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Abstract

Inverse optimization refers to the fact that each time a Lagrangean

derived from a given mathematical programming problem is solved, it pro-

duces an optimal solution to some problem with a different right hand side.

This paper reports on the application of inverse optimization to the capa-

citated plant location problem including the study of implied mappings of

dual variables into the space of demand vectors. A new parametric method

based on inverse optimization and subgradient optimization is also presented.



Inverse Optimization: An Application to Capacitated

Plant Location Problems

1. Introduction

Lagrangean techniques have had wide application in discrete optimization;

see Shapiro [13] for an extensive survey. Nevertheless, there is an implied

property of Lagrangean analysis that has not been widely recognized and ex-

ploited. We develop and discuss this property for a very general case in the

introduction and specialize our results to the capacitated plant location

problem in the remainder of the paper.

Consider the family of (primal) mathematical programming problems

v(d) = min f(x)

s.t. g(x) = d P(d)

x£X C Rn

where f is a real valued function, g is a function mapping vectors in Rn into

vectors in R , and X is an arbitrary non-empty set. The constraints g(x) = d

are soft and do not have to be satisfied exactly. The m-vector d can be

viewed as demand to be satisfied, for example, by an electric utility or a

manufacturing firm. Alternatively, it could be that the decision maker is

interested in a parametric analysis of P(d) for d in some set of interest. By

contrast, the constraints x X are hard constraints, often of a logical na-

ture, that cannot be violated; for example, constraints that force a fixed

cost to be incurred at a particular location if a plant is built there.

The Lagrangean approach is to place prices on the demand constraints and

add them to the objective function. Specifically, we define the Lagrangean
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function

L(u;d) = ud + Z(u) (1)

where

Z(u) = minimum {f(x) - ug(x)}. (2)
x X

The Lagrangean is a concave function and L(u;d) < v(d). An implied dual

problem to P(d) is to find the best lower bound to v(d); namely,

w(d) = max L(u;d)
D(d)

s.t. u C Rm

The purpose of the Lagrangean approach is imbedded in the following conditions.

Definition 1: For a given m-vector d, the solutions x X and u > 0 are said

to satisfy the global optimality conditions if

(i) L(u;d) = ud + f(x) - ug(x)

(ii) g(x) = d

Theorem 1: If x X and u satisfy the global optimality conditions for a

given vector d, then x is optimal in the primal problem P(d) and u is optimal

in the dual problem D(d). Moreover, v(d) = w(d) = L(u;d).

Proof: See chapter 5 of Shapiro [15].11

A strategy for solving a specific primal problem P(d) implied by Theorem

1 is to select a dual vector u such that the solution x(u) computed from the

Lagrangean calculation (1) satisfies, along with u, the global optimality

conditions for the given d. Without additional assumptions about f, g, X,

however, there is no guarantee that such a u exists. If not, then we say
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there is a duality gap between P(d) and D(d). The following theorem makes

precise the observation that each time we compute the Lagrangean function,

we find an optimal solution to P(d) for some d. This is the idea of inverse

optimization.

Theorem 2 (Inverse Optimization): For any u Rm, let x(u) denote an opti-

mal solution to the problem Z(u) = minimum {f(x) - ug(x)}. The solution x(u)
xis optimal in the primal problem Pdu where du = gxu Moreover,

is optimal in the primal problem P(d(u)) where d(u) = g(x(u)). Moreover,

v(d(u)) = f(x(u)).

Proof: The proof is immediate by appeal to Theorem 1 and the global opti-

mality conditions. The solution x(u) satisfies g(x(u)) = d(u) by construction.

It also satisfies

L(u;d(u)) = ud(u) + f(x(u)) - ug(x(u))

by the definition of x(u).11

According to the principle of inverse optimization, the function Z(u)

in the Lagrangean (1) induces a mapping of the m-space of prices into the

set

D* = {djv(d) is finite}.

For any point u, the image of this mapping is the set

D(u) = {dld i = gi(x(u)) for any x(u) optimal in (2) for all i}

Clearly, D(u) C D* implying
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UD(u) C D*. (3)
u

We say Z spans P(d) if d D(u) for some u. A major purpose of this paper

is to analyze the mathematical properties of the sets D(u) and U D(u) for
u

the capacitated plant location problem.

Our underlying goal is to use inverse optimization to develop new

approaches to right hand side parametric analyses for discrete optimization

problems. The nonconvex structure of these problems suggests that we need

to be more flexible and less exacting in the parametric analyses than is

possible for in linear programming. Some results for the parametric analy-

sis of the capacitated plant location problem are presented in this paper.

One'of the concerns of inverse optimization is how to proceed if there

is strict inequality in the set relation (3), or in other words, if Z does

not span P(d) for all d D*. The difficulty is due to the presence of

duality gaps between P(d) and D(d) for some d which can be overcome, at least

in theory, by the application of group theoretic methods (see Bell and

Shapiro [2], Shapiro [151)) to strengthen the Lagrangean (1). Again, we show

how this can be done for the capacitated plant location problem.

The plan of this paper is as follows. The following section contains

an application of the inverse optimization approach to the capacitated

plant location problem. In the section after that, we develop the group

theoretic methods for filling in duality gaps for the capacitated plant loca-

tion problem, thereby permitting inverse optimization to find optimal solu-

tions to all problems. Section four contains a new method for the parametric

analysis of capacitated plant location problems based on inverse optimization

and subgradient optimization. There follows a numerical example. The final

section contains a brief discussion of areas of future research.
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2. Inverse Optimization and Capacitated Plant Location Problems.

We consider the plant location problem

m n m
r(d) = min Z Z (cij + Vi)Xij + fiy

i=lj=l i=l

m
s.t. £ x.i = dj for j = l,...,n

R(d)
n
x Ki < 0 for i = 1, ... ,m

j=l i -

xij > 0 and integer, yi = 0 or 1

where ci is the non-negative cost per unit to ship an item from site i to the

customer at location j, and d is the demand for the item by customer j. The

production cost associated with each plant site i is shown in Figure 1. Any

positive production at site i involves an initial fixed cost of f after

which there is a variable cost of production at the rate vi up to the capa-

city limit Ki. We say site i is closed if yi = 0 and open if yi = 1. The

family of problems R(d) of interest are those with demand vectors in the set

n m
D* = {did > 0 and Z d. < Z K.} (4)

j=l 3- i=l 1

We assume the quantities d and Ki are non-negative integers. This implies

that the transportation variables will naturally take on integer values in any

basic feasible solution to the linear program that results if the yi variables

are fixed. We have required the d and the Ki to be integer, and explicitly

constrained the xij to take on integer values, in order to facilitate the analy-

sis in the following section where we derive procedures for resolving duality
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production
cost

= Vi
1

production = x..
j 

Figure 1
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gaps. There is very little loss of mathematical generality in requiring the

d. and the Ki to be integer since if they were rational they could be converted

to integers by multiplying by a sufficiently large number to change the scale

of the problem. As a practical matter, the selection of a scale for problem

R(d) has an important effect on its analysis and solution. This point is

discussed again in the following section.

For future reference, let RC(d) denote the ordinary linear programming

relaxation of R(d) that results if we omit the integrality restrictions on

the variables x..ij and Yi. Let r(d) denote the corresponding minimal objec-

tive function value,

We let u. denote the dual variable associated with demand d. and let
3 J

L (u;d) denote the Lagrangean function that results if we dualize on the

demand constraints in the plant location problem R(d). This dualization

permits us to separately evaluate each site since

m0
L (u;d) - ud = Z (u) = Z(u) (5)

i=l

where

0 n
Z.(u) = minimum Z (cij + v i - uj)xij + fiy i

j= 1

n
s.t. Z x KiYi < 0 (6)

xij > 0 and integer, yi = 0 or 1
13 - 1
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The calculation of (6) is easy as shown by the following analysis. We define

for each i

Ci(u) = minimum {cij + v i - uj}
j=l,...,n

(7)

Ji(u) = {jlcii + v i - uj = C i (u)}

-f
Theorem 3. If Ci(u) > 0 or if C i(u) < 0 and > Ki then Yi = 0 and

1 1 G.(u) > K(u then y. 0 and

x.. 0= for all j is the unique optimal solution to (6). If Ci(u) < 0
-f

and Ci(u ) < Ki, then the optimal solutions in (6) are all those satisfying

i = 1, Z( xi = Ki and x.i non-negative integer for j Ji(u). If Ci(u)< 0

-f.

and = Ki, then the solutions of both the previous cases are optimal in
C.(u) 1

(6).

Proof: The dual variables u are, in effect, the unit profit or return values

for the customer served at location j. The quantity -Z0(u) measures the net

profit to be realized at site i, and the quantity Ci(u) measures the net unit

profit of the most favored customers there, who are the ones contained in the

set Ji(u). If Ci(u) > 0, then there is no way to make a positive net profit

at site i and therefore the optimal solution is yi = 0 and xij = 0 for j =1,...,n,

with net profit Z(u) = 0. Even if C(u) < 0, a positive net profit cannot be
1 1

realized by opening up the plant at site i if the fixed cost f. > 0 is too high;
_f.

that is, if f + Ci(u)K. > 0 or C(u) > K. On the other hand, a positive
1htii i 1 1 iUKI>O u) 1 _f.

net profit can be realized in the opposite case, namely, C( < K and then

we select yi = 1 and J x.. = K. to maximize the net profit. Finally, if

j1J i(u) 12 1
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-fi (u)
C = K , then net profit is zero in both of the last two cases, and either

Ci(u) i

of the two indicated solutions is optimal. i

Theorem 3 provides us with the simple logic needed to compute optimal

solutions for the Z. functions. Any optimal solution xij (u), yi(u) for all

i and j is, according to the inverse optimization theorem 2, optimal in the

capacitated plant location problem R(d(u)) where

m

d.(u) = Z xij (u) for j = l,...,n (8)
i=l

Note that u < 0 implies d(u) 0 since cij and vi are non-negative and fi

is positive implying j Ji(u) for any i. Some additional analysis is needed

to completely characterize the set D(u) of all demand vectors d for which we

know an optimal solution to R(d). The characterization must take into account

the possible multiplicity of customers j Ji(u) that can most profitably be
-f.

served by plant i when 1 < K and the idifference about whether or not
Ci(u) V
1 -fi

to open a plant at site i when = K.. We omit further details.
Ci(u) I

A direct consequence of Theorem 3 is that any primal problem R(d) for

which inverse optimization with the function Z can find an optimal solution
n

must satisfy Z d. = Ki for some set I C {l,...,m}. This difficulty is
j=l iI

related to an inherent limitation of our approach thus far.

Theorem 4: For any u, any solution xij (u), yi(u) for all i, j that is

optimal in (6) is optimal in the linear programming relaxation RC(d(u)) where

d(u) is defined in (8).

Proof: We use the result that feasible solutions to a pair of primal and

dual linear programming problems are optimal if and only if complementary
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slackness holds (see chapter two in Shapiro [151). For the linear programming

relaxation of the capacitated plant location problem, this result translates

as follows. Suppose the variables xij, Yi for all i and j are a feasible

primal solution, and the non-negative dual variables uj, Hi for all i and j

satisfy uj - i < cij + vi and i > 0. Then, for all i and j, xij, Yi' uj,

1. are optimal in the linear programming primal and dual capacitated plant
1

location problems if and only if

m

uj( xij - d) = 
i=l

n
( xij - KiYi)I i = 0
j=l

u. - I. = c.. + v.
3 i 13 1

>0

fi - IiK =

< 0

for j = l,...,n

for i = ,...,m

if x..
13

> 0

if Yi 0

if 0 < yi < 1

if Yi = 1

For a given u, we show that a solution x. (u) for all i and j that
13

is optimal in (6) satisfies these conditions for d(u) given by (8) when we

define

(a)

(b)

(c)

(d)
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=-Ci(u) if Ci(u) < 0

II(u) 1

= 0 if Ci(u) 0

m
where Ci(u) is defined in (7). Condition (a) holds trivially since xij (u)

n i=l
- dj(u) = 0 for all j by definition. Condition (b) holds since x (u) =

j=1
KiYi(u) for all i according to Theorem 3. Condition (c) also holds according

to Theorem 3 since xij(u) > 0 implies j Ji(u) and therefore -i = Ci(u) =

cij + v. - u.. Finally, condition (d) holds according to Theorem 3 since
1 3 -f

Yi(u) = 1 only if 1 < K. or f - 1i(u)K. < 0 whereas Yi(u) = 0 only if
1U = 1onlCic(u) 1 k-i 1

-fi
C(u ) > Ki or fi - i(u)Ki >o. I

Thus, inverse optimization of the family of capacitated plant location

problems relative to the function Z (u) produces optimal solutions only to

those problems R(d) for which there is an optimal integer solution to the

linear programming relaxation R(d). In spite of this shortcoming, the approach

has some advantages over the simplex method applied to the linear programming

relaxations. Optimal solutions to the function Z0(u) are easier to compute

by the rules of Theorem 3 and they are always integer even when there are

alternative optimal fractional solutions to the linear programming relaxa-

tion. Moreover, we have no consistent way of knowing a priori which demand

vectors d produce linear programming relaxations with optimal integer solu-

tions. In the following section, the inverse optimization approach is

extended to permit the calculation of optimal solutions to R(d) for all

d D*.
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3. Resolution of Duality Gaps.

The extension of inverse optimization to the calculation of optimal solu-

tions to R(d) for all d D* defined in (4) is intimately related to the

resolution of duality gaps between some primal problems R(d) and their duals.

Let d be a demand vector not spanned by Z for any u. We use d to strengthen

Z and L in the analysis of the specific problem R(d), which also permits us

to extend the family of problems for which inverse optimization can find an

optimal solution. The construction is derived from a linear programming repre-

sentation of the dual problem

0- 
w (d) = max L (u; d)

(9)
s.t. u Rm.

t t
Specifically, let xij, Yi', for all i and j and for t = 1,...,T denote

the collection of solutions satisfying

m n t < 0Z x.. Ky <0i = .m

C ic ( (Cii + vi)Xi; + fiYij=-

xi > 0 and integer, y. = 0 or 1.

These are the feasible solutions in (6) for all i. Define

m n
t t t

= j{l(c i j vi)xi + fi y i

and (10)

t M t
da = Z x.. for j = 1,...,n
3 i=l z3
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Let d denote the n-vector with components d. It can be shown (see Magnanti,
J

Shapiro and Wagner [ 9 ] or Shapiro [ 13 ]) that the dual problem (9) is

equivalent to a linear programming problem whose linear programming dual is

0- - t
w (d) = min Z (Ct)t

t-l

T
s.t. Z (d)Xt d. for j = l,...,n

t=1 '

(11)

T
Z X =1

t=l

X >0
Xt > 0

It can easily be shown that w (d) obeys the inequalities r(d) > w0(d) > rC(d)

(see Theorem 1 of Geoffrion [6])), and we have a duality gap r(a) > w0(d).

The resolution of a duality gap begins with the following result.

Theorem 5 (Bell and Shapiro [ 2 ]). Suppose problem (11) is solved by the

simplex method and let Xt for all t denote the optimal solution found by the

method. Since R(d) is not spanned by Z for any u, it must be that two or

more At are positive, say Al > 0,..., AK > 0, K+1 ... = 0, where

K > 2. Moreover, dk Z d for k = 1,...,K.

Proof: To show more than one X must be positive, we assume the contrary and
t

show a contradiction. Thus, suppose XA = 1 and let u* denote the computed

optimal n-vector of shadow prices on the demand rows, and let 0* denote the

* 1 -
scalar shadow price on the convexity row. Since 1

= 1, we have d d By

the linear programming optimality conditions
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1 l * -
C -ud -0

t * t *
C -ud -e >0

C1 d < Ct u*dt
C- u*d1 < -u d

or

for all t

for all t.

Using the definitions (10), this last condition can be rewritten as

m n * 1 1
i-1 (cC ij + i -Iui)x ij + f iYi

m nm n * t t
< Z { Z(c +v +f y}

i=l j=l i ij iii=l j=1 j i-UiX CfY

for all t.

1 1
In words, this condition says that the solution xij, Yi for all i and j is

optimal in Z(u ) and by the inverse optimization Theorem 2, the solution is

optimal in R(d), which is impossible.

k
To show d k d for k = 1,...,K, we again assume the contrary and show a

contradiction. Suppose d = d and consider

K
d = d

k=l k

or

K k -

dk d( - 1) .
k=2

Since 0 < *
Since 0 < XA < 1, we can divide by 1 - AX which gives us
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K x*
k X

k=2 1-X

The last equation contradicts the fact that l ,. ..' K are basic variables in

an optimal basic solution and therefore their columns must be linearly inde-

pendent.| 

The construction given by Bell and Shapiro [2] is number theoretic in

nature and derived from the vectors d,...,dK identified in Theorem 5. The

vectors are used to determine a finite abelian group 9 and a homomorphism

g mapping In onto , where In is the group of integer n-vectors under ordi-

nary addition. The homomorphism has the property that for k = 1,...,K,

k m n kn
g(d ) = x .. d. = g(d) (12)

i=l j=l 13 j=jl j

where ej = g(ej) and e is the jth unit vector in n-space.

The homomorphism is used to define a stronger Lagrangean by incorporating

the group image of the demand constraints into the calculation. For any group

element 6 and any demand vector d such that g(d) = 6, and any dual vector u,

the new Lagrangean is

Lg(u; d) = ud + Zg(u; 6) (13)

where
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m n m
zg(u; 6) = in Z E (cij + v - i)ij + C fiyi

i= j l i i

m n
s.t. Z .. c. = 6

i=l j=l J 1
(14)

n
x - Kiyi < 0 for i = 1,...,m

j=i lj i i

xij > 0 and integer, yi 0 or 1.

Note that unlike the Lagrangean LO, this Lagrangean does not separate into m

individual calculations, one for each plant site. By the inverse optimization

Theorem 2, for any u and 6, a solution xij(u; 6), Yi(u; 6) for all i and j is

optimal in R(d(u)) where d(u) = Z x. (u; 6).
Problem (14) is a fixed-charge group optimization problem that can be

Problem (14) is a fixed-charge group optimization problem that can be

solved for all 6 by an algorithm developed by Northup and Sempolinski [11].

The computation is somewhat more complex than that required for the unconstrained

or zero-one group optimization problems (see Gorry, Northup and Shapiro [8]).

The algorithm of Northup and Sempolinski is a generalization of one devised by

Glover [ 7 ] (see also Denardo and Fox [ 4 ] or Shapiro [ 15 ]).

Relative to the specific problem R(d), the Lagrangean calculation Lg given

in (13) has been strengthened over the Lagrangean L given in (15) because the

k k 0solutions xij, Yi for all i and j, and k = 1,...,K, that are optimal in L at

dual optimality, have been made infeasible according to (12). It may still be,

however, that there is a duality gap between R(d) and its new dual

wg ( = max Lg (u; d)

s.t. u R.
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If so, the Lagrangean can be strengthened still further by reapplication of

the same procedures. In this way, we can ultimately find an optimal solution

to R(d) for all d D*. The reader is referred to Bell and Shapiro [2] and

Bell [1] for more details.

The importance of the scale used to measure the integer demand vector

d to the analysis of the capacitated plant location problem R(d) is brought

into focus by problem (11). If a coarse scale were used to measure the demands

dj, then we would expect the d clustered around it to be smaller in magni-

tude than they would be if the d. were measured according to a refined scale.

The magnitudes of the d tend to determine the magnitude of the order of the

group 9 induced by an optimal basis for (11) and hence the computational effort

required to optimize the fixed-charge group optimization problem (14). Of

course, any group 9 can be used in the construction of (14). For example, we

could use instead a group induced by a derived basis for (11) with d replaced
t J
d;

by [ ] for all j, where . > 0 and [ ] denotes "integer part of". Alterna-

tively, the procedures of Bell [1] would permit the construction of small groups

in many cases even when the demands dj are large in magnitude.
J
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4. Parametric Analyses and Inverse Optimization.

The use of inverse optimization methods in parametric analyses of

integer programming and other combinatorial optimization problems is a

rich area of research. In this section, we give some details on one

approach for the capacitated plant location problem. The approach is

based on subgradient optimization using the function Z defined in (6).

Suppose we are interested in an optimal solution to the capacitated

plant location problem R(d) for d equal to and near the target demand

vector d. We begin by using the simplex method to solve the ordinary

linear programming relaxation RC(d) with minimal objective function value

r (d). Suppose further that the linear programming solution is fractional.

We then use subgradient optimization to generate a sequence of dual solu-

tions {uk } and a corresponding sequence of demand vectors {d } defined by

(8) for which we know an optimal solution to R(d k).

Specifically, as long as dk d, we choose the dual sequence {uk } by

the rule

k+l k (rC(d) d k)(15)
u u + k (d-d ) (15)

k = 1,2,...

where the sequence of demand vectors {d } is given by (8), 0 < E1 < Ok < 2 -

E2 < 2 and II 1 denotes Euclidean norm. The formula (15) is a specializa-

tion of the general subgradient optimization rule (see Shapiro [15, p. 184])

to the capacitated plant location problem. The vector d - dk is a subgra-

dient of L0(uk;d) = ukd + Z(u k). Unlike other applications of subgradient

optimization, we know in this case that the maximum value of w (d) of L0(u;d)
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is at least as great as rC(d) and therefore we can guarantee that lim L0 (uk;d)

> rC(d) (e.g., see Theorem 6-2 of Shapiro [15]). Recall that w0(d) is the

maximal dual objective function value and rC(d) is the minimal objective

function value of the ordinary linear programming relaxation.

The procedure is completely specified once we have given the starting

0
dual vector u , and values for the relaxation parameters k. An optimal

dual vector from R (d) may not be a good choice because in the case when

0 c k 0
w (d) = rc(d), we would have u = u for all k. One possibility is to take

O 0
u = u* + p*(d - d*) for some p* where d* is computed from Z (u*) by (8).

0
The choice of u and the k depends heavily on experimentation still to be

gained.

There are only a finite number of distinct demand vectors that can

arise in the sequence {d } derived from the sequence of dual vectors given

by (15). This is because the set of feasible solutions to R(d) is finite.

For a special case, the following theorem gives a characterization of those

that can arise infinitely often.

Theorem 6: Suppose dk d in the sequence of demand vector {d k=O' and

let d denote a vector occurring infinitely often. Suppose further that

w0(d) = r(). Then the vector i - d is a subgradient of L (u;d) at an

optimal solution for the dual problem (9).

Proof: In the special case when w (d) = rC(d), the sequence of dual solu-

tions {u kc=l converges to a solution u* that is optimal in the dual problem
k=l

(9) (see Shapiro [15; pp. 185-186]). Since for u = u

L(uk;d) = C + u(d - d)

for C defined in (10), we have
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w (d) = lim L(u ;d) = L(u*;d)
k

= C + u*(d - d )

which is what we wanted to show. 
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5. Numerical Example.

Consider a capacitated plant location problem with three plant sites and

two customers. The capacities of the three potential plants are K1 = 8, K2 = 7,

K3 = 6, with associated fixed-charges f = 10, f2 = 8, f3 = 12. Table 1 gives

the unit transportation costs from site i to customer j. The quantities v =

V2 = v3 = 0.

i= 1

i= 2

i = 3

Unit Transportation Costs

Table 1

The circled demand vectors in Figure 2 are the ones that can be spanned by Z

for some u; by Theorem 4, these correspond to capacitated plant location prob-

lems for which there is an optimal integer solution to the linear programming

relaxations.

We extend the inverse optimization analysis by considering the capacita-

ted plant location problem with the demand vector (dl, d2) = (10, 2) not

spanned in Figure 2. An optimal basis for problem (11) for this problem is

given by

8 15 8

0 0 6

1 1 1

j=l j=2

5 6

6 7

7 3
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The implied optimal solution to the linear programming relaxation of this

problem is xll = 8, x2 1 = 2, x3 2 = 2, yl - 1, 2 = 6/21, Y 3 = 7/21. The

optimal linear programming shadow prices are (1' 2) = (7.14, 5.00). To

try to fill in the gaps in Figure 2, we use the above basis to construct

a homomorphism g mapping Z2 onto Z4 2, the cyclic group of order 42, which we

use to aggregate the demand equations. The homomorphism is specified by

g(e 1) = = 6 and g(e2) = 2 =- 7 where 1 and 2 satisfy, along with 3,

the group equations

8c1 + lC3 0 (mod 42)

156 + le 3 - 0 (mod 42)

8s1 + 62 + 13 - 0 (mod 42)

See chapter eight of Shapiro [15] for more details about group constructions.

The resulting fixed-charge group optimization (14) is

Zg(Ul,U2) =

min (5-u )xll + (6-u1)x2 1 + (7-u1)x3 1 + (6-u2)x1 0 + (7-u2)x2 2 + (8-u2)x3 2

+ 10y1 + 8y2 + 12y 3

s.t. 6X11 + 6x21 + 6x31 + 712 + 722 + 7x32 - (mod 42)

Xll + x12 - 8y 1 < 0

x21 + x22 - 7y2 < 0

X31 + x32 - 6y3 < 0

x; > 0, integer, i = 0 or 1.xJ 1
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Figure 3 shows the demand vectors spanned by computing Zg(7,6) for all 42

group right hand sides. There are 50 demand vectors shown in the figure

because we include some obvious alternative optima. Although a considerable

number of unspanned demand vectors in Figure 2 are spanned in Figure 3, the

target demand vector (10,2) is not spanned. Reoptimization of Zg at other

dual solutions might produce an optimal solution spanning the target.

Finally, we illustrate the parametric procedure outlined in section

using the function Z . Figure 4 shows the demand vectors spanned by seven

steps with the procedure with the relaxation parameter p = 1. Table.2 gives

some additional data. We remark that for this simple example, subgradient

optimization converges rapidly to an optimal solution to the dual of the

ordinary linear programming relaxation.
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5. Conclusions and Areas of Future Research.

We have presented the conceptual background for the inverse optimization

approach to analyzing the capacitated plant location problem and more general

mathematical programming problems. Several areas of future research are sug-

gested by our results so far. For the capacitated plant location problem,

there remains considerable theoretical and empirical research to be done on

the use of inverse optimization in parametric analyses. A related topic to

be investigated is the specialization of integer programming shadow price

results (Shapiro [14]) to the capacitated plant location problem.

The fixed-charge group optimization algorithm devised by Northup and

Sempolinski [11] for computing Zg needs implementation and testing to measure

its efficiency as a function of the number of plant sites m and the size of

the group (3. Moreover, this algorithm is applicable to a wider class of

fixed-charge problems than the capacitated plant location problem. The expli-
n

cit inclusion of the constraints Z x - Kyi < 0 in the Lagrangean is highly
j=l

desirable for these problems as long as it does not impose severe computational

limits.

The capacitated plant location model can be extended in a number of direc-

tions to incorporate multiple time periods, multiple commodities, more general

concave cost curves for capacity expansion and endogenous demand. Examples of

such model extensions can be found in Bloom [3], Erlenkotter [5] and Kazmi and

Shapiro [10]. The practicality of inverse optimization for more general models

is another area of future research, An example is a multi-item production/

inventory mixed integer programming model given in chapter eight of Shapiro [15].
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