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ABSTRACT

The Optimal Network problem (as defined by Scott [16])

consists of selecting a subset of arcs that minimizes the sum of the

shortest paths between all nodes subject to a budget constraint.

This paper considers the worst-case behavior of heuristics for this

prob'em. Let n be the number of nodes in the network and e be a

constant between 0 and 1. For a general class of Optimal Network

Problems, we show that the question of finding a solution which is

always less than n times the optimal solution is NP-complete.

This indicates that all polynomial-time heuristics for the problem

most probably have poor worst-case performance. An upper bound for

worst-case heuristic performance of 2n times the optimal solution

is also derived. For a restricted version of the Optimal Network

problem we describe a procedure whose maximum percentage of error

is bounded by a constant.



"'lcrs-t-Oase Analysis of 'ietwork Design Problem Heuristics"

by

Richard T. Wong

1. Introduction

This paper discusses the "optimal" network problem which

can be described in the following way: select a subset of arcs in a

network so that the total weighted sum of the shortest paths in the

network is minimized subject to the constraint that the total cost of

the arcs selected does not exceed a given budget. More formally, the

optimal network problem can be formulated as the following mixed

integer programming problem:

kZ
Minimize I ci xij

(i,j)A (k,I)e(DxD) 1

r.k if i = k

subject to xij - kl=
q

0 otherwise

k
xij < rklYij

dijyij < B
(i,j)eA

xki > (i,j)EA and (k,Z)e(DxD)
ij -

YiJ = or 1
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where the ecision variables are xi, the amount of commodity (k,Z)

routed on arc (i,j), and yij, a binary variable indicating whether

or not arc (i,j) is to be constructed. Let D be the set of nodes

and A be the set of possible arcs (undirected). Define rkZ to be

the amount of commodity (k,Z) that must be routed, d.. to be the
1J

construction cost of arc (i,j) and cij to be the per unit routing

cost of arc (i,j). Let B be the construction budget. All data

dij and ciJ are assumed to be nonnegative. For technical purposes

(and without any real loss of generality), we assume that all cij

and dij are integer valued and that all problems under considera-

tion have an optimal solution greater than zero.

This type of network design problem has potential uses

in designing air, rail or highway transportation networks. Although

such systems are usually much more complex than the above problem,

this model could be useful in screening network configurations for

more detailed study [4].

Previous work done on the optimal network problem has

indicated that it is a very difficult optimization problem. Johnson,

Lenstra, and Rinooy Kan have shown that the optimal network problem

is P-complete [8], which means that there is very probably no

efficient method for solving problems of this type. Computational

studies by several authors [1,3,4,7] using branch and bound techniques

have shown that for optimal network problems with more than 50 or

75 arcs, solution times are prohibitive. So suboptimal heuristic

methods appear to be the only methods available for generating

solutions to large-scale network design models. Scott [161 and

Dionne and Florian [4] have proposed heuristics for the optimal network
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problem. In the next section we review some of these procedures

(for a more complete survey of the optimal network problem and

related design models see Wong [17]).

An important question that arises in using heuristic

techniques is the accuracy of the answers generated. One technique

for evaluating heuristics is to analyze their worst-case performance.

That is, we compute the maximum possible percentage deviation from

the optimal solution when using the heuristic. This type of analysis

is conservative in that only the worst possible error is computed,

but can be useful in terms of evaluating performance guarantees for

heuristics. Many researchers have analyzed heuristics for various

combinatorial problems in terms of their worst-case error performance.

See Garey and Johnson [6] for a surrey of these results.

In this paper we analyze the worst-case behavior of a

wide class of optimal network problem heuristics. The next section

reviews some past work in designing such heuristics. Also some

examples are given which demonstrate worst-case behavior for some of

these procedures. The third section contains our main results which

show that even finding an approximate optimal network solution is

NP-complete. These results indicate that all polynomial-time

heuristics for the optimal network problem probably have poor worst-

case error bounds. The fourth section describes a particular

heuristic algorithm whose worst-case error ratio for a restricted

version of the optimal network problem is bounded by a constant that

does not depend on the size of the input problem. The last section

provides a summary and overview of the paper's results.
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We should note that most of the revious work in this

area (see [1,4,7,16]) dealt ith a restricted version of the optimal

network problem where all required flows rkZ were one and

every arc routing cost c.. was equal to its construction cost d...

In this paper, unless otherwise noted, we assume that all required

flows rkt are one but that an arc routing cost may be different from

its construction cost.

2. Previous Work in Otimal Network Problem Heuristics

Scott [16] and Dionne and Florian [4] have presented

some optimal network problem heuristics which we consider here.

The first heuristic that we review is due to Dionne and

Florian and was stated as follows:

(H1) 1) Construct the minimal cost spanning tree (using the

construction costs d.. as the arc costs) as the initial

network configuration.

2) As long as the budget constraint is not violated, add to

the network configuration the arc whose construction cost

is the least of all arcs not yet included in the network

design.

Note that if the minimal cost spanning tree is infeasible

because of the construction budget constraint then the problem is

infeasible.
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Dionne and Florian also presented another heuristic that

is a modified version of one described by Scott. It has the following

description:

(H2) O) Let M be the set of arcs in the current network design.

For kM, define Q(M) as the increase in the total routing

cost if arc k is deleted from M.

1) Initialize M so it contains all arcs in the network.

2) Find k* such that

Qk*(M) Qk(M)
,(M) = MIN -

k* =keM dk

where is the construction cost of arc k. If Lk,(M) =

then the removal of any link will disconnect the network

and computation should be restarted using heuristic H.

Otherwise, delete arc (k*) from M and continue with

step 3.

3) If I I > B, i.e., the current network exceeds the
keM

construction budget, go to step 2; otherwise continue with

step 4.

4) If B - d > 0, then introduce as many arcs as possible
ksM

so that the routing cost decrease is maximized and the

budget constraint is satisfied. END
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The quantity Lk() can be roewed as the normalized

"loss" due to deleting arc k. At each iteration we delete the arc

whose loss is the minimum of all arcs; the process continues until

a feasible solution is reached. This procedure is related to the

"greedy" heuristic that has been studied previously [2].

Dionne and Florian performed computational tests to

compare both heuristics. H2 performed noticeably better than H1.

In fact, for many test problems H2 was able to find the optimal

solution.

Now we consider the worst-case performance for these

heuristics. Let us define the following terms:

Vh(.) = the value of the solution computed by heuristic h for

problem (.).

V(-) = the optimal solution value for problem ().

S(n) = the set of optimal network problems containing n nodes.
Vh(s)

R(n) = AX V(s)
ssS(n)

Rh(n) is the worst possible error ratio when heuristic h

is applied to optimal network problems consisting of n nodes. The

goal of our worst-case performance analysis is to compute Rh(n).

We show that for both of the above heuristics, the worst-

case error ratio essentially behaves as a linear function of n, the

number of nodes in the network. Therefore the error ratio is

unbounded as the size of the network increases.
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Consider the following canonical example ·depicted in

Figure 1. Let t and t2 represent a subnetwork consisting of Z

nodes. Figure 2 contains a diagram of this subnetwork. Any arc

connected to t or t2 is considered to be connected to the center

node in the corresponding subnetwork.

The label associated with each arc in Figure 1 denotes

the arc's routing cost and the construction cost respectively. The

construction budget B is 13.

Using heuristic H2, we start with all arcs in the network.

Then we drop arc (tl,t2). Next, we drop arc (tl,b) or (t2,b) (the

analysis is the same regardless of which arc is deleted). This

leaves us with the following network depicted in Figure 3. Recalling

that all required flows r. are equal to one, we compute the cost of

the above solution as

V2 = 8Z4 + 16 3 + 42 + 4Z + 2.

Figure 4 depicts the optimal solution to the above problem. The

optimal solution has

V =83 8Z2 + 12Z + 6.

The total number of nodes in the network is 2Z + 2.

8Z4 + 16Z3 + 4 2 + 4 + 2
RH2(2+2) > 

8Z3 + 8 + 12Z + 6-

RH2(2Z+2) > Z for Z > 1.
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(i,5)

(2,4)

(2z 2 , ) (1,5)

Figure 1: Optimal Network Problem Example for Heuristic H2.

(0,0). (0,0)

Figure 2: Star Network Representing a Node.

(



tI

(2Z,)

(2Z 2 , 4) (1,5)

Figure 3: Solution Computed by Heuristic H2 for the Example.

(2z2 ,4)

(1,5).

(2,4)

)t2

Figure 4: Optimal Solution for Optimal Network Example.
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This implies

R2(n) > n - 1 for n = 6,8,10,...

So our example shows that the worst-case error ratio

for H2 must be at least linear since our canonical example exhibits

such behavior for an infinite number of network sizes.

Heuristic H behaves similarly. Consider the canonical

example represented by Figure 5. Let the budget B be 25. An

analysis that closely follows the one given above tells us that

1
Rl(n) > n - for n = 6,8,10,...

So the worst-case error ratio for H1 must also be at least linear.

The above results lead us to question if there are

optimal network heuristics whose worst-case behavior is better

than the ones given above. The next section gives a result which

indicates that all "reasonable" heuristics must probably perform

nearly as badly in terms of worst-case error margins. Also we show

that the worst-error ratio for the above heuristics is no worse

than a linear function of network size. So the examples given above

show essentially the worst possible behavior of heuristics H1 and H2.
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ti

(1,8)
(2

(2,9)

(2z ,8) ,lo)

c

Figure 5: Optimal Network Problem Example for Heuristic H1.
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3. Two Theorems on the Accuracy of Optimal Network Problem Heuristics

The first result that we consider concerns the class of

polynomial-time heuristics for optimal network problems, that is,

the set of all optimal network design heuristics whose worst-case

computation time is a polynomial function of the problem input size.

As we stated previously, Johnson, Lenstra and Rinooy Kan [8] showed

that the optimal network problem is NP-complete. Next we show that

the problem of finding an optimal network design heuristic whose

worst-case error ratio is less than n , where n is the number of

nodes in the network and is between 0 and 1, is also NP-complete.

So finding a polynomial-time optimal network design heuristic that is

always "close" to the optimal solution is as hard as finding a

polynomial-time procedure that is always optimal. Sahni and

Gonzales [15] demonstrated similar results for the traveling salesman

problem (without the triangle inequality restriction), the multi-

commodity network flow problem and other combinatorial problems.

Garey and Johnson [5] derived a related result for the graph-coloring

problem.
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Our first result can be stated in the following terms:

Definition: The approximate optimal network problem is the following:

let be any fixed positive constant between 0 and , for any optimal

network problem s find a solution whose value is less than or equal

to nl-V(s), where n is the number of nodes in the problem s.

Theorem 1: The approximate optimal network problem is NP-complete.

Proof: Since the optimal network problem belongs to NP (see [8,9,10]),

the approximate optimal network problem must also belong to NP. Now

we show that if the approximate problem could be solved in polynomial-

time, that is, if there existed a polynomial-time heuristic h* and a

constant , 0 < < 1, such that Rh.(n) < n1 - for all n, then all of

the NP-complete problems could be solved in polynomial-time.

Let us define a useful auxiliary problem. The Steiner

tree problem [9] has the following description: given a network

(D,A) with node set D and arc set A and the data i) dij}(i,j)aA

the set of arc construction costs, ii) B, the construction budget,

and iii) S, a set of nodes which is a subset of D, determine if there

is a subtree of the network whose construction cost is less than the

given budget B with the property that all nodes in S are connected by

the subtree. Karp. [9] has shown that the Steiner tree problem is

NP-comlete.
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We next demonstrate that if the heuristic h* defined

above exists, then the Steiner tree problem could be solved in

polynomial-time. It would then follow [9,101 that every NP-complete

problem could be solved in polynomial-time.

Given any Steiner tree problem, transform it into an

approximate optimal network problem in the following way: replace

each node in the set S by a subnetwork of the type pictured in

Figure 2. Each of these subnetworks should have Mk nodes, where M

is the number of nodes in the original Steiner tree problem and k is

an integer constant that will be specified later. All routing and

construction costs for arcs in the subnetwork should be zero.

Attach a special node T to the Steiner problem network.

Every "special" arc between T and the set of nodes D has a construction

cost of zero and routing cost of one. Every arc between T and a

node in S, which is represented by a star network corresponding to

Figure 2, is connnected to the center of the star network. All arcs

originally in the Steiner problem network have zero routing cost and

retain their original construction costs.

Figures 6 and 7 illustrate such a transformation. S' is

the set (D-S). The arc labels in the original Steiner tree problem

network are the arc construction costs. The arc labels in the

modified optimal network problem indicate the arc routing and

construction costs.
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5

4

1 6

__ S
4

Figure 6: Example of a Steiner Network Problem
(Before the Transformation).

(1,0)

(o,

_ (0,4)
1%.

Figure 7: Example of a Steiner Network Problem
(after the Transformation).

.-- _ - .

o--



The construction budget for the optimal network problem

is the same as the Steiner problem budget. As we have assumed through-

out this paper, all required flows in the optimal network problem are

equal to one.

It is important to note that this transformation to create

an optimal network problem from a Steiner tree problem is a polynomially-

time bounded procedure for any finite value of the parameter k. Also

note that the size n of the optimal network problem created by our

transformation is at most (Mk+l+l) nodes.

Now if one of the special arcs is utilized in the optimal

network design to connect two nodes that are in S,

routing cost > 4M
2k.

If all nodes in S are connected with arcs from the original

Steiner tree problem,

routing costt < k+2, k > 3 and M > 4.

Let C(N1,2T2) represent the cost of routing between every pair of

nodes in the set (N xN2). Then we can say total routing cost =

RC(S,S) + 2RC(S,S') + RC(S',S') + 2RC(S,{T}) + 2RC(S',{T}), where
the factors of 2 are a result of the symmetry of the required flows
in the network. Since all arcs from the original Steiner tree
problem have routing cost zero, RC(S,S) = O. We can always utilize
the special arcs connecting T to the rest of the network so we have

Mk+2
SC(S,S <) < 2 , RC(S',S') < 4M2 RC(S,{T}) < Mkl and RC(S',(T}) < M.

Therefore, total routing cost < k+2 + 4M2 + k+l + 2M < k+2,
k > 3 and M > 4.

- 16 -
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:low suppose there is

the otimal network roblem such

l-E:
Rh.(n) < n

a olynomial-time heuristic h* for

that for some 0 < < 1

for all n > 1.

Since there exists a k > 3 such that k-2 > 1 - we
k+2 -

have

Rh(n) < n

k-2
k+2

< n for some k > 3.

Next we examine the implications of the above statement on the class

of optimal network problems consisting of our transformed Steiner

problems. Note that n <Mkl + 1, where M is the number of nodes

in the original Steiner problem. Therefore, for this class of

optimal network problems

k-2 k-2

,*(n) < nk+2 (Mk+l+l)k+2
Rh*(n < n <

for M > 4,

k-2 k-2

(Mk+l+l)k+2 < (k+2)k+2 = e-2

and,

Rhn) < Mk- 2 M > 4, k > 3.
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The above inequality implies that for M > 4 the Steiner

:ree problem could be solved in polynomial-time by first using our

polynomial-time transformation to create an optimal network problem

and then applying the heuristic h* to it. The existence of a subtree

satisfying the conditions of the Steiner problem could be verified

by examining whether the heuristic gave a routing cost solution that

was less than 4Mk.

Since the finite number of cases where M < 4 will not

effect the polynomial-time bound of this procedure, the above

inequality implies that the Steiner tree problem could be solved in

polynomial-time.

Finding a heuristic h* as defined above is equivalent to

solving an NP-complete problem, so we can say that the approximate

optimal network problem is also NP-complete. |_

We have seen that all polynomial-time bounded heuristics

most probably have a worst-case error ratio that grows almost linearly

with the size of the network, or at a faster rate. Next we see that

for reasonable heuristics the error ratio grows no faster than

linearly with the size of the network.

Before presenting this result we introduce some additional

notation. Let T be any spanning tree of a network and arbitrarily

choose a node R with degree one from T and designate it as the root

node. A node f is the father of node N if f lies on the (unique)

path in T between N and R and if there is an arc in T that connects
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f and N. Node s is the son of node f if f is its father. Let w.

be the number of nodes which are descendants of node i (i.e., nodes

other than i whose path to R in T must pass through i). Des(N) is

the set of nodes which are descendants of N.

Figure 8 contains an example illustrating these

definitions. Node I is the root node. In this example node 2 is

the father of node 5. Also w2 = 5 and w6 = 0.

Theorem 2: For optimal network problems whose routing costs satisfy

the triangle inequality, any heuristic h which always produces a

feasible solution will have a worst-case error ratio

Rh(n) < 2n for all n,

where n is the number of nodes in the input network.

Proof: We will show that

routing cost of any spanning tree network < 2
routing cost of the complete network -

(The complete network contains every arc in A, the set of all

possible arcs. Note that A may not have an arc for every pair of

nodes in the network.) The theorem immediately follows from this

fact since the above ratio is greater than or equal to Rh(n) for

any heuristic h which always produces a feasible solution.
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Figure 8: Example of a Tree with Root Node 1.
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Let T be any spanning tree for an optimal network problem

and C denote the complete network. Let RC(T) represent the routing

cost of network design T and n be the total number of nodes in s.

Consider an arc (i,j) belonging to T (since we are dealing with

undirected arcs, assume that for any arc (i,j) in T, i is the

father of J). Its contribution to the total routing cost is

S(i,J) = 2(w+l)(n - (w+l))cij (that is, the number of origin-

destination pairs whose travel path passes through arc (i,j) multiplied

by the routing cost of arc (i,j)).

Therefore,

RC(T) = I S(i,j).
(i,j)cT

For the routing cost of the complete network, let aj

be the minimum routing cost between nodes i and j on the complete

network. Since all required flows are one we have

RC(C) = i a...
(i,j)e(DxD) 1J

Let us define the following quantity

k(iDes(j U(j} 2(ajk+aki) > 2(wj+1)cij (i)T

where the inequality follows from the triangle inequality for the

routing costs and symmetry of the routing costs (since the arcs are

undirected).
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Therefore,

(i,j) c
C(i, 4) <

2(w.+l)(n - (w+l1))c..

2(wj+l)cij
(ij) eT.

Combining these inequalities for all (i,j)eT we have

I s(i,j)
(i ,J)ET 

C
(i,j)T

(i,) eT
C(i,j)

S(i,j) = RC(T)

RC(T) < n.

E C(i,j) 
(i,J)eT

Next we show that

complete the proof.

C(i,j) < 2RC(C) and thus
(i,j )T

We argue that each arc cost term a t appears in at most

two expressions of the form C(i,j) (without loss of generality assume

that node is a descendent of node s). aat appears in the expression

C(i,:; only if

:) j equals s. Recall that since i must be the father of , i

must be the father of s.

2) i equal s and t belongs to Des(J) U(}.

and since
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The first situation can only happen once since node s must have a

unique father. The second situation can only occur once since if it

happened twice, for example, with C(i,jl) and C(i,j2), Jl $ J2' then

between s and t there would be two distinct paths in the tree T.

Since RC(C) = I ast and the term ast occurs in
(s,t)EDxD

at most two terms o the form C(i,j) we have

i )C(i,j) < 2RC(C)
(i,j)eT

Therefore,

RC(T)
2RC(C) _ n

or

RC(c) < 2n.

Notice that the optimal network problem used in the

proof of Theorem 1 had routing costs which satisfy the triangle

inequality. Therefore Theorem 1 also holds if we impose the triangle

inequality for the routing costs of the optimal network problem.

With these two theorems we have demonstrated probable

lower and upper bounds on the worst-case error ratio for all reasonable

polnomial-time heuristics for the optimal network problem with the

triangle inequality for all routing costs.



The above results can also be extended to situations in

which the required flows rkQ are not necessarily equal to one. Suppose

that all the rk are positive integers such that

max - < n for some P > 3. Then
i,j,k, ri -

Theorem 1 is modified by changing the worst-case error ratio from

n to n . Theorem 2 is modified by changing the upper bound of

2n to 2nP The proofs of such generalizations are straightforward

modifications of the ones given above and will not be given here.

4. A Heuristic for a Special Case of the Optimal Network Problem

In this section we consider a special case of the optimal

network problem where all construction costs d.. are one. The budget
1j

constraint for this type of problem essentially limits the number of

arcs allowed in the optimal network design. We will not have to

assume that the triangle inequality holds for the routing costs.

Johnson, Lenstra, and Rinooy Kan [8] have also shown that this

restrizted problem is NP-complete.

With these new restrictions on the problem, the result

of Theorem i is no longer valid. We will describe a polynomial-time

heuristic h whose worst-case error ratio

Rh (n) < 2 for all n.

- 24 -
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Let TREE(±) be the tree network of minimum routing cost

paths between node i and every other node in the network. COST(i)

is the sum of the minimum routing costs from node i to every other

node in the network.

Our third heuristic can be defined as:.

(H3) 1) Find i such that

COST(i) = MIN COST(j).
j D

2) TREE(i) is the proposed network configuration.

Theorem 3: For optimal network problems having all construction costs

equal to one

R 3(n) < 2 for all n.

Proof: We demonstrate this result by proving the stronger fact that

V (s)

RC(C) < 2, for all s,

where V3(s) is the value of the solution computed by heuristic H3

for optimal network problem s and RC(C) is the routing cost (and

solution cost) of the complete network (i.e., the network with all

arcs in A).
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As before define a.. to be the minimum routing cost

between nodes i and j on the complete network. Therefore,

COST(i) = I a...
jcD J-

The routing cost for connecting node j i to all other nodes in the

problem using the network TREE(i) is at most (n-2)aij + COST(i).

So

VH3(s) < nCOST(i) + (n-2) ai.j

and

VH3(s) < (2n-2) COST(i).

For the complete network we have

RC(C) = COST(j).
j D

Since COST(i) < COST(J) for all j,

RC(C) > nCOST(i).

This implies

VH3(s) (2n-2) COST(i)

RC(C) - n-COST(i) <2 I I
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Note that heuristic H3 has a polynomially bounded computation

time so that it is possible to have a polynomial-time approximation

procedure for a restricted class of optimal network problems whose

worst-case error ratio is bounded by a constant. Theorem 1 shows

that it is unlikely that such a heuristic exists for a broader class

of network design problems.

We believe that combining some local improvement heuristic

(perhaps one which added arcs in a "greedy" manner) with H3 could

lead to a useful optimal network problem heuristic. It would be

necessary to perform additional worst-case analyses or some

computational tests in order to verify this conjecture.

5. Conclusions

The results of this paper indicate some unusual aspects

concerning the complexity of the optimal network problem. Theorem 1

shows that even getting "close" to the optimal solution is an NP-

complete problem. So, in a sense, this network design problem is

more difficult than many other NP-complete problems. Similar results

of this nature have been developed by Sahni and Gonzalez [15] and

Garey and Johnson [6].

Theorem 1 also applies to other discrete network design

problems such as the one treated by Leblanc [13] and Morlok and

Leblanc [14]. This problem is similar to the optimal network problem

except that more complex routing costs and strategies are allowed.

So a variety of network design problems appear to be inherently

very diffizult.
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For optimal network problems where the routing costs

(cij s) satisfy the triangle inequality, we have an even stronger

result. A strengthened version of theorem 1 along with theorem 2,

implies that the upper and lower bounds on the worst-case behavior

of all reasonable optimal network heuristics (i.e., polynomial-time

heuristics that always produce a feasible solution) must be very

close unless P = NP.

In addition, we explored the relation between various

problem parameters and heuristic accuracy. By allowing the required

flows (r. 's) to assume different values we were again able to obtain
ij

probable (unless PNP) upper and lower bounds on the worst-case

behavior of reasonable heuristics. We also saw that by restricting

all the construction costs (dij's) to be equal, it is then possible

to find heuristics whose worst-case error is bounded by a constant

independent of problem size.

Although most optimal network heuristics probably have a

bad -worst-case error, there may be some heuristics whose "average"

case behavior is quite good. In Section 2 we saw that heuristics

used by Dionne and Florian [3] can be very inaccurate in terms of worst-

case error even though computational tests have indicated that their

relative margins of error are usually quite small. Many heuristics,

especially ones for complicated real world problems (such as telephone

network optimization), also appear to behave in a similar way. An

interesting area of future work would be to explore probabilistic

analyses of optimal network heuristics. See Karp [11,12] for some

examples of probabilistic analyses for various combinatorial problems.
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