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Abstract

The median problem has been generalized to the case in which

facilities can be moved, at a cost, on the network in response to changes

in the state of the network. Such changes are brought about by changes

in travel times on the links of the network due to the occurrence of

probabilistic events. For the case examined here, transitions among

states of the network are assumed to be Markovian. The problem is examined

for an objective which is a weighted function of demand travel times and of

facility relocation costs. It is shown that when these latter costs are a

concave function of travel time, an optimal set of facility locations

exists solely on the nodes of the network. The location-relocation

problem is formulated as an integer programming problem and its computa-

tional complexity is discussed. An example illustrates the basic concepts

of this paper.
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Introduction

The problem of locating facilities on a network is one that has

attracted an enormous amount of attention over the last fifteen years. The

two classical problems are the p-median (or minisum) problem and the p-center

(or minimax) problem.

The problem that we shall examine here is in many ways similar to

the p-median problem. Specifically, we shall consider the situation in

which demand for a service is generated only at the set (or a subset of the

set) of nodes of an undirected network. A newly-generated demand will travel

to its nearest server to obtain the service in question or vice versa. A number p

of servers is available on the network and we shall seek to find locations

for these servers such that the long-term total "cost" of offering the

service is minimized. We shall introduce two important new elements,

however:

First, we shall assume that, for the network at hand, the link travel

times are not constant but undergo random changes. The travel time for

each given link can take any one of a finite number of finite values associated

with that link. As a result of this assumption the network itself, at any

given time instant, can be in any one of a finite number of states, with

each state differing from all others by a change in at least one link

travel time. The network, moreover, makes transitions from one state to

another dynamically. It will be assumed that there is a Markovian

dependence among the states of the network.

Second, whereas in the p-median problem the p facilities are to be

located once and for all at the points on the network which are deemed

optimal, in our problem we have the option of relocating, at a cost, one or

more of our p servers in reaction to changes in the state of the network.
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The motivation for introducing these two new elements has been

provided by our desire to develop a version of the p-median problem which

is more realistic for the urban setting of applications with which we

were concerned. The probabilistic transitioning of the network among

states with different link travel times is intended to reflect the fact

that link travel times in an urban environment do vary widely and depend

on such factors as the time of day, the weather conditions, the day of the

week, the occurrence of accidents, etc. The Markovian dependence among

states is due to the certain degree of "predictability" and interdependence

that exists with regard to changes in the state of the network as a result

of the fact that certain of the factors mentioned above are predictable

(e.g., time of day). The motivation for having mobile servers, as well,

is obvious since many urban services involve servers which are dynamically

"pre-positioned" at well-chosen locations and wait to respond to randomly

occurring incidents in the areas they serve.

The problem of locating permanent (stationary) facilities on networks

whose link travel times are discrete random variables, as in our case, has

already been examined by Mirchandani [12] and by Mirchandani and Odoni

[13]. Two observations made in these papers apply to the present problem

as well. These observations also offer an insight as to why the problem of

finding optimal locations on such networks is a computationally complex

problem. First, it should be noted that the shortest travel time and,

indeed, the shortest path itself between two given points on the network

may change with the state of the network. The second observation--following

directly from the last one--is that, when there are two or more servers,

which demand points on the network are assigned to which particular server

will depend on the state of the network (assuming that a demand is always
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served by its closest facility). This is true even when the servers by

assumption are stationary.

An additional complication arises in our problem when the number, p,

of mobile servers is greater than 1. For in this case, in addition to

determining an optimum set of locations for the p servers for each and

every state of the network, it is also necessary to find which mobile

server is assigned to what location each time that a relocation of servers

takes place as a result of a change of network state.

In the following sections we shall begin by stating our problem and

assumptions in more formal terms and by defining the relevant quantities.

We shall then present our main result, namely that under our set of

assumptions and if the cost of relocating servers is a non-decreasing

concave function of travel time, a Hakimi-type [8,9] property holds for

our problem. That is, at least one set of optimal locations exists on the

set of nodes of the network. (Note, however, that this still requires

searching for the optimal set of p nodes corresponding to each state of

the network and that location choices for different states are inter-

dependent due to the Markovian transition probabilities among states).

The second result to be presented is that the whole problem, including

the problem of which servers to relocate where, can be formulated as an In-

teger Programming problem whose computational complexity, however, grows

explosively. The number of possible solutions, in terms of sets of

locations, is equal to () , where n is the number of nodes of the network,

p the number of servers and m the number of distinct states of the network.

In addition, each one of these possible solutions is associated with an

Assignment Problem aimed at identifying the associated optimal server-

relocation strategy. An example will be used to illustrate these ideas as



well as to suggest a procedure that simplifies somewhat the search for

optimal locations for problems of modest size.

The paper will conclude with a discussion of the relationship of our

approach to work in related areas of research. As added encouragement

to the reader, we also note that, while the notation in the remainder

of this paper tends to become onerous, the basic concepts are relatively

simple.



The Problem, Notation and Assumptions

Let G(N,L) be an undirected network with N the set of nodes (INI = n)

and L the set of links. At constantly spaced time intervals (epochs)

G(N,L) undergoes changes of state. If r and s are two distinct states of

the network and if t (i,j) indicates the travel time on link (i,j)cL

(for iN, jN) then t(i,j) t (i,j) for at least one link (i,j)cL. Let M

be the set of all possible states of G, IMI = m.

Transitions between network states at the epochs are governed by an

ergodic Markov transition matrix P with p sP being the probability of a

transition from a state r to a state s (raM, sM). We also denote the
m

steady-state probability vector of the matrix P as (P = , Z = 1).
r=l

A total of p mobile servers are to be located on the network. The

servers serve demands which are generated exclusively at the nodes of G(N,L)

with hi being the conditional probability that a demand comes from node i

(iEN) given that a demand was generated (hi can be viewed as the "normalized

weight" of node i).

The servers are operated as follows: Whenever there is a demand for

service, that demand is assigned and travels to the server closest to it, in

terms of travel time. Whenever there is a change of state of the network,

the operator of the service has the option of relocating one or more of the

servers. A relocation of a server is associated with a cost, which we shall

choose to express in units of travel time. The operator's objective is to

minimize the long-term expected cost (again expressed in terms of units of

travel time) of providing the service. That long term cost will be a weighted

sum of the total expected travel time of demands to the servers (under all

states of the network) and of the expected cost of all the server relocations

that take place per unit of time. We now define some additional quantities

needed to express this problem in quantitative terms:
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Let K(r) = {Kl(r),K 2(r)... ,K (r)} be a set of p points where the p

servers are located when the network is in state r. We shall denote: the

shortest travel time between any two points x and y on G when the network

is in state r as d (x,y); the shortest travel time between any point in the

set K(r) and a specific point x on G when the network is in state s as

d (K(r),x); the shortest travel time between the a-th point in the set

K(r) and the y-th point in the set K(s) (for a and y = 1,2,...,p) when the

network is in state as d (K (r),K (s)); and the shortest travel time

between sets K(r) and K(s) with the network in state as d (K(r),K(s)).

The cost (in units of travel time) of relocating the a-th server in

K(r) to the y-th location in K(s) with the network in state s is given by

f[ds(K (r),K (s))]. We also define binary variables W s(K (r),K (s)) as

follows: if the server at K (r) is relocated to the location K (s) when

the state of the network changes from r to s, then W (K (r),K (s))= 1;

otherwise it is equal to 0.

Finally, we define as a strategy, any vector K = (K(l),K(2),...,K(m))

with m elements, where each element K(r), rM, provides the set of p locations

where the servers will be placed when the network is in state r. A simple

strategy then is any strategy with K(1) = K(2) = ... = K(m), i.e., a

strategy in which servers remain stationary under all states of the network.

We shall now state the assumptions under which the results of this

paper have been derived:

1. The travel times t (i,j) for all rM and all (i,j)EL are finite.

2. The time required to travel a fraction (O < e < 1) of any

link (i,j)EL for any state rM is equal to 9 t (i,j).

3. The current state of the network is known to the service

operator at all times.
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4. Time intervals between changes of state are much longer

than trip times on the network.

5. No demands or further state changes occur while servers are being

relocated after a change of network state.

6. All demands are served by the closest (in terms of travel

time) servers and all servers are available whenever a demand

occurs.

7. The relocation cost function, f(-), is non-decreasing concave.

Assumption 1 assures connectivity of the network under all states.

A less restrictive version of Assumption 1 (one that allows some of the

tr(i,j) to be infinite while still leading to the same results) is given

in Mirchandani [12] and in Berman [1]. Assumption 2 concerning uniformity

of travel time on any given link will be used in the proof of Theorem 1

in the Appendix. Assumption 3 allows the operator of the service

to always choose the path with the shortest travel time when directing a

server from its location to a demand point. Assumption 4 renders

negligible the probability that link travel times will change while a server

is travelling to a demand. (Were this to happen the server might no longer

be travelling on a shortest travel time path.)

Assumptions 5 and 6 are the major simplifying assumptions in our

analysis. Both Assumptions would be approximately true, in practice, if,

for instance, the average time interval between generation of demands on

the network was much longer than travel times on the network (assuming that

demands are generated according to a stationary renewal process

independently of the state of the servers). Assumption 6 would also

be true if each mobile server could simultaneously serve any number

of incidents (e.g., mobile libraries or "bloodmobiles"). It is worth
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noting at this point that, although seldom stated explicitly, Assumption

6 is fundamental to the work that has been done to date on the p-median and

p-center problems. The implicit assumption in this area of research has

been that facilities (medians or centers) are always available to serve

demands--perhaps by having unlimited service capacity--and are not subject

to queueing type of phenomena. We shall return to this particular point at

the conclusion of our paper.

Finally, Assumption 7 is necessary for Theorem 1 to hold. It implies

"economies of scale" for the cost of travel times--a reasonable

hypothesis in most practical contexts. (Obviously the family of acceptable

functions, f(-), also includes the linear cost function.)
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The Problem

We can now express our objective function in terms of the quantities

that we have defined. For any given strategy K = (K(l),K(2),...,K(m))

the quantity,

m n
A = E E h.d (K(r),i) (1)

r=l i=l

gives the long term ("steady-state") expected travel time to servers on

the network per transition epoch. Similarly the quantity

m m p p
B = E Z r Pr[ W(K (r),Ky()) f[d (K (r),K (9))]] (2)
r=l =l c=l y=l a

Z#r

represents the long-term expected cost of server relocations per transition

epoch, taking into account all possible changes of state from any possible

state.

Our problem is to minimize the weighted average

Z = A + clB (3)

of the two quantities above with c1 being the weight assigned to server

relocation costs per transition by comparison to expected travel time

(for convenience we will assume from now on that c = 1). Two sets of

contraints apply to our problem:

p
W (K (r),K (Z)) = 1 for y= 1,2,...,p,;Vr,Z eM; r (4)

CL=1

p
W (K (r),K ()) = 1 for a = 1,2,...,p; Vr,ZcM; r Z (5)

y=l
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The following theorem can now be proved.

Theorem 1 At least one set of optimal locations for the problem above

exists on the nodes of the network.

A full proof of the theorem is included in the Appendix. As a result of

this theorem our location-relocation problem has been reduced from

optimization over an infinite set of points to an optimization over a

finite set of nodes. The total number of strategies when we consider
m

locations only on nodes is ( ) . Note also that the number of simple

strategies is ( ). In the next section we present a simple numerical example

in which we use Theorem 1.
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A Numerical Example

Let us consider the simple network of Figure 1. This network can be

in oneof two states, 1 and 2. The numbers next to the links of the network

Q t nts 2Stat

.2

0

.25

.25

FIGURE 1:

.25 25

.25
0

The Network Under States 1 and 2

represent lengths (travel times) whereas the numbers next to the nodes

are the weights, h.. Obviously, the only difference between the two states

is the travel time on link (3,2) which is equal to 1 under state 1 and to

9 under state 2.

The Markovian transition matrix, P, that describes the statistical

dependence between the two states is shown below.

state

state

1

2

1

.25

2

.75

.5 .5

The steady state probabilities associated with P are 1 = .4 and 2 = .6.

Let f(.) = (.1) /(.) be the relocation cost function, an increasing

concave one.

.25
J Wa WW
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Suppose that we wish to locate two servers on our network. Using the

result of Theorem 1 we have to find an optimal strategy K* = (K*(1),K*(2))

where K*(l) = {i,j},K*(2) = {k,Z}, with i,j,k,Ze{1,2,3,4,5} as well as

an optimal relocation plan W2(K*(l),K*(2)), W(K*(2),K*(1)); a,y = 1,2.

The number of possible strategies now is ( = 100 and the number of

simple strategies is ( 10.

The shortest distance matrices for the two states of the network can

be derived easily by inspection and are shown in Table 2, as Dr, r = 1,2.

We also include in the table two other distance matrices D1 and D2. These

matrices give the shortest distance to any one of the ten possible sets

of facility locations from each one of the nodes of the network for the two

states, 1 and 2, respectively.

The problem can now be solved easily by hand. By performing the

operation irhDr, r = 1,2 we obtain all the possible components of the term

A (the long term expected travel time to a random demand point) in the

objective function (3). The results of this operation are given in Table 1

below.

TABLE 1: The Long Term Expected Travel Time to a Random Demand Point

Location (1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)
5

rZlhid1 (K(l),i) .9 1 .5 .9 1 .4 .8 .3 .7 1.8
i=l

5

'T2 Z Chid2(K(2),i) 1.5 2.25 1.2 1.8 1.5 2.1 2.25 1.5 2.1 3
1=l

Total 2.4 3.25 1.7 2.7 2.5 2.5 3.05 1.8 2.8 4.8

Some helpful observations can now be made. First, the last row in

Table 1 provides us with the value of the objective function (3) for all ten
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TABLE 2: Distance Matrices

2 3 4 5

Node

D2 = Node

3 2 11 7 1

0 1 8 6 2

1 0 9 5 3

8 9 0 4 4

6 5 4 0 5

1 2 3 4 5

0 6 2 11 7

6 0 8 8 12

2 8 0 9 5

11

7

8 9 0 4

12 5 4 0

(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)

0 0 0 0 2 3 3 2 2 7

0 1 3 3 0 0 0 1 1 6

1 0 2 2 0 1 1 0 0 5

8 9 0 4 8 0 4 0 4 0

6 5 4 0 5 4 0 4 0 0

K(2)

2
1

2

3

4

(3,5) (4,5)

0 0 0 0 2 6 6 2 2 7

0 6 6 6 0 0 0 8 8 8

2 0 2 2 0 8 5 0 0 5

8 9 0 4 8 0 4 0 4 0

7 5 4 0 5 4 0 4 0 0

1

0

3

2

11

7

Node

D = Node

1

2

3

4

5

K(1)

D = N

1

2

3

4

5

- -

(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5)_ (3,4)

5
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simple strategies. Among them the simple strategy K(1) = K(2) = (1,4)

is the best, and can serve as the "incumbent"--the best strategy obtained

so far. All other simple strategies can be eliminated from further

consideration. Second, the value of A in (3) for all remaining 90 (non-

simple) strategies can be obtained very easily from Table 1, just by

adding relevant terms from the first two rows of the table. Third, since

all the terms in the objective function (3) are always nonnegative, many

other strategies can be eliminated, merely by inspection. Actually, any

strategy with a value of A greater than or equal to 1.7 (the value of the

objective function for the incumbent strategy (1,4)), can be immediately

eliminated. This leaves us with only two non-simple strategies,

K1 = {(3,4),(1,4)} and K2 = {(2,4),(1,4)}, while eliminating all the other

88 non-simple strategies.

Let us consider now the first strategy K1. We solve the following

two assignment problems (for relocations when the network changes from

state 1 to state 2 and vice versa) for K1:

min{w2 (3,1)(.141) + w2(3,4)(.3) + w2(4,1)(.331) + w2(4,4)(0)}

s.t.

w2(3,1) + w 2(3,4) = 1

w 2(4,1) + w 2(4,4) = 1

w 2 (3,1) + w2 (4,1) = 1

w 2 (3,4) + w2(4,4) = 1

w2(3,1),w 2(3,4),w 2(4,1),w 2(4,4) = 0,1



15

and

min{w 1(1,3)(.141) + w 1(1,4)(.331) + w1(4,3)(.3) + w1(4,4)(0)}

s.t.

w1 (1,3) + w1 (1,4) = 1

w1(4,3) + w1(4,4) = 1

w1 ( 1,3) + w1(4,3) = 1

w1 (1,4) + w1(4,4) = 1

w1(1,3),w 1(1,4),w 1(4,3),w1(4,4) = 0,1

(The co-efficients in the objective functions are obtained from the cost

function f('), e.g., 0.1 () = .141). We then obtain: (a) the value of the

term B (the long term expected cost of server relocations) in (3) is .0846 and

thus the value of the objective function (3) is 1.5846; (b) the relocationsolution is:

w2(3,1) = w2(4,4) = w 1(1,3) = w1(4,4) = 1 and

w2 (3,4) = w2 (4,1) = w 1 (4,3) = w1(1,4) = 0.

Since 1.5846 < 1.7, K1 becomes the new incumbent.

By returning to Table 1 again, we can now eliminate strategy K2 since

the value of A for K2 is 1.6 > 1.5846. Therefore the non-simple strategy

K1 = {(3,4),(1,4)} is the optimal strategy.

The optimal solution to our problem thus is: the two servers should

be located on nodes {3,4} if the network is at state 1 and on nodes {1,4}

·if the network is at state 2. When the network changes from state 1 to state 2,

the server onnode 4 should stay at its location (w2(4,4) = 1) whereas the server
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on node 3 should be relocated to node 1, and vice-versa when the change of

states is from 2 to 1. The long-term cost of this policy is 1.5846 units

of time per transition epoch.

It is worth noting that if the relocation cost function is

f(.) = C /(.) where C > .2357, the simple strategy K(1) = K(2) = (1,4) is

the optimal strategy. This is hardly surprising, since relocations for

large C become expensive, and, therefore, it will eventually become optimal

to make the servers stationary.

Finally, it should be clear that our approach to solving this

example can be applied only when the problem is of very modest size. In

the next section we present a mathematical programming formulation that

hopefully can be used to obtain solutions to larger problems.
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Mathematical Programming Formulation of the Problem

The problem of locating mobile servers on a network with Markov

properties can be formulated as an integer programming problem. Let

us define the following three sets of binary variables:

1

i,j,r {

Yj,r 

if node i is served by the server at node j when the
network is at state r

otherwise

if the server is located at node j when the network
is at state r

otherwise

1 if the server in node u is assigned to node v when the

Xurv() _ network changes from state r to state 
u(r),v(Z)

O otherwise

for i,j,u,vEN; r,cEM
r 9

Now we can write the problem as:

m n n
min{ Z ir 7 h.d (i,j)Y

r=l i=l j=l i r

m m n n

+ C1 7r Z Pr r Xu(r) v()
r=l =l u=1 v=l u(r),v( )

9fr

f[dQ(u,v)]}

subject to:

n
Y. + Z Y.
Yi,r j=l 1,j,r

j=1
j i

= 1 VisN; VrsM

(6)

(7)
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Y* > Y. Vi,jEN; VrSM (8)
],r- ij,r j

Tij

Xu = Y VucN; Vr,2ZM (9)
v= uu(r),v() ur

n

E Xu(r),v(=) YvZ VveN; Vr,QZM (10)

u=l vrO

n

Y r =P VrEM (11)
j=l j'

Y. jr,j,rX i(r) j() = 01 Vi,jEN (12)
j,r i,j,r i(r, ) 'Vr, ZEM

riO 

Constraints (7) make sure that every node is served by a server.

Constraints (8) limit the assignment of demands to only those nodes at

which servers are located. Constraints (9) and (10) limit the relocations

to only those nodes that are also actual locations. Constraints (11)

restrict the number of servers to p and constraints (12) restrict all

variables to be zero or one.

Obviously, the size of this I.L.P. problem grows very quickly as n,

p, and m increase. We have no computational experience with problems of

this type to date. However, due to considerable similarity with the

formulation of the deterministic median problem, the recent research of

Erlencotter [5], Garfinkel, Neebe and Rao [7], Revelle and Swain [14],

Galvao [6], Jarvinen, Rajala and Sinervo [10] and Cornuejols, Fisher, and

Nemhauser [4] can be of help in solving our problem as well. Therefore

we believe that (at least heuristic) solutions to our problem with n < 50 and

m < 5 (for any value of p) are well within possibility.
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Discussion

The mobile server location presented here is a very general one, in

the sense that most known versions of minisum facility location problems

on networks can be viewed as special cases of our problem. For instance,

the problem discussed by Mirchandani and Odoni [13] in which stationary

facilities must be located on a network that undergoes probabilistic

transitions among m states is a special case of our problem in which only

simple strategies are permitted. This eliminates the need to examine

assignments of servers since the variables W (K (r),K (s)) are equal to 1

for a = y and to 0 otherwise for all values of a, y, r and s. If in the

Mirchandani-Odoni problem, we further allow the number of states m to be

reduced to 1, we obtain the classical p-median problem [9] and, naturally,

with p = 1 we are back to the original single median ("minisum facility")

location problem.

Be that as it may, it is clear that even our model, if it is to be used

for applications in the context of some urban services, still suffers from

some major oversimplifications. Foremost among them is the assumption

that no queueing phenomena occur at the service locations, i.e., that

servers are always available as demands are generated. In this respect,

our model can be viewed as the opposite of such well-known, urban service

system models as Larson's hypercube [11] or Carter, Chaiken and Ignall's

[3]: the latter are primarily concerned with problems caused by "congestion"

and unavailability of servers (and less concerned about good server place-

ment in anticipation of demands) while our model reverses these priorities.

Recently Berman [1] and Berman and Larson [2] combined the hypercube with a

model similar to the one presented in this paper to formulate a model

which, for at least some cases, can be used to make both server location
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decisions and resource allocation (to prevent facility congestion)

decisions, simultaneously.

The discussion above, incidentally, indicates as well how inadequate

the traditional p-median model is in the applications context of urban

services. That model implicitly assumes no queueing phenomena whatsoever

at the facilities and makes no allowance for system response (by

relocating servers) to the dynamics of the network (changes in travel

times) or of the demands.

Before closing this discussion, we note that, while our analysis here

assumed a discrete time Markovian model for transitions between network

states, i.e., constantly spaced transition intervals, we could, as well--

with only minor modifications--analyze a continuous time Markovian model or

a semi-Markovian model (in which an embedded Markovian probability matrix

dictates transitions between states at the transition epochs). In the

latter case we would have to assign a weight to each state in the quantities

A and B in (3), proportional to the expected duration of the state, i.e.,

use the limiting probabilities of the Markov matrix (see, for instance,

Ross [15], page 104).

Finally, we also note that our analysis above can be applied just as

well to directed networks. The optimal location-relocation strategies would

then clearly depend on whether demands are assumed to travel to the servers

or vice versa.



21

References

[1] Berman, O., "Dynamic Positioning of Mobile Servers on Networks,"

Technical Report No. 144, Operations Research Center, M.I.T.

[2] Berman, 0. and Larson, R.C., "The Congested Median Problem,"

Working Paper OR 076-78, M.I.T., submitted to Operations Research.

[3] Carter, G.M., Chaiken, J.M. and Ignall, E., "Response Areas for

Two Emergency Units," Operations Research 20, No. 3, May-June 1972,

pp. 571-594.

[4] Cornuejols, G., Fisher, M.L. and Nemhauser, G.L., "Location of

Bank Accounts to OptimizeFloat," Management Science 23, No. 8,

April 1977, pp.

[5] Erlenkotter, D., "A Dual-Based Procedure for Uncapacitated Facility

Location," Working Paper 261, Western Management Science Institute,

U.C.L.A., California.

[6] Galvao, R.D., "A Dual-Bounded Algorithm for the P-Median Problem,"

International Symposium on Locational Decisions, April 24-28, 1978,

Banff, Alberta.

[7] Garfinkel, R.S., Neebe, A.W. and Rao, M.R., "An Algorithm for the

M-Median Plant Location Problem," Transportation Science 8, No. 3,

August 1974, pp. 217-231.

[8] Hakimi, S.L., "Optimum Locations of Switching Centers and the

Absolute Centers and Medians of a Graph," Operations Research 12,

1964, pp. 450-459.

[9] Hakimi, S.L., "Optimum Distribution of Switching Centers on a

Communication Network and Some Related Graph Theoretic Problems,"

Operations Research 13, 1965, pp. 462-475.



22

[10] Jarvinen, P., Rajala, J. and Sinvero, H., "A Branch and Bound

Algorithm for Seeking the P-Median," Operations Research 20,

No. 1, Jan.-Feb. 1972, pp. 173-182.

[11] Larson, R.C., "A Hypercube Queueing Model for Facility Location

and Redistricting in Urban Emergency Services," Computers and

Operations Research 1, March 1974, pp. 67-95.

[12] Mirchandani, P.B., "Analysis of Stochastic Networks in Emergency

Service Systems," IRP-TR-15-75, Operations Research Center, M.I.T.

[13] Mirchandani, P.B. and Odoni, A.R., "Locations of Medians on Stochastic

Networks," Technical Report OR 065-77, M.I.T. Operations Research Center,

Cambridge, A, October 1977. Submitted to Transportation Science.

[14] Revelle, C. and Swain, R., "Central Facilities Locations,"

Geographical Analysis 2, No. 1, January 1970, pp. 30-42.

[15] Ross, S.M., Applied Probability Models with Optimization

Applications, Holden-Day, San Francisco.



23

Appendix 1: Proof of Theorem 1

Let us define (for convenience),

P P
gg(K(r),K(Z)) = Z Z w (Ka(r),K¥(Z))f[dg(K (r),K(Q))].

=l1 y=l

Let K*(r),w (K*(r),K*()),Vr,zeM; a,y = 1,2,...,P be the optimal solution

to our problem. Suppose that for state sM, K(s) is interior to the link

(a,b)eL. By Assumption 2 we can define

tr (a,K*(s))

tr(a,b)

Now we can rewrite (3) as

n
Z Z h.d (K*(s),i) +

Si=l1

with 0 < e < 1

m
Tr E Psg ( K* ( s ) ,K*()))
Z=1
z#s

m
+ Z TrPrsgs (K*(r)K*(s)) + A

r=l rs
rfs

where the term A includes only states r s:

m n
A = Zr Z hidr(K*(r),i)

r=l i=l
rfs

m m
+ Z 7 Z

r=l rRg=l
rfs Z#s,r

Let N[K*(s)] be the set of all the nodes that will be visited by the

facility located at K*(s), in case of a random incident when the network

is at state s; = 1,...,P.

Vr EM (13)

(14)

(15)
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Therefore:

n p
iT h d (K*(s),i) = Z h d (K*(s),i)

Si=1 1 Sa=l iN[K*(s)] i s

= T Z h.d (K*(s),i) + B (16)
SisN[K*(s)] 1 s

where the term B does not include any node of the set N[K*(s)]

B = E Z Z h.d (K*(s),i) (17)
Sa=l iN[K*(s) S a]

Let Na[K*(s)]CN[K*(s)] be the set of all nodes that communicate

most efficiently with K*(s) via a when the system is at state sM (the

term "communicate" implies minimal travel time), and let

Nb[K*(s)] = N[K*(s)] - N a[K*(s)]. If a node communicates equally

efficiently with K*(s) via nodes a and b we include that node either in

Na[K*(s)] or in Nb[K*(s)], but not in both. Therefore we can write

(16) as:

Tr h.d (K*(s),i) + Z h d (K*(s)] + B (18)
SisN [K*(s)] i s SiENb[K(s)] i s

By (13) for r = s we get that: ViN a[K*(s)],d (K*(s),i) = d (i,a) + t (a,b)

and iENb[K*(s)],d (K*(s),i) = d (i,b) + (l-e)t (a,b).

Therefore we can write (18) as:

TsH(s,a) e + sH(s,b) (1-6) + C + B (19)

where the terms H(s,a), H(s,b) and C do not include travel time from the

point K(s):
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H(s,a) = Z hit (a,b) (20)
iEN [K*(s)] 

H(s,b) = ht (a,b) (21)
ieN b [K*(s) ]

C = ~ Z h d (i,a) + Z h.d (i,b) (22)
SiN [K*(s)] iEN s SiNb[K(s)] s

a b

The term g(K*(s),K*(Z)), s can be written as:

p
z w (K*(s),K*(Q))f[d (K*(s),K*(z)] + D (23)
y=l

where the term D, does not include relocations from the point K*(s):

P P
D = w (K*(s),K*(Z))f[d (K*(s),K*(Z))] (24)

ly= a Y Z Ya=l y-lQ
aiS

Again by using (13) for r = we can write d (K*(s),K*(Z))as:
Y

min{8tQ(a,b) + d (a,K*(z));(1-e)t (a,b) + d (b,K*(z))

Therefore, d (K*(s),K*(Z)) is a minimum of two linear functions of e and

therefore concave. But since f is non decreasing and concave,

f[d (K*(s),K*(Z))] is also concave. Therefore, g (K*(s),K*(g)) is concave

too since it is a linear combination of concave functions. In the same way:

gs (K*(r),K*(s)), r 0 s is also concave.

Using our discussion so far we can write now (3) as:

m
SH(s,a)O + F H(s,b)(1-6) + Fs E Pszg(K*(s),K*(Z))

Z=l
Z#s

m
+ rprsg (K*(r),K*(s)) + A + B + C (25)

r= rs
r~s
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But since s, PsQ' Prs' H(s,a), H(s,b), A, B, C are all constants with

respect to , (25) is also concave in . Therefore the value of the

objective function (3) cannot increase when taking either = 0 or = 1

(but not both) corresponding to location at a or b, respectively (we keep

the relocation variables w(K*(r),K*(Z)) as before with a (or b) replacing

K*(s)). Clearly the node a is optimal if the coefficient of 6 in (25) is

larger than the coefficient of (1-8). Otherwise b is optimal or a tie

exists, in which case either is optimal. Once the node a or b is reached,

members of the route partitioning sets may have to be interchanged and

new relocation solutions may be obtained, to improve the value of (3)

achieved with the original route-partitioning sets and relocation

solutions. Moreover, the same proof with the new route-partitioning sets

and relocation solutions demonstrates the nonoptimality of moving away

from the node.


