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OF EFFICIENT FACETS

G.R. Bitran
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Abstract Most practical applications of multicriteria decision making can be formu-

lated in terms of efficient points determined by preference cones with poly-

hedral closure. Using linear approximations and duality from mathematical

programming, we characterize a family of supporting hyperplanes that define the

efficient facets of a set of alternatives with respect to such preference cones.

We show that a subset of these hyperplanes generate maximal efficient facets.

These characterizations permit us to devise a new algorithm for generating all

maximal efficient facets of multicriteria optimization problems with polyhedral

structure.
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1. INTRODUCTION

We consider a cone dominance problem: given a "preference" cone P and a set

X Rn of available, or feasible, alternatives, the problem is to identify the non-

dominated elements of X. The nonzero elements of F are assumed to model the domi-

nance structure of the problem so that y X dominates x e X if y x + P for some

nonzero p z P. Consequently, x X is nondominated if, and only if,

(({x} l ) n x C {x} . (1.1)

We will also refer to nondominated points as efficient points (in X with respect to

P) and we will let EF(X;P) denote the set of such efficient points.

This cone dominance problem draws its roots from two separate, but related, ori-

gins. The first of these is multi-attribute decision making in which the elements

of the set X are endowed with various attributes, each to be maximized or minimized.

For example, if each component xi of x is an attribute, then F - R, the positive

orthant, encodes the dominance structure in which "more is better." Among the ap-

proaches for analysing multi-attribute problems are (i) multi-attribute utility theory

(see Keeney and Raiffa 18]) which attempts to order the alternatives by developing

a utility function defined on the attributes, and (ii) vector optimization methods

which attempt to view each attribute as a separate criterion function defined on

the set of alternatives and to determine the set of pareto-optimal, or efficient,

alternatives. From a computational point of view both approaches are limited by pro-

blem size. Nevertheless, both approaches have been applied successfully in practice,

particularly in highly aggregated settings involving a relatively small number of

alternatives. For example, several actual and potential applications of multi-attri-

bute decision making have been reported recently in areas such as water resour.e

planning 7], facility location [4], scheduling of nursing resources [8], Employee

motivation [3], evaluation of urban policy [2], investment decision making [11],

resources allocation [17], energy planning [30], macroeconomic policy 27], forest

management [25], location of public facilities [23], activity planning [20], and

corporate financial management [19].

The second origin of the cone dominance problem is mathematical programming. A

well-known device in mathematical programming reduces any optimization problem to

maximizing a single variable--replace maximize {f(z) : z Z R }I by maximize {y :

y c f(z) and z Z. The problem thus can be viewed as finding an fficient point

x (y,l) from the feasible region with respect to the cone P = {p E R : P > 0)

u 01}.

In this paper, we study a class of cone dominance problems from the mathematical

programming point of view. We use linear approximations and duality constructs typical

of nonlinear programming to study the extremal structure of the set of efficient points

and present a new algorithm for determining the efficient facets of problems with

'polyhedral structure. This method of analysis is certainly not new. Nevertheless,



we hope that the characterizations that we provide lead to a better understanding of

the structure of multi-attribute decision making problems and that the algorithm might

be useful in those aggregate decision making situations where a multi-criterion ap-

proach seems to be most useful.

We limit our discussion in this paper to cones P that are "nearly" polyhedral

and whose closure only adds "lines" to the cone as formulated formally below in our

first assumption. These restrictions permit us to use linear programming duality

results o obtain our characterizations. In a forthcoming paper, we will show how

the results generalize, but at the expense of using more sophisticated duality cor-

respondences.

For any two sets A and B in Rn, we let A\B denote set theoretic difference, i.e.,

A\B - x A : x B}. We also let -A denote the set x : -x £ A}. Recall that the

maximal subspace L contained in a convex cone C satisfies L C n (-C).

ASSUMPTION 1: P is a nonempty and nontriviaZ convex cone, its cosure (denoted cl P)

is potyhedral and cl P = L\{O} where L is the mazimat subspace contained in cl P.

Most practical applications of multiple criteria optimization can be formulated

as a cone dominance problem with respect to a preference cone P satisfying assumption

1. For example, consider the vector optimization problem

(VOP) "max" f(z) (f l(z),f 2(z),. . .fk(z)): z Z R- k}

Using the transformation introduced earlier for nonlinear programs, we define

X {x (y,z) R : z Z and y < f(z)}. Then a point i s X is efficient in X with

respect to the cone

k -01 u (1 ''' k Ykl' ' " Yn) X > 0 i 1,2,. . .,k and

(11,X2 ,. . .,Xk) # O}

if, and only if, x - (,Z), - f(i), and is efficient in (VOP); that is, there is

no z Z satisfying f(z) f(Z) with at least one strict inequality.

As we will see later, when X is polyhedral, the cone dominance problem that we

are considering is equivalent to the linear multiple objective program (that is, to

a vector optimization problem with linear objectives and a polyhedral constraint set).

This last problem has been studied extensively by Ecker, Hegner, and K (:ada [9],

Philip [21], Evans and Steuer 10], Gal [12], Yu and Zeleny [29], Iserman [16], and

several other authors. The cone dominance problem has been analyzed in quite general

contexts by Bitran and Magnanti [5], Benson [1], Borwein [6], Hartley [15], and Yu [28].

The plan of this paper is as follows. In section two, we present a characteri-

zation of efficient facets of X. We then use this characterization in section three

to derive an algorithm to determine all efficient points and efficient facets of X.

We conclude this introduction by summarizing notation to be used later and by

recalling one basic result concerning cones. Given a cone P we letP+ = {p+ R :

pp 0 for all p /P} denote its positive polar and letP p : R : P > for
S s 



all nonzero p P1 denote its cone of strict supports. When]P+ s# we say that P is

strictly supported. It is worth observing that assumption 1 implies that P n L - 0}

and, therefore, by proposition A.1 of Bitran and Magnanti 5] that P is strictly sup-

ported.

The following adaptation of a well-known result in Rockafellar [22], Stoer and

Witzgall 26], and Yu 28] is useful in this study.

PROPOSITION 1.1: If the closure of P is polyhedral, then so is P+.

2. CHARACTERIZATION OF EFFICIENT FACETS

We begin this section by deriving, at ech efficient point, a family of supporting

half spaces to the feasible set X. When the feasible set is polyhedral, we show that

these supports characterize efficient facets. We also obtain a characterization of

the maximal efficient facets incident to an efficient point. (An efficient facet is

miinmaZ if it is not contained in another efficient facet.) For situations involving

polyhedral feasible sets, Ecker, Hegner, and Kouada [9] and Yu and Zeleny (29] have

obtained results similar to those presented here, but using different arguments.

Consider the family of optimization problems, one defined at each point x X :

q'(x) : max ({px : x X n (x° +P)

+ +
where p is a fixed, but generic, element of the cone of strict supports +P of .

s s
Note that x is efficient according to definition (1.1) if, and only if, it solves

Q'(x°).

We will show that the analysis of this family of problems and their linear ap-

proximations leads to the characterizations that we seek. Actually, it is more con-

venient to consider a slightly modified version of this family of problems which we

define next.

Let H denote the q by n matrix whose rows are a system of generators ofP +; that

is, P+ XH : X e Rq } which implies by Farkas' lemma that cl P x Rn : x 01.

Although the condition H(x - x) > 0 leads to the conclusion that x x + cl P, we

shall show that assumption 1 permits us to replace P in Q' (x°) by its closure and

still derive useful results. That is, instead of analyzing the family of problems

Q' (x ) directly we consider the related family:

Q(x° ) : max p x: H(x - x ) > O, x X.

ASSUMPTION 2: X - x Rn : g(x) > O, x > 0} where g(-) : eRn R , gj-) is differen-

tizbZe and concave for i - 1,2,. . .,m.

We have introduced the differentiability assumption for the purpose of simpli-

fying our presentation. Similar results can be obtained using subdifferential pro-

perties of the functions gi for i - 1,2,. . .,m by replacing every appearance of the

gradient of any gi by a subgradient.

DEFINITION 2.1: x EF(X;P) is said to be strictly efficient if it maximizes a linear

functional px over X for some ps c 
5 



DEFINITION 2.2: Q(x ) is said to be regular if x solves the linear approximation.

0Q~xO): + +oLQCx): max PsCX - x ) + x

subject to: (,x - x0) > 0

Vgi (x ° )O c- x0 > o ie 

>0O j£J

where I - {i {1,2,. . .,m} : gi(x °) 0 and J = ( c {1,2,. . .,n : x 01.

LQ(x) is a linear programming problem and its dual is:

DLQ(x): min px

subject to: -tH - Vg(c) - tI (2.1

0 0, T Z 0, T 1 0

-i = 0, i I, Tj 0, J .

PROPOSITION 2.3: Let QCx°) be regular. Then x° is strictZy efficient.

PROOF: The regularity of Q(x ) implies that there is a (,U,T) solving DLQ(x ).

Multiplying (2.1) by Cx - x) for a generic x X, we obtain

(ps + aH)(x - x) - -Vgcx°)( - x) - -- x°) < 0 (2.2)

The inequality follows from the concavity of g) and the fact that i = 0 for i I,
+ - + 0

and the fact that Tj 0 for j & J. Therefore, from C2.2), p + rEH)x <Ps + H)x

for all x X. Since ( + TH)p > 0 for all p IP, the proof is completed..5

Strictly efficient points play an important role in cone dominance problems.

For example, Bitran and Magnanti (theorem 3.1 in [5]) proved that only mild conditions

need be imposed upon the cone dominance problem to insure that any efficient point x

can be written as

x x - p

*
where x is in the closure of the set of strictly efficient points and cl t\~

the cone' is assumed to be strictly supported and convex). Bitran and Magnanti [5]

have also shown that for strictly supported closed convex cones, a point x C X is

strictly efficient if, and only if, x° is efficient in some conical support Lx °0 ) to

X at x, i.e., L(x°) - {x°} is a closed cone and X c LCx°). The concept of proper

efficiency introduced by Geoffrion [14j and its consequences are also intimately re-

lated to strict efficiency.

PROPOSITION 2.4: Let Q(x ) be reguZar. Denote by C(,,t) an optimal solution to

DLQ(x°). Then

ix R : Xo(x) g(x )x + (p + wH)x 0}

is a supporting hyperpZane to X at x and xo(x) O for aZ-Z--x'e X

PROOF: The concavity of gC) implies that, for any x X,

5Vg(x°)(x - x° ) 0, i.e., 7Vg(x )x g( x . (2.3)

i



From (2.1) and the complementary slackness conditions of linear programming,

~xO(x ) = O. Also from (2.1), for any x X,

-PVg(x°)x - x (p + rH)x

By (2.3) and the fact that Tx 0,

-Vg(x°)x °0 (pS + + rH)x

Consequently, O (x) 0 for all x X.

COROLLARY 2.5: Let Q(x ) be reguZar. Then {x r: P *(X ) O} separates X and

(x°} + at x.

PROOF: If x + p is an arbitrary element of x } +1P, then, by substitution, Kxo(X + p)

- Oxo(x) + (p + H)p. The previous proposition shows that xo(X) = 0 and since

(p + rH)p 0, xo(X + p) > 0. Q

Proposition 2.4 and corollary 2.5 show that any solution to DLQ(x° ) generates a hyper-

plane x R : xo(x) a 01 that separates X and {x } +IP at x . To be precise, we

should index these hyperplanes with the corresponding solution (r,,T) of DLQ(x).

However, to simplify notation, we will not adopt such a representation. In the re-

mainder of this section, we show that the family of hyperplanes, {x £ Rn : xo(x) 0,

or equivalently, all alternative optimal solutions to DLQ(x ), characterize the ef-

ficient facets incident to x when X is pclyhedral. Moreover, proposition 2.14 charac-

terizes the maximal efficient facets.

PROPOSITION 2.6: x EF(XP) if, nd only if, it soltes Q(x0).

PROOF: If x solves Q(xO ), then it is clearly efficient. Assume x° £ EF(X;P) and
o-a + +0 o

that there is an x X, x # x , satisfying H(x - xO ) > 0 and p > px . The condition

+- 00H(X-- x ) > 0 implies that (x - xo) cl3P. However, if (x - x°) £ cl \P L - O),we would have ps(x - x ) O. Hence (x - x° ) e ; but this conclusion contradicts the

assumption x° £ EF(XP). Therefore, x solves Q(x°). Q

At first sight proposition 2.6 might seem to apply in all circumstances. However,

the facts that the cone is not closed and that H(x - x) > 0 implies x £ {x° } + cl IP

instead of x {xO + add some meaningful complications. To illustrate this point,

we give an example that shows that the conclusion of proposition 2.6 need not be valid

if P is not closed and assumption 1 i violated.

EXAMPLE 1:

Let= P ( 1 ,P 2) C R : P1
> 0, P2 > 0} u {o} and let X- {x (x ,x2) R

x2 = 0, 0 ). Then , H i.e, = - (,P2) R : (P 1 P2 ) 0.

Also, x - (0,0) EF(X;P), but xl - (1,0) X is such that H(x - x°) > with one
+ +1 +o

strict inequality, and if we let p ' (1,1), we have psx > psx . Figure 2.1 illus-

trates the example.
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Figure 2.1 Proposition 2.6 Can Fail Without Assumption 1

For the remainder of this paper, we make the following assumption:

ASSUMPTION 3: g(x) b - Ax for some given column vector b and matri A.

Note that assumption 3 implies that X is polyhedral and by virtue of proposition

2.6 that the cone dominance problem is equivalent to the linear multiple criteria

problem whenever I satisfies assumption 1. Moreover, solving Q(x ) is equivalent to

solving LQ(x ). Similarly, solving DQ(x ) defined by:

DQ(x ): min -iTHx + b

subject to: -rH + A - T = ps

ir, ., > O

is equivalent to solving DLQ(x ).

A direct consequence of proposition 2.6 and assumption 3 is:

COROLLARY 2.7: x0 EF(XP) if, and only if, it is strictly efficient.

Several authors, including Bitran and Magnanti [5], Gal [13], Evans and Steuer

[10], Ecker, Hegner, and Kouada 9], Philip [21], and Yu and Zeleny [29] have ob-

tained the same result. In fact, the result is true whenP is any closed convex and

strictly supported cone (see [5]).

The reader should note that throughout our discussion we have not required that

x° be an extreme point of X. It is well-known (see Yu and Zeleny [29]) that, if x

is efficient and is contained in the relative interior of a facet, then the entire

facet is efficient.

PROPOSITION 2.8: Let x be efficient and let (7r,I,t) solve DQ(x°). If x l e X and

xo(x1) --Ax ° + (p; + +H)x - 0, then xl EF(XP). That is, the support x R :

x ocxl = O} intersects X only at efficient points.
+ +

PROOF: Te result follows from the fact that (p + TH) e P+ and x (x) < 0 for all
~1 1 - + -+ +

x e X. Since $xo(x1 ) = O we have that x maximizes psx over X for some Ps s 

It is worth noting that if x is in the relative interior of a maximal efficient

facet then any extreme point (,,T) that solves DQ(x° ) generates a hyperplane x Rn

txO(x) - O} that supports the maximal efficient facet.

COROLLARY 2.9: If (w,.,t) solves DQ(x) and (X1) 0, then (i,i,t) also solves

DQ(x).

F
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Proposition 2.8 and Corollary 2.9 imply that by considering only efficient ex-

treme points of X and all solutions of the corresponding dual problem, we are able to

generate all efficient facets. The reason is that, if x EF(XP) is in the relative

interior of a facet, then the entire facet is efficient. Also, by corollary 2.9, for

all extreme points x in the facet, the optimal solutions to DQ(x) are optimal in

DQ(x°). Therefore, if one considers all triples (T,,) optimal in DQ(x), and each

xO(X) is maximized over X, the corresponding efficient facet incident to x is ob-
x
tained. This observation and the comment prior to corollary 2.9 establish the fol-

lowing result.

COROLLARY 2.10: Let x be an extreme point of X and let (we,e,Te)}eCE be the set

of extreme points optimaZ in DQ(x°). Then the set of hyperptanesfx e Rn : (p + TeH)xo
0

- eb - 0 for e E supports all efficient facets of X that contain x . Moreover,

every naximaZ efficient facet of X can be obtained in this way for some extreme point

x of X.

This corollary and the results to be given below will be used in the next section

as the basis for an algorithm to determine EF(XP) and the maximal efficient facets of X.

From the definition of xo(X) and the dual problem DQ(x° ), we have the following

result:

PROPOSITION 2.11: The gradient of the supporting hyperplane x Rn : *xO(X) - O is

a inear combination of the gradients of the active constraints at x.

PROPOSITION 2.12: Let x° £ EF(X;P) and assume that (~,i,) generates 4xO(x). nIen a

necessary and sufficient condition for x1 X to satisfy 0xo(xl) 0 is that (Ax1 - b)

- O and Tx ' 0.
1

PROOF: Multiplying (2.1) by x we obtain

(p + H)x - Axl + Tx - O (2.4)

Sufficiency: (Ax - b) - 0, Tx - 0, and (2.4) imply that xo(X1) (ps + H)xl - b

- O (recall that Ax - b).

Necessity: Assume xo(xl) (p + -H)xl - 0. (2.5)

Subtracting (2.5) from (2.4) gives,

5(b - Ax) + 1x o .
Lwever, since x1 C X, it follows that (b - Ax1) 0> and x 1 > 0. Consequently,

5(b - Ax ) - O and Tx - 0.

This last proposition is essentially a statement of the linear programming comple-

mentarity conditions applied to the problem

max {xo(x) : x C x} .

In our subsequent discussion, we make use of the fact that x is an extreme point

of X if, and only if, there is an x e Rm such that (x°,s°) is an extreme point of

(x,s) R : Ax + Is - b, x 0, s 0. Every extreme point in the second repre-

sentation is a basic solution to the equations Ax + Is b corresponding to a basis

matrix from [A,I]. Recall that any edge in X corresponds to a basis matrix from [A,I]
,o.,^

F

i



together with one additional column of the matrix, or, in terms of variables, to-

gether with one nonbasic variable from (x,s).

Proposition 2.12 is useful algorithmically. Let x be an extreme point of X and

let x1 be an adjacent extreme point to x lying on the hyperplane {x R : xo(X).= 01.

The proposition provides conditions that guarantee that movement from x to xl on the

edge [x ,x I does not leave the hyperplane.

COROLLARY 2.13: Let x° £ EF(XP) be an extreme point of X and let B be a correspondir,

basis from A,I]. Also, let ( b,,T) be an optimal solution to DQ(x°). Then every

efficient edge incident to x and that is contained on the hyperplane x R : xo(x) =

(p + iH)x - b = 0, corresponds to a nonbasic variable from (x,s) whose n^orres-

ponding dual variable i or i is zero.

To conclude this section we show that the results obtained so far can be used to

characterize the maximal efficient facets of X.

PROPOSITION 2.14: Let ( 1,1, 1 ) and (r2,2,T2) be two alternative optimal solutions

to DQ(x ). Let F - x : (p + )x - lb 0 and F2 {x + X : (p + w H)x - 2b
- O} (i.e., F1 and F2 are the faces of X generated by the two optimal solutions to

DQ(x )j. t Qj, j - 1,2 denote the set of indices of the components of (,T j) that

are strictly positive. Then, if Q1 c Q2 it follows that F2 Fl and, therefore, that

dim F1 > dim F2.

PROOF: Suppose that e X and that (p + T x2H)x - 2b 0. Multiplying (2.1) with

(,, ( 12) by , we have

2 22- 2 + A _ T2X

so that 2 (b - Ax) + x 0 O and,therefore, 2 (b - Ax) O0 and T2x 0. Also, since

Q1 c Q2' we have l (b - Ax) O0 and Tlx = 0. Multiplying (2.1) with (,,T) )

(si,~ ,T ) by x and considering the results above, it follows that

(p + rlEi) - b O

Hence F2 F1 and dim F > dim F2. 0
Note that proposition 2.14 does not state that the number of positive components

of (,T) is the same for every maximal efficient facet. In fact, as shown by the

following example, the number of positive components can vary from one efficient facet

tLi another. The example also shows that all maximal efficient facets do not have the

same dimension.

EXAMPLE 2:

Consider the system

x1 + x2 + 3 < 3 (2.6)

6x1 - 3x2 + X3 4 (2.7)

-3x1 + 6x2 + X3 < 4 (2.8)

X1 0, X2 0, 3
> 0

with the preference cone P {p R3 : p > O0. That is, H I, the identity matrix.



Let X denote the set of feasible solutions to this system.

The facet F1 {x X : x1 + x2 + X3 = 31 is efficient since perturbing any point

on this facet by a nonzero element of P must violate C2.6). No point x in the relative

interior of the facet F2 ={x X : 6x1 - 3x2 + 3 = 41 is efficient since x + (O,c,O)

e X for > 0 sufficiently small and (0,e,0) C P. Similarly, no point in the relative

interior of F3 = (x e X : - 3x1 + 6x2 + x3= 4} is efficient. Note, though, that every

point x on the facet F4 F2 n F3 is efficient, since adding (2.7) and (2.8) gives

3x1 +3x 2 + 2x3 8 . (2.9)

If x F4 then it satisfies (2.9) as an equality. Consequently, if x + p X and p P,

then, from (2.9), p1 + P2 + P3 0 implying that p - 0.

These observations show that F1 and F4 are maximal efficient facets, but with

different dimensions. One hyperplane that supports F4 is given by setting T - 0,
54

-- (0,9,9-) and r = (1,0,0), which corresponds to an extreme point of the dual problem

DQ(x ) for any x e F4. A hyperplane supporting F is obtained by setting T - 0,

- (1,0,0) and - (0,0,0). Note that the number of positive components of (,)

differs for these two hyperplanes. 0

Another fact worth noting is that none of our previous results guarantee that

every extreme point sclution to the dual problem DQ(x ) corresponds to a maximal

efficient facet. The following example illustrates this point and further illustrates

proposition 2.14.

EXAMPLE 3:

Let H - I, the identity matrix in R , and let X be defined by he system

1 + x2 < 2 (2.10)

4x1 + X2 5 (2.11)

X1 > o, x2 > .

The extreme point x - (1,1) is defined by the intersection of the first two con-

straints. By setting ps (1,2) and by solving DQ(x ), we find among the extreme

point solutions:

(i) V ' (°'-), T 0, and = (1,0)

(ii) i ' (i,0) T - 0, and r - (0,), and

11(iii) "u' (-6) T 0, and - (0,0)

The facets defined by these three solutions are, respectively, F1 - Cx X. : 4x1 + 2

5}, F2 - {x X : X + x2 = 2}, and F3 = F1 n F2. Note that although (iii) is an

extreme point solution of DQ(x0 ), it defines F which is not a maximal efficient

facet. This conclusion is a direct consequence of proposition 2.14 since the set of

indices corresponding to positive components of (i,T) in (i) or also (ii)] is con-

tained in the set of indices corresponding to positive components of (,T) in (iii).

- i



3. AN ALGORITHM TO DETERMINE ALL EFFICIENT EXTREME POINTS AND EFFICIENT FACETS

The algorithm presented in this section is based on the results obtained above.

It allows us to obtain adjacent efficient extreme points as alternative optimal solu-

tions of linear problems. Other algorithms have been developed (Evans and Steuer [10],

Philip [21], Ecker, Hegner, and Kouada [9], Yu and Zeleny [29], and Gal [12])

and consist essentially of checking nonbasic columns by solving subproblems and car-

rying the q rows of H as objective functions.

The algorithm presented below is based upon

i) Proposition 2.8 which guarantees that the support of the hyperplanes

{x Rn : 9xo(x) = 0 are contained in EF(X;P),

ii) the connectedness of EF(XRP) (see 5] and [29]), and

iii) proposition 2.14 which reduces considerably the number of supporting hyper-

planes to be generated.

We assume that EF(X;P) is nonempty and that we have at the outset some efficient ex-

treme point x . Several authors have considered the existence and determination of

an efficient solution for linear multiple objective problems and for more general

settings as well (Yu [28], Bitran and Magnanti [5], Hartley [15], Evans and Steuer [10],

Philip [21], Soland [24], and others). An effective way to generate an initial ef-

ficient solution, in the linear case, is to select a feasible point x C X (for example,

by phase I of the simplex method) and solve

* *
Q(x ): max psx : H(x - x ) 0, x X}

It is not difficult to show that EF(XP). is nonempty if, and only if, Q(x ) has an

optimal solution. Moreover, any feasible solution to Q(x ) is efficient in X with

respect to P.

With a choice of an efficient extreme point x in hand, the algorithm can be

described as follows:

Given x in EF(XP) generate a supporting hyperplane, x Rn : xo(x) = 01, to

X at this point. Since the support of the hyperplane on X is contained in EF(XP),

move on this support from x to an adjacent extreme point. Due to the connectedness

of the set of efficient points and the fact that the set of supporting hyperplanes at

x , obtained when solving Q(x ) (or DQ(x )), characterize the efficie t facets inci-

dent to it, the algorithm will generate all the efficient extreme points and facets.

Formally:

Algorithm

Initialization: Let L1 be a list of efficient extreme points encountered; initially

only x is in L1. Let L2 be a list of dual extreme points that cor-

respond to maximal efficient facets; initially L2 is empty. Let L3

be a list of extreme points x such that DQ(xi ) does not generate

any optimal dual extreme points not already in L2; initially L3 is

empty. Set k 0.



Step 1: Solve the linear problem DQ(xk):

min -vHxk + pb

subject to: -TH + IA - T = ps

(~,,z) ~ O.

Obtain all alternative solutions representing the maximal facets ac-

cording to proposition 2.14, (i.e., those not contained in another

efficient facet). Insert any of these dual extreme points in L2 if

it is not already included, and, for each of these points, (,p,t),

solve the linear program:

Step 2: H(w,V,T): max Oxo(X) (ps + TH)x + Ib

subject to: x X

By proposition 2.4, xo(x) < 0 for all x X and xO(x° ) 0. Hence,

the optimal value of the problem is zero. By proposition 2.8, all

alternative optimal solutions to max xo (x) are efficient. Insert

any alternative optimal extreme point of H(V,r,T) in L1 if it is not

already included.

Step 3: Add xk to L . If L3 L1, then terminate the algorithm. L3 is the

set of efficient extreme points and L2 is the set of dual extreume

points that define the maximal efficient facets. Otherwise,

L3 L1; choose a point x C L1\ 3. Return to step 1.

The generation of all alternate optimal extreme point solutions to either DQ(xk )

or H(;,5,T) requires a careful enumeration and bookkeeping scheme based upon the

characterization of alternate optima to linear programs.
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