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ABSTRACT

Consider a set of N i.i.d. random variables in [0, 1]. When the experimental

values of the random variables are arranged in ascending order from smallest to

largest, one has the order statistics of the set of random variables. In this note an

O(N3) algorithm is developed for computing the probability that the order statistics

vector lies in a given rectangle. The new algorithm is then applied to a problem of

statistical inference in queues. Illustrative computational results are included.
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Introduction

Let X1, X 2, · · · , XN(1) be an i.i.d. sequence of random variables with values in

[0,1] where the sequence length N(1) is an independent random integer. Recently, in

an application to queue inference [6,7], an efficient algorithm [O(N 3)] has been

developed to compute the conditional cumulative probability of the vector of order

statistics, Pr{X(l) < t1 , X(2) < t2 , .· · , X(N) < tN I N(1)=N}, for the case of each Xi

uniform. (The algorithm presented here will efficiently calculate the latter

probabilities for Xi having arbitrary given c.d.f. F(x).) Apparently the question of

efficient computation of cumulative probabilities for the order statistics vector has

not been previously treated in the literature. (See for example [1], [4].)

It is most natural to ask for an efficient algorithm to calculate the probability of

an order statistics vector lying in a given N-rectangle, i.e., to compute

Fr(, t) Pr{sl < X(1 ) t 1 , s2 < X( 2 ) < t 2 , · · SN < X(N) < tN I N(1) = N, where

s - (s1 , s 2 .. , SN), t (t1 , t 2 .. , tN). We note that the method of computing the

probability of a rectangle by applying repeated differences to the cumulative will

require 2N evaluations of the cumulative. This is too slow for many applications.

In this note we develop an efficient algorithm [O(N3)] to compute these probabilities

for arbitrary rectangular regions where the Xi have a given c.d.f. F(x). New

applications are given for deducing queue statistics from transactional data.

1. Analysis

Assume Xi E (0, 1] and < tl < t2 < ... < tN < 1, 0 < sl < s 2 < ... < sN < 1 and s i < t i

for i = 1, 2,.. ., N. Note that, since {ti} and {si} are each nondecreasing as sequences,



we may merge the two sequences into
2N

vi= 1i=l
, ordered according to magnitude,

using only O(N) operations. Consider

Wki Pr{s1 < X(1) < min {t1, vi}, s2 < X(2) < min {t2, vi}, .,

sk < Xk < min {tk, vi} I N(1) = k},

We want to compute WN,2N = F(, D).

i = 1, 2,. .. , 2N, k= 1,2, .. .,N

This will require recursive computation of

entries of the matrix W = (Wki), starting with k = 1. By noting impossible events we

see that for all k,i such that sk vi, Wki = 0, implying that Wkl = 0 for k = 1,2,...,

N. We also require as a boundary condition

W0i = 1 for i = 1,2,..., 2N - 1, (2)

which can be interpreted to be the probability that the event inequalities will be

satisfied, given no random variables (hence no inequalities) in [0, 1].

Wki can be computed using the following recursion:

Wk -j,i -1 [F(vi) - F(vi- 1)] 
i(k)Wki =

j= 0, 1, 2, . ..

s.t. vi< tk - j+

Proof.

Wki = Pr{s < X( 1) < min tl, vi}, s2 < X( 2) • min t 2, vi), . . .,

sk < Xk < min {tk, v i} I N(1) = k)

= Pr{s1 < X(1) < min {t1 , v i _ 1}, s 2 < X(2) min t 2, v i -1}, .,

s k < Xk < min {tk, v i - 1} I N(1) = k}

(1)

Theorem.



+ Pr{sl < X(1) < min tl, vi _ 1}), 2 < X(2) < min {t2, v i _ 1}, ,

Sk- 1 < X(k- 1) < min {tk _ 1, i- 1}, Vi- 1 < X(k) min {tk, vi} I N(1) = k}

+ Pr{s < X(1) < min {tl, v i _ 1}, s2 < X(2 ) min {t2 , v i _ 1},...,

Sk - 2 < X(k - 2) < min {tk _ 2, Vi - 1}, i - 1 < X(k - 1) < min {tk _ 1, vi},

vi- 1 < X(k) < min {tk, vi} I N(1) = k }

+ ... + Pr{s < X() < min {tl, v i _ 1}, s2 < X(2) min t 2 , v i - 1 ,-,

Sk - j < X(k - j) < min {tk_ j, vi_ 1}, i - 1 < X(k- j +1) < min {tk - j+l, Vi}, ,

vi- 1 < X(k) < min {tk, i} I N(1) = k} + ...

The term explicitly displaying X(k -_ j+l) on the RHS can be nonzero only if

min{tk - j + 1, vi} = vi. Hence we can write

Wki=W ki-l + ) W k -,i -1 F(vi) - F(vi _ 1))

k (F(vi) - F(v -1)) 2+ 2 W k-2,i-1 ivj-Fv1)

Wk -j,i-1

for all j satisfying vi < tk j + 1 and where the last term on the RHS utilizing the

boundary condition Eq. (2) is included only if vi < tl.

As a verification of the recursion we obtain as expected at the first iteration

Wli = F(min{tl, vi}) - F(sl) i = 2, 3, ... , 2N.

... +Wo,i- (F(i) - F(vi -1))k

.

k
+... + i (F(vi - F(vi _ )) j+



The matrix W = (Wki) can be partitioned into three regions:

(1) Wki = O for k 2 i;

(2) Wki 2 0 for i -N < k < i;

(3) Wki > O for k <i -N;

Hence the maximum possible number of nonzero terms in row k is 2N -k, and the

minimum number is N - k + 1. The recursion to obtain Wki requires computation

and addition of up to k + 1 terms. Thus, row k of (Wki) requires computation of up

to (2N - k)(k + 1) terms. The total number of terms required to compute (Wki) is

N 2 3 2 2
I (2N-k)(k+l)= N +2N - N

k=l 3 3

yielding an O(N3 ) procedure. For the special case si = 0, i = 1, 2, . . ., N, all Wki in

region (2) of W are zero and we have the problem of Refs. [6,7].

2. Applications to the Oueue Inference Engine

Ref. [6] uses events of order statistics to derive an algorithm, the "Queue

Inference Engine," to compute various performance measures of Poisson arrival

queues. In particular, N is the total number of customers to arrive to the queueing

system during a congestion period, a continuous time interval during when all

servers are busy and all arriving customers must queue for service. And ti is the

observed time of departure of the ith customer to leave the system during the

congestion period. Using the fact that the N unordered arrival times during any

fixed time interval (0,T] are i.i.d. uniform and scaling the congestion period to (0, 1],

then in our notation here F(0, t) is the apriori probability that the (unobserved)



arrival times X(1), X(2 ), .. ., X(N), obey the inequalities X(i) < t i for all i = 1, 2, .. ., N, a

condition that must hold for the congestion period to persist. (Additional new work

on the Queue Inference Engine is reported in [2], [3] and [5].)

2.1 The Maximum Experienced Queue Delay

Assume we have a first-come, first-served (FCFS) queue. Suppose we set s = t -

z, i.e., s i = Max{ti - , 0) for all i = 1, 2, . .. , N. Then F(t - , t) is the a priori

probability that the observed departure time inequalities will be obeyed and that no

arrival waits more than X time units in queue. Define

D( I ) - conditional probability that none of the N customers waited

more than z time units, given the observed departure time data.

Clearly,

D(.2 I Cum) = F(t-, )/ ueu (0, Dela).

2.2 The Cumulative Distribution of Queue Delay

Again assume we have a FCFS queue. Suppose we set s = Si, defined so that

(3)

Si = 0

s = Maxtj- ,0} i=j,j+1,...,N.

Then if we define

j ( I t) = Pr jth customer to arrive during the congestion period waited less

than z time units I observed departure time data},

we can write

3j ('C I t) = F(s, /rF(0,t).

i = 1, 2,...,j -

(4)



This result allows us to determine for any congestion period the probability

that a random customer waited more than time units, given the observed

departure data. We simply compute Eq. (4) once for each value of j and average the

results. Or, if a less accurate computation is permitted, just select the customer j at

random from the N available and apply Eq. (4) to the selected customer. By applying

Eq. (4) for varying values of , we can determine the c.d.f. of queue delay,

conditioned on the observed departure time data.

2.3 Maximum Queue Length

Finally, without any assumption regarding queue discipline, suppose we define

s = s*M such that

*M

where a negative subscript implies a value of zero. These values for s imply that

each arriving customer i is to arrive no earlier than the departure time of departing

customer i - M during the congestion period. Now we can compute the conditional

probability that the queue length did not exceed M during the congestion period:

P(Q < M I ) = Pr{queue length did not exceed M during the congestion period

I observed departure time data}

= F(s*M, /rF(O, D. ((5)



2.4 Probability Distribution of Queue Length

Following the same arguments as in [4], we can utilize the O(N 3 )

computational algorithm to determine for any queue discipline the probability

distribution of queue length at departure epochs, and by a balance of flow argument,

this distribution is also the queue length distribution experienced by arriving

customers.

2.5 Behavior of Priority Queues

As a final example, consider a multiserver queue with L priority classes of

customers. At any given time during a congestion period there exists up to L

distinct queues, indexed I = 1, . . ., L. A customer from class i is said to be higher

priority than one from class j if i < j. Upon completion of service of a customer, the

newly available server will select a customer from the highest priority nonempty

queue. There must be at least one, otherwise the congestion period would be over.

We define

Ii = priority of the customer whose service commences at time t i.

We assume li is known for each customer, thus I = (li) is an additional vector in the

transactional data set.

Analysis of the priority sequences in I uncovers subcongestion periods within the

universal congestion period. As an example, suppose for a three priority system we

have a single congestion period commencing at time t = 0, with = (3, 2, 1, 1, 1, 2, 3),

t=(tl, t 2, t 3 , t4, t 5, t6 , t 7). Here, for example, the first priority 3 customer commences

service at time t = 0, the first priority 1 customer to enter service does so at time t =

t2, and the entire congestion period terminates at time t = t 7. The time interval [tl,

t4] is a continuous period of time during which the three consecutive customers to



enter service are priority 1; this period of time is a subcongestion period for priority

1 customers and a component of longer subcongestion periods for priority 2 and 3

customers. For instance, the subcongestion period for the single queued priority

three customer is [0, t 6]. Each such subcongestion period may be analyzed separately

using the ideas above to compute queue performance by priority class. If queue

discipline is first-come, first-served within each priority class, then one can use

Eq.(4) to determine the probability distribution of queue delay for each priority class.

2.6 Illustrative Computational Results

Perhaps the most important queue inference application of the algorithm is

use of Eq.(4) in computing points on the c.d.f. of the in-queue waiting time for a

random customer, assuming a FCFS queue. We have done this for several different

queues for which limiting or equilibrium results are known.

One set of Monte Carlo simulation runs modeled the well known M/M/1

(Poisson customer arrivals, i.i.d. negative exponential service times, single server)

queue under alternative load factors (ratio of customer arrival rate to available

customer service rate). As one illustrative example an M/M/1 queue was simulated

with an average of 10 customers arriving per hour, available service rate of 20

customers per hour (i.e., mean service time of 1/20 hour or 3 minutes) for a total of

1000+ simulated hours. The average load factor was 0.5. The transactional data of

each of the 4961 observed congestion periods were analyzed with Eq.(4) to estimate

points on the in-queue waiting time c.d.f. If Wq is the random variable of interest,

then Eq.(4) yields the following c.d.f. estimates: P{Wq = 0} = 0.4922, P{Wq < 1 min.) =

0.5913, P{Wq < 2 min.} = 0.6476, P{Wq < 3 min.} = 0.6972. From the theory of

M/M/1 queues, the analytically obtained limiting results are P{Wq = 0 = 0.5000,

P{Wq < 1 min.} = 0.5768, P{Wq < 2 min.} = 0.6417, P{Wq < 3 min.} = 0.6967.
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