hj (R + W 4 )-( h - h h j ) . (3)
j=l J=l j=l 

In the following we utilize Little's queueing formula , which when applied

to a single server, states that Nc = 'S, where

Nc average number of customers (i.e., service demands) being served

by the server at a random time
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S _ average service time

X'- time-average rate at which potential customers are accepted

into service ( excludes rejected customers).

Since only 0 or 1 customer can be with the server at any time, N = p = fraction

of time that the server is busy = system utilization factor < 1. Hence,

p - Xt S, (4)

II, The Case of Lost Demands (Model 1)

We consider first the relatively easy situation in which no queueing is

allowed. Define

p(x) = average fraction of time that the server is busy, given that

it is located at xG when free.

Since demands are Poisson, a fraction (l-p(x)) of demands find the server free

and are thus serviced by the server, and a fraction p(x) find it busy and are--

thus lost, incurring a cost y > 0. The expected cost of travel for a random

demand is

n
J(x) = (l-p(x)) Z hi d(x,i)/v + p(x) y (5)

i=l

We wish to find x G such that for all XEG, J(x ) <J(x). The location x could

be called a stochastic loss median. The term "loss" is appropriate since the

service system is an M/G/l loss queue, i.e., customers who arrive when the

server is busy are lost and handled by a back-up system.

Theorem 1 There exists at least one node of G which is a stochastic loss median,

and that node corresponds to the Hakimi median.

Proof Applying Little's formula to the server located at xG, p(x) = '(x) (x),



where X"(x) = average rate at which the server accepts service demands and S(x) =

expected total service time of a random serviced demand. Due to Poisson arrivals,

X'(x) = X(l-p(x)). Hence, p(x) = S(x)/[l+XS(x)]. Now, S(x) = 8 t(x) + ac, where
n

t(x)m=- Z hi d(x,i) = average travel time to a random service demand and > 0
i=l 

is given in (2). Simple substitution into (5) yields J(x) = [ya + t(x) (1 + XyS)]/

[1 + ay + t(x)SX]. It is easily verified that aJ(x)/a(t(x)) > 0 for all t(x)>O and

thus J(x) increases strictly monotonically with t(x). Hence J(x) is minimized by

minimizing t(x). But by Hakimi's proof El[], t(x) is minimized at a node and that

node is the Hakimi median.

III. The Case of Queued Demands (Model 2)

We now consider the more difficult case in which demands that occur when

the server is busy are entered into a queue that is depleted in a FIFO manner.

We use the same notation as in Sections I and II with the additional convention

that the facility is assumed to be located on a link connecting nodes a and b

at a distance x from node a (Figure 2).

location of the service facility

Figure 2: Possible Link Location of the Facility

Let be the length of link (a,b) and let d(i,j) be the shortest distance

between nodes i,j N. The mean and the variance of the service time are readily

computed,

E[S(x)] - S(x) = ct +_ [ E hj min' x+d(a,j); (Z-x) + d(b,j)}] 6(a)
j=l
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2 n
VAR[Sh(x)] (a2 2S(x) S(x)]h min (x+d(a,j)) ; ((Z-x) + d(b,j)) 6(b)S v j=l 

n 2
- [ Z h min {x+d(a,j); (Z-x) + d(b,j)}]2} + 2+

j=l 

where a+W is given in (3) and where we have assumed that the travel time and
R+W

the two nontravel time components of service time are statistically independent.

In Equation (6) we have taken into account the fact that, given a service demand

from node j,there are two alternatives for the service unit to travel to node j:

(i) travel first to node a and then proceed to node j; (ii) travel first to

node b and then proceed to node j.

Given facility location x, the expected response time TR(x) associated

with a random service demand is the sum of the mean in-queue delay W (x) and

the expected travel time t(x). Since the stochastic system is a single server

queue having Poisson input and general independent service times (i.e., an

M/G/1 queue), it is well known that

W (x) for S(x) < 1

(7)

for XS(x) > 1

Hence, for S(x) < 1,

TR(x) = Wq(x) + tT(x)

- 2 2 n
S(x)2 2S(x) + 1 [ Z h. min {x+d(a,j); (-x) + d(b,j)}i (8)

2(1 - XS(x)) v j=1

The objective is to find x E [a,b], [a,b] L, such that

TR(x) < TR(X) V x (a',b') (a',b')6L (9)

Here location x could be called a stochastic queue median.
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3.1. The Expected Response Time TR(x)

We start by simplifying the expression for TR(x) in (8). Let us partition

the node set N into two disjoint sets A and B:

A = ; x+d(a,j) < (-x) + d(b,j)}; B = N-A,

where x is again the distance of the facility from node a on link (a,b). Using

these sets we can rewrite S(x) in (2) as

S(x) = v [ Z h. (x+d(a,j)) + hj ((Z-x) + d(b,j))].
jEA jB

In a similar manner we can rewrite S(x) and TR(x). After

manipulations, TR(x), when finite, can be rewritten as

v 2C + 2 ± x 2
TR(X) f%[ + (C x + C2)] 2 (C x v (C x+ C2 ]

2{- [a + - (C x + C )]}2{l ~ v 1 

C4 x

some algebraic

+ C5 (C1 x + C2)
2 ]+x\R+W

+ (C1 x + C2)v 1 2
(10)

where

C1 = h. - Z h.
1 j&A J jB 

C2 = h.
jEA E

d(a,j) + Z h.
jB J

(g+d(b,j))

C3 = Z h. + Z h = 1
jsA J joB J

= 2{ Z h. d(a,j) - Z h.
jzA J j£B J

(k+d (b, j)) 

C5 = Z h.
jcA j

(d(a,j)) + h.
jB J

(Z+d(b,j)) 2

C4



Further simplification of (10) yields

2
(x)- alx +a2x + a 3TR(x) = 1 2 3

a 4 x + a 5

where

al = (- 2 C1 ) X
1 i ) -v

a = -2C1 a X B C4
2 - + -

v 2

4 C- C X4 .C1
2

V

2 C 2a$C1
+ +

V V

a 3 = C 2 2 -C2a 3 [l C 5 2 C C2 + v
v

a 4

[l-.cr X+- ].+. X:C2 + R+ ]

-2aXC1
_ . .

v

2 X C2
a 5 = 2- 2 XkC- v

5 ~~~v

Let us observe again the expression for TR(x) in (11).

the link (a,b) the sets A and B may change and hence the

C5 and consequently the parameters al, a2, a3, a4 and a5

example we can refer to the simple network in Figure 3.

links are the lengths of the corresponding links. It is

When changing x along

parameters C1, C 2, C4,

may change. As an

The numbers near the

easy to verify by inspection

x

An Example For Showing Changes In The Sets A And B

-9-

(11)

_ ---- v-

Figure 3:
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that as long as x < 2, A = {a,c} and B = {b}, but when x > 2, A = {a} and B = {b,c}.

Let us designate as break points all the points on G(N,L) at which the sets

A and B change (eg. x = 2 in Figure 3). We now can state some properties of TR(x).

Property I. The parameters C2 and C are non-negative, with C > C 2 since
5 5 2 

(C5-C2 ) is the variance of the travel time from node a to a random

service demand.

Property 2. al > 0; sgn () =-sgn(a4); C1 = 0 implies a4 = 0.

Property 3. If XS(x) = p(x) < 1, a4 x + a5 > 0, since a4 x + a5 = 2(1-p(x)).

Property 4. a x + 2 + a3>0, since x is real and for p(x)<l 1, a x2 + a2x

+ a3 = 2(1-p(x)) t(x) + X S (x) > 0.

Property 5. a > 0, since for > 2 (0 C -2C2
2) > 0 [Prop. 1] and the other

terms-In a3 are- non-negative.

Property 6. As long as p(x) < 1, TR(x) is a continuous piece-wise differentiable

function of x. The only points of nondifferentiability are at the

breakpoints (which are finite in number), at which the left and

right derivatives exist (and are not equal).

The above properties lead to

Lemma 1. -or any interval on link (a, b) on which T (x) is finite and

differentiable with respect to x (but not including the two

points that bound the interval), TR(x) is convex.

Proof. If a4 = 0, TR() = al x + a2 x + a3, and since a1 > 0 [Prop. 2],

TR(x) is clearly convex. If a4 # 0, TR(x) can be written as
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2 2
al a a4 -a a a a a4 - a a a5+ a
a- x + + 2
a4 a4 a4 (a4 x + a5)

2
2 2 a2 2 a1 a2 42a-

But a3 a42 - a2 4 a5 + a a5 a3 [(a4 2a3 5 3 4a)2 5

3 32 2since [Prop. 5] a3 > O and since al a2 4al a3 -a2 > 
"3 4a3 4a 2

because [Prop. 4] a x + a2 x + a3 has no real roots. Hence TR(x) is a

sum of convex functions and is therefore convex. U

The conclusion of lemma 1 is that given any interval [x,x 2 ] where x and

x2 are adjacent breakpoints [TR(x) is finite and differentiable on (x1,x2)], if

the right derivative of TR(x) at x = x is negative and the left derivative at

x = x2 is positive then TR(x) has a local minimum over (x1, x2); otherwise the

minimum of TR(x) over [x1,x2] is either at x or at x2. One minor complication

involves the possibility that TR(x) = + - for some or all x[xl,x2], where x 1

and x2 are adjacent breakpoints. Recall that TR(x) = + - only if XS(x) > 1.

Concavity of S(x) along a link implies that the set {x£[xl,x2]: AS(x)> 1} is

compact and contains either x1 or x2 or both. These are all key facts for the

algorithm given on Section 3.4.

3.2. Finding a Local Optimum

When TR(x) has a local minimum over an interval (x,x 2), that minimum can

be calculated analytically. There are two cases:

· · . ., . . ·

Case 1: C1 ~ 0. Then

2
Xmi n =- b2 + b2 - 4b1 b3

2b1 (12)(a)
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where

b =a a a4

b2 2a1 a5

b3 = a2 a5 - a3 a4

Case 2: C1 = O. Then

xmi n = - a2/2a1 (12) (b)

3.3 Finding the Breakpoints

The algorithm to be presented in Section 3.4 requires identification of all

the breakpoints for each link (a, b) L. If we consider again the mobile

server located a distance x from node a on link (a, b) and a service demand

at node jeN, obviously the server will travel to node j via node a as long as

~ d(b,j) - d(a,j) + 
2

A breakpoint occurs at that value of x for which (13) becomes an equality.

We now describe a method to identify all the breakpoints for some link

(a, b) sL.

Step 1. For each jN calculate

c(j) = d(b,j) - d(a,j) + 

Step 2. Sort in ascending order the vector c-(c(l), c(2),...,c(n)). Call

the sorted vector cc.

Step 3. The set of all breakpoints, denoted BP (ordered by their distance

from node a),is the set composed of all the distinct components of

the vector cc. [If the triangle inequality holds, BP will always

include 0 and ].

L3)1 
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As an example we can use the method above for link (2,3) in Figure 4 (the

numbers near the links are the link lengths). Here (a,b) = (2,3) and = 3.

Following Step 1 we obtain c = (2,3,0,2,0), so cc = (0,0,2,2,3),

5 4

Figure 4: An Example for Finding Breakpoints

and the set of all breakpoints is BP = { 0,2,3 }.

3.4. An Algorithm for Finding the Optimal Location

Building on the local convexity of TR(x) and the method for finding break-

points, we are now ready to specify a finite-step algorithm for finding the

optimal location x . For any differentiable function f(x) define the right

derivative of f(x) as

lif(x) - f(x +Axl)
f (x) = lim A

Ax + 0

and the left derivatiVe of f(x) as

f (x) lim f(x - Ax ) - f(x)
Axt

Ax -'0

In the following algorithm, TR is a running value for minimum mean response

time, and (a,b) and x denote the link and location on the link that yield that

value. The algorithm is as follows:
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_ ,

Step 1. Set TR = X (M-very large)

Step 2. Take any link (a,b) L and calculate the set of all breakpoints. Say

that the power of this set BP is m+:, so that there are m intervals in

which TR(x) is differentiable.
R

Step 3. Set I = 1.

Step 4. Set y Ith entry in BP

Set z = I + St entry in BP

Calculate TR(y), T(z), T (Y) T(Z)

If TR(y) = + - and TR(z) = + A, I I+ 1 and return to the beginning

of Step 4.

If TR(y) = + and TR+(z) > 0, Go to Step 5.

If TR +(y) < O and TR(Z) =+ , go to Step 5.

If TR +(y) < 0 and TR +(z) > 0, go to Step 5.

Otherwise compare TR(y) and TR(z) to TR . If either TR() or TR(Z)

is less than TR , update TR with new minimum and set x = y or z

(whichever yields the lower TR) and (a,b) = (a,b).

Step 5. Calculate the local minimum Xmin of TR over (y,z) using Equation (12).

-- o * *
If TR (min) < TR update TR and record new incumbent x - xmin, (a,b) -

(a,b).

Step 6. If I < m, I + I + 1 and go to Step 4. Otherwise remove (a,b) from L;

if there are links remaining in L go to Step 2. Otherwise FINISH.

The optimal location is x on link (a,b) , yielding a minimum mean

travel time TR(x ).
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4. Trajectory of the Optimal Location as a function of X

In this section we examine how x varies as we vary the total demand rate

X continuously from 0 to a maximum possible value. The properties of this

trajectory of optimal locations can be used to make the algorithm for finding

*
x much more efficient.

Lemma 2. (a) when X = 0+ x is the Hakimi median of G(N,L).

(b) when X + X , x + the Hakimi median of G(N,L), where X
max max

is such that for some x G(N,L), S(x) = = 1, and for all x'C

G(N,L), XS(x') > 1. (i.e., A is the smallest value of X for
- max

which the queue explodes for all possible server locations)

Proof (a) when = 0+, W = 0, so that TR is the expected travel time to a

random service demand, given by the weighted sum in (8), which is

the objective function to the Hakimi median problem. Thus x = 0+

= median of G(N,L).

(b) max is the largest X such that 3xE G(N,L) such that for this x, callmax

it x°, X S(x°) = 1. Regardless of server location, any higher
max

values of would yield p > 1. By definition of X , for any
max

X = m -£ (E > 0),2x c G(N,L) with AS(x ) < 1 and thus (x ( ) < o.
max

It is-sufficient to show that for small, x = Hakimi median of

G(N,L). But minimization of TR(x) for values of X near X ( <A )
R max max

corresponds to maximization of the (positive) denominator of (11)

(which equals a4 x + a5 = 2[1 - AS(x)]), or equivalently to the

minimization of S(x). But

min m

= (ab)L j+ Z h. {x+d(a,j); (-x) + d(b,j)}

xE(a,b)

which is minimized at x = Hakimi median of G(N,L). M
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This lemma says that the trajectory of the optimal location x (X) starts at

the median when X = 0 and eventually returns to the median as X approaches X
max

Examining again the expression for TR(x) in (8), we have seen that mean travel

time t(x) dominates the solution for low values of X and the denominator of (7)

dominates for high values of X.

Both intuition and computational experience have verified that for inter-
2 2 2

mediate values of X the numerator of Wq (x), which equals AS(x)2 + XC(x) = X 2(x),

can play a dominant role in determining x . In other words, the second moment of

the service time becomes an important factor for intermediate X values, whereas

the mean service time is much more important for extreme X values.

While we will formally investigate properties of S2(x) in the next section,

it is instructive here to illustrate typical trajectories of x . Example a

utilizes the network presented earlier in Figure 4 with h = 0.1, h2= 0.35,

2 2
h= 0.1, h = 0.35, h = 0.1, a = v = 1, aR aW 0-. For each possible nodal

location of the facility, the associated expected travel time and second moment.

of the service time is shown in Table 1.

Table 1. Expected Travel Times and Second Moments for Example a

The computed trajectory of optimal facility locations is shown in Table 2. In

this example, x (X) starts at the median for small X and then moves continuously

toward node 4 on link (2,4) [S2 becomes smaller as one moves away from node 2 in

Node i
(Location of 1 2 3 4 5
facility)

t 3.25 2.85 3.75 3.15 4.15

E[S ] 81.7 71 87 79 112.6
. , . .... _
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(2.4), although at some intermediate point it begins increasing again]. The

maximum value for x (X) in (2.4) is approximately x (0.07) = 1.63, and for

X values greater than 0.07 x*(X) moves continuously back toward to the median

along the same path.

X Optimal Location, x (X) TR

0 Node 2 2.85

0.01 Node 2 3.23

0.02 x = 0.8871 on (a,b) =(2,4) 3.63

0.03 x 1.286 on (a,b)== (2,4) 4.05

0.04 x 1.471 on (a,b) = (2,4) 4.555

0.05 x = 1.568 on (a,b) = (2,4) 5.153

0.06 x = 1.614 on (a,b) = (2,4) 5.893

0.07 x - 1.627 on (a,b) = (2,4) 6.838

0.08 x - 1.609 on (a,b) = (2,4) 8.086

0.09 x - 1.557 on (a,b) = (2,4) 9.809

0.10 x = 1.457 on (a,b) = (2,4) 12.332

0.11 x = 1.278 on (a,b) - (2,4) 16.344

0.12 x = 0.934 on (a,b) = (2,4) 23.525

0.13 x = 0.172 on (a,b) = (2,4) 38.551

0.14 Node 2 83.011

Table 2 Trajectory of Optimal Facility Locations for Example a

Example b utilizes the same network as Example a with only the h's changed:

h1 = 0.35, h2 = 0.1, h3 = 0, h h4 = 0.125 and h5 = 0.125. Table 3 contains the

expected travel times and second moments of service times for the five possible

nodal facility locations. The computed optimal trajectory x (X) is shown in

Table 4.
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Expected Travel Times and Second Moments for Example b

. -..
. .. .... .. ..

:· . .-; . ;·

Node i
(Location of
Facility) 1 2 3 4 5

tr 2.2 2.75 2.25 4.65 4.25

E[S2] 51 61.2 45.2 125.2 109.2

I-~~~~~~~~~~~~~~~~~~~~~~~~~~ ._- I .........

Table 3.
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X Optimal Location, x (X) TR

0.01 Node 1 2.464

0.015 Node 1 2.616

0.02 Node 3 2.757

0.05 Node 3 3.808

0.06 Node 3 4.273

0.08 Node 3 5.478

0.11 Node 3 8.543

0.13 Node 3 12.558

0.15 Node 3 21.621

0.158 Node 3 29.508

0.160 Node 1 32.2

Table 4 Trajectory of Optimal Facility Locations for Example b

As indicated in Table 4,4x ()_ starts at the median (node 1), then jumps to

node 3 for intermediate values of X then jumps back to node 1 for X near Xax

Examples a and b are typical of our computational experience: either

continuous movement of x along a link or discontinuous jumps from node to

node. We have also generated examples having both features: a discontinuous

jump to another'node, followed by continuous movement away from that node

along an adjoining link; in such a case, x reaches a maximum value along

the link,-. then moves continupously back to the node, then discontinuously back

along the earlier node-to-node path, eventually returning to the median for

Xnear max Computationally we have observed that (1) the trajectory of

the optimal solution is unique in the sense that the optimal solution moves

to a certain point and returns in exactly the same way; (2) the trajectory
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away from the median always goes through nodes with decreasing second mo-

ments of the service time. In the next section we use these observations

to develop an efficient heuristic to solve the problem.

5. A Heuristic for Finding the Optimal Location

The heuristic we outline here has one major advantage over the exact

algorithm presented in Section 3.4: with the heuristic we do not have to

consider all the links of the network but only those links that lie on an

"assumed feasible trajectory" of the optimal solution. We note that in

all the numerical examples we have examined so far, the solution obtained

by the heuristic and the optimal solution obtained by the exact algorithm

are identical.

Before presenting the heuristic, it is useful to note some relationships

2
pertaining to the computation of S(x) . We can simplify the expression for

S(x) given in the numerator of (10) as follows:

2 B22 2 2C 1 2C5 2 2aC2

S(x) 2 2 x + 2 + v] x + [ 2 + v + 2 + W] (14)2V 2 v R+W
v v v

For x = 0, or equivalently, for the facility at node a N,

2C 2cC 2 2 2
s(0)2 = [ 5 +2 + 

2 v R+W (15)

Also-for x = 0, we have

m
C2 = Z h. d(a,j) (a)

j=l J

m
C5 Z h. d(a,j) (b) (16)

j=l 
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Hence, for x = 0, C2 and C5 are respectively the expectation and second moment

2
of the travel time from node a. When it exists, the derivative of S(x) with

respect to x is readily computed,

2- 2 2 4 2$cC
dS(x) 282x 4 +dx 2 + 2 + 1 . (17)dx- 2 + v

v v

The heuristic is as follows:

Step 1 Start at the Hakimi median of G(N,L). Using (15) calculate the second

moment of the service time at the median, denoting it C. and labelling

the median.

Step 2. For all unlabelled nodes i connected directly by a link to a labelled

node, compute S(i) (i.e., the second moment of the service time evalu-

ated at node i). If S(i) 2 > V i go to Step 3. If 3i with S(i )

* *2
< label node i , set O- = S(i )2 and repeat Step 2.

Step 3. Call the last labelled node i . Examine the set NL of all the unlabelled

nodes i connected directly by a link to node i . Apply the exact algo-

rithm of Section 3.4 to the sub-network that includes: all links in

the path to i that goes through labelled nodes; all the nodes in the

set NL and all the links that connect directly the nodes of NL with

the last labelled node.

As an example of the heuristic let us consider again Example b. Inspection

of Table 3 implies that. the sub-network for the heuristic is that shown in Figure

: 5. Hence, -the exact aigorithm need Se appiied onil to this 2-link, 3-node sub-

network.
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The Sub-Network forFigure 5.

r~~~~~~~ .;. . , 4 . ... : .. ~ ~ ~ ~ ~ · ·
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6. An Efficient Exact Algorithm for a Tree Network

In this section we show that when the network is a tree, a modified version

of the heuristic of the previous section is in fact an exact algorithm.

We start with very simple

Lemma 3. When G(N,L) is a tree, for each link (a,b) there are only two break-

points which are a and b (or, equivalently, x = 0 and x = 4).

The proof is trivial, but the implication is that breakpoints do not have to

be calculated and the parameters C1, C2 , C4 and C5 remain constant for all

xe (a,b).

The basis for the efficient tree algorithm is given by

Theorem 2. Suppose i and are two nodes connected directly by a link, and

suppose S(i) < S(j) . Then V x (j,k), ki, where x is a point

2 2
on link (j,k) a distance x from node j, S(j) < S(x) .

Proof. Letting d be the length of link (i,) and using (14), (15) and

2 2
Lemma 3, S(i)2 < S(j)2 implies

2 c½ 4 c2
5 2 +C 2 2 2 [cC

2 +R+W v2 di + 2 + v di

3 2c+ 2BaCC + 2
+ [ + a OR+W

2 +

which implies.that a test quantity be positive:
· *.

Ed $CT 2aC'
j AC -4 + > 0,

2 2 vv v

where C4 and C1 are the relevant parameters C and C1 for (i,j). Let x be a

point on (j,k), xij and suppose by contradiction S(j)2 > S(x)2. But then in
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the same manner as above

2 + - + > 0,
v V

where C and C are the relevant parameters C1 and C4 for (j,k). Let A(i,j) =

~I:ZN; d(i,Z) + d d(j,Z) and let B(i,j) = N - A(i,j). Given G(N,L) is aii -

tree, it is easy to verify that for a facility at node ,A(i,j) and B(i,j) are

the sets A and B defined in Section 3.1. For link (j,k) with length djk we

define for a facility at node k,A(j,k) = {LEN: d(j,L) + djk < d(k,Q} and

B(J,k) = N- A(j,k). Recalling (10) we can write

C4 2 hz d(j,Q) - 2 h I [d(k,Z) + dk].
4eA(j ,k) EB (j ,k)

But for a tree A(j,k)- } = A(i,j) and B(j,k) U (j = B(i,j), and for QEB(j,k),

d(k,Q) + d d QZ), so0 that C-. 2[ . h d,Z) + h. d(j,j--)]

-2[ £ hi d(j,Z) -hi d(j,j)]. Also for ,e:A(i,j), d(j,Z) = dij + d(i,Z) so
ZsB(i,j)

we can write C" C + 2 E h di + 2 h 
LA(i,j) eBdi; (i,j) di 2 d

Also, C = h - h = h + h. -( h - h.
ZEA(j,k) QZB (j,k) ZA(i,j) J e£B(i,j)

= C' + 2h..

Therefore the test quantity can be written

* . - .C .. .. _

S ;; . * . ,. . ., ! * , . , * * ' -

2aC' $ (C + 2d,.) 2a(C1 +2h.)x _4 3
2 2 v 2 2 v

v v v v

._ 8d 4Cth)4ahd.. aC' 2aC'
X + 1 + + + 1
2+- 2 v + 2 2 v

v v v v
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which must be positive since the first expression in parameters contains only

positive quantities and the second is a test quantity already proved positive.

But this is a contradiction to S() 2 > S(x)2 .

This theorem provides us with valuable information about the trajectory

of optimal facility locations on a tree. For any two nodes i,j of link (i,j)

such that S(i)2 < S(j)2 , any trajectory that enters j with increasing X must

exit j along link (i,J) toward node i.

Thus the heuristic presented in the previous section is an exact algorithm

for the tree. In other words, a sub-tree containing the exact trajectory of

optimal facility locations is obtained. Step 3 of the heuristic (now the

algorithm) can be modified:

*
Call the last labelled node i . Examine the set NL of all the unlabelled

nodes i connected directly by a link to node i . Compute the test quantity

$2c4 1 2
( + ), which is the right derivative of S(x) evaluated at node i
V 

(or x = O) [Eq. (17)j. If the test quantity is positive remove node i from

the set NL. If the quantity is negative label node i and apply the algorithm

of Section 3.4 to the path that starts at the median and goes through all the

labelled nodes,

Let us apply this new algorithm to the single tree shown in Figure 6, where

the numbers near the nodes are the weights (hi) and the numbers near the links

are lengths. The expected travel times and second moments of the service times

for each posibe nodal location are shown in Table 5. *(v = a - I ; + = 0) -
R+W



Figure 6.
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Table 5. Expected Travel Times and Second Moments for Tree Example

The algorithm operates as follows:

Step 1. The median is node 2. S(2) = 84.86 - O. Node 2 is labelled.

2 2
Step 2. S(3)2 96.8 S(S(1) = 67.50. Node 1 is labelled and a = 67.50.

Step 2. S(4) 2 = 56.62. Node 4 is labelled and 0 = 56.62.

2 2Step 2. S(10)2 = 105.108. S(5)2 = 75.10.

Step 3. For link 4,5) cl = 0.277, c4 3.192 so that

62C4 2ctC
.t4 + 1) > 0. For link (4,10) C 0.888, C 12.54 and

$ C4 2'aC1
·2 + v 1
2 + > 0.

v

Node i
(Location of
Facility) 1 2 3 4 5 6 7 8 9 10

tT 6.30 6.17 6.37 6.67 7.80 9.77 15.13 9.05 10.19 9.36

E[S 67.50 84.86 96.81 56.62 75.10 112.18 256.45 125.92 163.84 105.108

,~~ ._
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Therefore we need to apply the algorithm of Section 3.4 only to the path

2-1-4. When X = 0.01, for example, the optimal location is x - 0.584 on

link (1,4) and TR = 7.869.

r. ~ ~~· .. . .. 
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