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ABSTRACT

This paper considers the optimal location of p facilities in the plane, under

the assmumption that all travel occurs according to the L1 (or rectilinear or

Manhattan) metric in the presence of impenetrable polygonal barriers to travel.

Facility users are distributed over a finite set of demand points, with the

weight of each point proportional to its demand intensity. Each demand point

is assigned to the closest facility. The objective is to locate facilities so

as to minimize average L travel distance to a random demand. It is shown that

an optimal set of facility locations can be drawn from a finite set of candidate

points, all of which are easy to determine.
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Determining the locations of p facilities in a network or space so as to

minimize the average distance between facilities and users is commonly called

the p-median problem (p-1,2,3,...). Due to its wide applicability, the p-median

problem has enjoyed much attention from the operations research and transpor-

tation science communities during the last two decades.

A primary concern of p-median research has been to reduce the size of the

set of feasible locations one must consider in seeking the optimal solution.

When the entire problem is restricted to a given network, with users located

only at nodes,, Hakimi in 1964 showed that an optimal solution to the p-median

problem exists on the nodes. This result reduced the problem of continuous

search to a combinatorial one. As a consequence there are now several solution

procedures, exact as well as approximate, for the network-constrained p-median

problem.

In this paper we examine the p-median problem in two-dimensional Euclidean

space having fixed polygonal barriers to travel, under the assumption that all

travel occurs according to the L1 (rectilinear right-angle, or Manhattan) metric.

The problem is motivated from urban applications, in which the L1 metric is

often a reasonable approximation to travel behavior and in which lakes, parks,

cemeteries, rivers, etc. provide impenetrable barriers to travel. There are

other potential applications, such as in printed circuit board design, facili-

ties layout, and routing of power lines. The problem is to locate p facilities

in the plane (not in the barriers) so as to minimize average distance between

facilities and users (who are assumed to be distributed among a finite number

of demand points). The analysis is facilitated by recent results by Larson and

Li [8] regarding shortest L1 paths in the presence of barriers.

In related work, Francis and White [4] showed for the L1 metric in the

absence of barriers that an optimal solution exists at points (x r,Yq), where
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(xrYr) and (xqyq) are user demand points. They present a linear progrn-,ng

formulation for the problem, relying on the fact that the problem can be divided

into two independent subproblems, an x-problem and a y-problem.

No result like Hakimits (or Francis and White's) exists for the L2 metric.

Our primary result in this paper is the following: an optimal solution to

the.stated p-median problem (in the plane, in the presence of barriers, with

the L1 metric) exists on a finite set of candidate points. The candidate points

can be determined by inspection. Thus, as with the original Hakimi result, the

search for an optimum is reduced to a combinatorial one.

I. -Problem Formulation

We consider a set of user demand points D and a set of barriers vertices V.

The set of fixed nodes is N - D U V, with-node i N having coordinates (Xi,Yi). The

set of (x,y) points contained within barrier j is B. with B - U B representing

the set through which travel is forbidden. Feasible facility locations are drawn

from F - R2 - B, with (x(k), y(k)) denoting the location of facility k and X =

[(x(l), y(l)),..., (x(k), y(k)),..., (x(p), y(p))] being a feasible set of facility

locations, (x(k), y(k)) F for all k = 1,...,p.

We let dij be the minimal feasible L1 distance between nodes i and j, and

d(i,X) is the distance between a demand point i and the closest of the facilities

located in X, (closeness is measured according to minimal length feasible L

travel paths). The weight of node i is wi, where w i > O w i 1.

For a given X, the average travel distance between a random demand point and its

closest facility is:

J (X)= z w. d(j,X).
J J *

Our problem is to find feasible X such that for all feasible X, J(X ) <J (X).

X is the optimum set of p median locations for our problem.



II. Formation of a Grid

Consider the smallest rectangle which encloses all fixed nodes, (i.e., user

demand points and barrier vertices) as shown in Figure 1. A grid is then formed

by passing lines parallel to the X and Y axes through all nodes, without penetrating

a barrier or leaving the rectangle '(Figure 2); these lines are called node traversal

lines.

We call each polygon in the grid which is not a barrier, a "cell." A vertex

of cell is called a "corner" to differentiate it from a fixed node (of course, any

given point may be both a cell corner and a fixed node). An edge or boundary of a

cell is called a "wall."

Some properties of the grid and cells are as follows:

1. Any horizontal or vertical line in the grid passes through a

fixed node, Any line segment in the grid which is neither

vertical nor horizontal is a part of a barrier edge,

e2. A corner has coordinates of the form (Xi, Y) or (X.,y ) or

(xeY.) where (Xiy ) and (xe,y) denote points on some edge e

of a barrier.

3. If the coordinates of a corner are of form (Xi,ye) (or (xe,Yj))

we can assume that barrier edge e is neither horizontal nor

vertical.

4. For a given vertical (or horizontal) wall of a cell, the two

endpoints of the wall cannot be of the form (Xi,y ), (Xiy )

[or of the form (xe,Yj), (x ,YJ)]. That is, wall endpoints

cannot both terminate on barrier edges. (For instance, a
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User demand point'

Smallest rectangle enclosing all nodes

The grid and the cells

Figure 1:

Figure 2:
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vertical wall having one endpoint (Xi,y e) must pass through

fixed node i before intersecting some other barrier edge ,

thus terminating the wall prior to intersection with edge ).

We want to show that an optimal solution to the p-median problem exists only at

grid corners (Xi,Y ). This will be proved in several steps. First we will show

that a solution on the walls of cells cannot do worse than a solution in the

interior of a cell. Next we will show that corners cannot do worse than other

points on the walls. Finally, we will show that a facility at a corner (Xi,ye)

can be moved to some corner (Xm,Yn ) without deteriorating the solution.

III. A Network Formulation:

Before proceeding to a network formulation, it is necessary to present a

few definitions and results from Larson and Li [8].

i) A stair-case path between (Xi,Y ) and (X ,Yj) is an L path having

length iXi - jI + IYi- Y j

ii) Two points are said to communicate if there is at least one stair-

case path between them, i.e, the shortest path between them is not

made any longer by the barriers.

iii) Two points are said to communicate simply if they satisfy any of

three criteria defined in [8]. One of the three criteria that

occurs in our work is that the node traversal lines through the

points intersect.

iv) "Path-Push and Amalgamation" is a procedure which operates on any
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staircase path between nodes i and j to obtain a new equal-length

staircase path i-nl-n2... nm-j where nl,... ,nm N and (i,nl),

(ni,n2),... (nM,j) are pairs of simply communicating nodes. The

new path is called a nodal path.

Consider any feasible solution to the given p-median problem, with facility

k located at (x(k),y(k)). In computing minimal feasible L1 distances between

facility k and each of the demand points, Larson and Li use "path-push and

amalgamation" to show that the original problem in R2 can be reduced to a

network problem. The network associated with facility k is a tree T(N',A),

with N' being the set of nodes N U (x(k),y(k)), A being a set of arcs between

simply communicating nodes in N', and (x(k),y(k)) being the root node.

Our results rely on a modification to T(N*,A). First, we restrict our

attention to the subtree TtT containing only demand. points.that are allocated

to facility k, where demand-point j is said to be allocated to facility k, if it:

is closer to facility k than to any other facility. Second, if some demand point

in the subtree (say j) does not simply communicate with facility k (i.e., it is

not accessible to k via a single link in the subtree), we add its weight wj to

another node q where i) node q simply communicates with facility k and ii) node

q lies on a shortest path from node j to facility k. The subtree implied by

the Larson/Li results guarantees the existence of such a node q. The geometries

of an original problem and the associated modified problem are illustrated in

Figures 3, 4.
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weig

Figure 3: The original demand allocations to facility k

w3

+ w5

The modified demand allocations to facility k

5

Figure 4:



With the modified problem (Figure 4), all demand to be served by a facility

is generated from nodes that simply communicate with the facility. In fact, it

can easily be seen that these nodes, called collection points for facility k,

simply communicate with all points on the cell containing the facility. So

for any set of locations of facilities every demand point in the original

problem (Figure 3) has an associated facility-specific collection point, which

acts as a representative demand point in the modified problem. The corresponding

modified Larson/Li tree contains no nodes not adjacent to the root node at (x(k),

y(k)).

Suppose (x°(k),y°(k)) is the position of facility k in a certain feasible

solution set X. The solution obviously consists of optimal assignments (of

demand points to facilities) and optimal nodal paths. Now suppose that by

moving facility k to (xl(k),yl(k)) an improvement in the objective function

J of c units (where-c>O) is achieved in the corresponding modified problem.

Then an improvement of at least c units is achieved in the original problem,

This is true because here we are not taking into account the fact that the

best allocations and paths may change when the facility is moved to (xl(k),yl(k)),

hence further reducing J.

IV. Basic Results

In the next several lemmas we will see that an improvement of c>O units

can always be achieved in the modified problem, unless (x(k),y(k)) is at a

corner of a cell.

Lemma I:

There exists no collection point at (X ,Y ) for facility k for which

X <X <X and/or Y <Y <Y where X X Y Y
min q max min q max min max min max



are the respective bounds on x and y in the cell containing (x(k),y(k)).

Proof:

Suppose X . <X < Xa (Figure 5). Then since (Xq,Yq) communicates with

all points in the cell, there must exist a feasible vertical path from (Xq,Yq)

that would divide the cell in two. This is a contradiction to the way the

cells are formed. A similar proof applies for Y < Y < Ymin q max

(xq 0q)

max

vertical path
sub-dividing the cell

min

X
max

Illustration for Lemma 1

Lemm 2:

Without penalty, all collection points can reach the facility through one

of the corners of the cell.

Proof:

From Lemma 1, we know that the collection point at (Xq,Yq) is such that

Xq (XmnX )and Y (Y.min 'Y )
q nmxq m. a

Xmin

Figure 5:
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Suppose the staircase path from (Xq,Yq) to facility k does not enter the

cell at a corner. Then by the "Path Push and Amalgamation Process" the path

can be altered without penalty so as to enter at a corner, for otherwise there

would be a barrier vertex (Xi,Yi) with Xs e (Xmin'Xmax) or Yi e (Ym nYmax)

in which case the cell should have been subdivided - a contradiction.

Lemma 3:

Let (x(k),y(k)) be in the interior of a cell. The solution cannot be

worsened by moving (x(k),y(k)) to a boundary point of the cell.

Proof:

Let w1 be the weight of all collection points (Xj,Y) with Y < Ymin

and w2 of collection points (X,\ ) with Y > Ymax' Let Y1 and Y2 be the

minimum and maximum value that y can achieve within the cell at x x(k)

(Figure 6). The y-distance component of the objective function is:

DY wal((k) -Y ) + 2 Y max -y(k))-+ a constant term (w-w2 ) y(k)

+ terms independent of y(k).

Diagram for Lemma 3Figure 6:



-11k

Obviously Dy is minimized at an extreme value of y(k), i.e-. Y1 or Y2 depending

on whether wl-W2 > 0 or < 0.

Lemma 4:

The solution cannot be worsened by moving a facility from a cell wall

(excluding corners) to a corner.

Proof:

If the wall containing the facility is vertical or horizontal, the proof

is identical to the proof of Lemm 3.

Now suppose that the boundary containing facility k has a slope sO or

si, extending from (xl,Y1) to (x2,y2). We prove the result for the case

O < s < when the barrier is mmediately to the right of facility k.

(other cases are proved similarly). We can write the objective function as:

D -+ D w1 [(x(k) - xmin) + (y(k) - Ymin)] +w2 (x(k) - min )

+ (Yma y(k))] + 3 [(max - x(k)) + (yma - y(k))] + constant,

where wl, w2, w3 correspond to weights associated with collection points

that are, respectively, southwest, northwest, and northeast of the cell

containing the facility.* Simplifying and using the fact that on the boundary

y(k) X t +. s(k) for some constant , -we have:

D ) £OA-s.)w + + x + ( 1-)w2 - (1+s)w 3],

or a linear function of x(k). Thus D + D is minimized at an extreme value
x y

of x(k), either X or X2, corresponding to a corner, (X1 ,Y1) or (X2 ,Y2). 3
Combining the results of Lemmas 3 and 4, we have thus far proved that

(x(k),y(k)) must be at some corner of a cell.

*Here we have associated the positive x direction with East and the positive y
direction with North.
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We would now like to exclude all those corners which are of the form

(xe,Yj) or (Xi,e).

Lemma 5:

Moving (x(k),y(k)) from (X e,y) or (X) to some adjacent or "nearly

adjacent" corner with coordinates (X ,Y ) cannot worsen the solution. ('Nearlyn

adjacent" is defined in the proof).

Proof:

Let the facility be at (e,yj). We assume the previous orientation of the

barrier with edge e (Figure 7), having slope s. Since (xe ,Y.) is not a vertex

of edge e (otherwise it would be of form (Xi,Yi)),. it must be at a corner

shared by exactly two cells, say cells 1 and 2.

Let (xl,y1) and (x2 ,72) be the other corners of cells 1 and 2 on edge e.

Also, let (Xi,Yj ) be the other endpoint of the boundary partitioning the two

cells.

R3

w3
3

(Xi , ij
R2 ,w 2

Region R (x1,y1)

Weight - wI

Figure 7: Diagram for Lemma 5
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Assuming collection points at (Xq,Yq), we identify four collection point

regions as follows:

R1 (weight w 1): Xq < Min (X,)' Yq 

R2 (weight w2 ) Xq <min (Xi,x), Yq = Y

R3 (weight w3): Xq <Min (X, x1)' Yq > Y2

R4 (weight w4): Xq > X2Yq Y2

Suppose we move te facility to (x(k),y(k)), defining Ax x(k) - xe, by = y(k) -

Yj. For the three possible linear movements along cell walls away from (xe,yj),

we can write:

(Dx + Dy)I c + Ax (wE1+s] + w2 [l+s] + w3 [l-s] + w4 [-l-s])

(Dx + Dy) c + Ax (-wl -w2 3 +w4 )

- c + 82Ax

(D + D) 3 c + Ax (w1 [-1-s] +.w 2 [-l+s] + w3 [-l+s] + w4 [l+s])

= c + B3Ax,

corresponding to movement toward R4, R2 and R1, respectively; the constanct c

is the average distance to (xe,Yj). If 82 > 0, w4 > Wl+W2+w3, implying 1 < 0.

Hence, at least one of the coefficients of Ax, 1, 2 or 3, must be non-positive,

implying improvement or at least nondeterioration in the objective functions at

one of the three corners adjacent to (xe,yj). If (xi,Y 1) or (x2,Y2) is preferred

and is not a barrier vertex, we repeat the argument until we have reached a point

(a "nearly adjacent" corner) of the form (XiYj) or a barrier vertex. U
Summarizing, we have now proved that in the modified problem, each facility

can be moved to a point (Xi,Yj) without deteriorating the solution. But this

automatically implies the same result in the original problem.



Hence we conclude that an optimal solution to the stated p-median problem is

at (XijY) where points Xi and Y are such that a horizontal line through (Xi,Yi)

and a vertical line through (X j,Y) intersect each other before intersecting a

barrier or leaving the rectangle.

V. A Further Result

The potential sites for facilities can be reduced even.further. It can

be shown that there is no need to include node traversal lines from certain

barrier vertices. In particular, the lines need not be included unless they

can be extended on both sides of the vertex. (See Figure 8)

Barrier Barrier

(a) Vertical node traversal line
is superfluous

Figure 8:

(b) Both node traversal lines
are superfluous

Illustration of Superfluous Node Traversal Lines

Lemma 6:

A node traversal line which can be extended in only one direction from a

barrier is superfluous in the sense that it can be removed without increasing

the minimum feasible value of the objective function. Any two cells partitioned
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by a superfluous node traversal line can be treated as a single cell.

& B<arrier

"·: ··

corner 1 

Cell 1

·3p,~~~~~~~~~~~~

r Vertex q

corner 2
crner~--------* corner 3

Cell'2

rcorner 4

.
Barrier 'r

Figure 9: Diagram for Lemma 6

Proof:

Let cells 1 and 2. be partitioned by a superfluous node traversal line

emerging from vertex q (Figure 9). Let corner 2 be one of the two common

corners. Let corners 1 and 3 be the adjacent corners in the two cells.

We show that any path entering cell 1 or cell 2 through corner 2, can

enter through corners 1 or 3 without penalty.

For any collection point (X ,Y), we must have X.. < X (1) (where X (1)j' j- miii mini

is the minimal value of x in cell 1), or X - x(k), or X > X(2) (where

X (2) is the maximal value of x in cell 2).

If X < X or X > 2) , then the staircase path from the collection; m in J max

point to the facility (which is in either of the two cells) may enter the

cells at corners 1 or 3, respectively.

If X. = x(k) then, we need to retrace the optimal path from the original

demand point to the facility. Suppose the path is (Demand point) -n...



-16-

-n -n -facility, where n - vertex q. Clearly, the x coordinate of node
mr1 m m

nm-1 X is such that X < X ) or X > X(a) Again by the path push
-I_ n 1 - in nm-- max

amalgamation argument, we can alter the path without penalty, causing it to

enter at corner 1 or corner 3 rather than corner 2. Hence corner 2 is unnecessary.

Similarly the other corner (corner 4) common between the two cells can be shown

to be unnecessary, implying that cells 1 and 2 may be treated as a single cell.

VI. Solving the P-Median Problem

Once we have reduced the stated p-median problem to a discrete search

problem, we can use any of the existing algorithms available for solving the

p-median on a network.

An attempt to solve the given p-median problem consists of the following

two steps.

1. Setting up the problem, which requires

i) Identifying the candidate points

ii) Finding the distance matrix for the network whose node set is

N I {candidate points not in N}.

2. Solving the problem, whose solution set is combinatorially large.

The complexity of step 1 is determined by the complexity of finding the distance

matrix which is 0(n4). The complexity of step 2 obviously depends on the algorithm

one chooses.

Due to the problem's considerable size, one of the future steps is to find

those algorithms which best exploit its structure. Even if one has as few as

30 fixed nodes, there may be as many as 900 potential sites for the facilities.

Exact procedures therefore, are likely to become unwieldy and one might be forced

to rely on efficient heuristics.
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VII. A Simple Example

Consider the following example of two barriers and three demand points

(Figure 10).

5

U 1

Figure- 10: Illustration of the Example

The demand points are nodes 1, 2 and 3 and carry weights 0.3, 0.4 and 0.3,

respectively. The barrier vertices are nodes 4- through 11. Table I shows

the coordinates (XiYi) for i = 1, 2,....11.

Node Coordinates

.(L,4)
2 (8,5)
3 (15,3)
4 (3,6)
5 (4,3)
6 (7,2)
7 (1,1)
8 (11,6)
9 (13,5)
10 (14,1)
11 (9,1)

Table I: Coordinates (Xi,Yi)
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After forming the grid as explained in section II and taking into account

the result in Section V, we identify 23 candidate points (for location of p

facilities) as:

(1,6), (3,6),. (7,6), (8,6), (9,6), (11,6), (14,6), (15,6), (7,5), (8,5), (9,5),

(13,5), (1,4), (4,3), (14,3), (15,3), (7,2), (1,1), (7,1), (8,1), (9,1), (14,1)

and (15,1)

(Note that with the result of Section V, there would have been 10 more candidate

points created by 5 node traversal lines through nodes 5, 6 and 9).

The solution to 1, 2 and 3 medians (obtained by observation) is shown in

Table II.

* *

P X J(X)

1 (8,6) -3(9)+-4(1)+-3(10) 6-1

2 (8,5),(15,3) -3(10)+-4(0)+-3(0) = 3

3 (1,4),(8,5),(15,3) 0

Table II: Solutions To The Simple Example



-19-

References

1. Cooper, L., "Location-Allocation Problems," Operations Research, 1963, Vol. 11,
pp. 331-343.

2. Erlenkotter, D., "A Dual Based Procedure for Uncapacitated Facility Location,"
Working paper 261, Western Management Science Institute, UCLA, California, 1976.

3. Francis, R.L., Goldstein, J.M., "Location Theory: A Selective Bibliography,"
Operations Research, 1974, Vol. 22, pp. 400-410.

4. Francis, R.L., White, J.A., Facility Layout and Locations: An Analytical
Approach, Prentice-Hall, Englewood Cliffs, New Jersey 1974.

5. Hakimi, S.L., "Optimum Location of Switching Centers and the Absolute Centers
and Medians of a Graph," Operations Research, 1964, Vol. 12, pp. 450-459.

6. Handler, G.Y., Mirchandani, P.B., Location on Networks, Theory and Algorithms,
M.I.T. Press,. Cambridge, Mass., 1979.

7. Khumawala, B.M., "'An Efficient Branch-and-Bound Algorithm for the Warehouse
Location Problem," Management Science, 1972, Vol. 18, pp. B718-B731.

8. Larson, R.C., Li, V.O.K., "Finding Minimum Rectilinear Distance Paths in the
Presence of Barriers," Working paper OR-088-79, Operations Research Center,
M.I.T., Cambridge, Mass., 1979. (To appear in Networks)


