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There are a growing number of large scale MIP models being built and

optimized by practitioners. These models are usually investment planning prob-

lems, for example, investments in new facilities (e.g., Kazmi and Shapiro (1977))

or in new technologies (e.g., Nordhaus and van der Heyden (1977)), involving

fixed costs, returns to scale and logical constraints on investment alternatives

which require MIP modeling techniques. They can range in size up to 2000 or

more constraints and several hundred integer, usually zero-one, variables.

The proliferation of MIP models is due in part to the existence of

commercial computer codes, such as MPSX/370 on the IBM 370 computer, which make

it possible for the practitioner to try to solve his/her model once it has been

formulated without a separate project to develop an MIP computer code. The

optimization of MIP models remains difficult and unpredictable in spite of these

codes, and research into MIP algorithms continues. The main thrust of MIP

research is not in algorithms,however, but rather in the development of new and

interesting ways to generate and use MIP models. In spite of algorithmic

inefficiencies, the greatest part of the time and money of a study requiring the

construction of a large scale MIP model is spent on data collection and creating

the model from the data, rather than optimizing it once it has been created.

The following is a list of new research areas in MIP which could have

important payoffs in the next three to five years. I confess to some wishful

thinking about scientifically interesting areas where breakthroughs may be

difficult to achieve and leave it to the reader to decide for him/herself where

scientific reality ends and science fiction begins. The topics we will discuss

briefly are:

(1) MIP duality theory

(2) Benders' method for MIP

(3) Heuristics

(4) Multi-objective MIP

(5) MIP right hand side parametric analysis and Lagrangean techniques

(6) MIP model aggregation

(7) MIP investment planning models and econometrics

(8) Mathematical programming modeling languages
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(1) MIP Duality Theory

MIP duality theory is concerned mainly with algorithmic methods based on

Lagrangean techniques and group theory (see Shapiro (1971), Fisher and Shapiro

(1974), Bell and Shapiro (1977); computational experience is reported in Fisher

Northup and Shapiro (1975), D'Aversa (1978)). The theory was developed and

implemented originally for pure IP problems, and we are currently extending

the theory and implementation to large scale MIP problems (Northup and Shapiro

(1978)).

Space does not permit a detailed development of MIP duality theory. The

MIP dual problems are used to provide objective function lower bounds for use

in MIP branch and bound methods, and they will sometimes provide optimal MIP

solutions as well. The lower bounds are stronger than conventional LP lower

bounds. The MIP dual problems are nondifferentiable optimization problems and

they can be solved by a variety of methods including subgradient optimization,

generalized linear programming, etc. If a given MIP dual problem fails to

yield an optimal solution to the given MIP problem, then in most cases it can

be strengthened to provide a new and stronger MIP dual problem.

(2) Benders' Method For MIP

Benders' method decomposes an MIP problem into a pure IP master problem

and an LP subproblem. For large scale investment planning problems, it often

is the case that the master problem involves only investment decision variables,

such as the locations and sizes of plants, while the subproblem involves only

operating variables such as commodity flows from manufacturing plants to markets,

or energy delivered from electric power plants. Benders' method has the desir-

able feature that it readily produces feasible MIP solutions and lower bounds

on the minimal MIP cost. This is in contrast to the branch and bound methods

used in commercial codes which can take a long time to produce the first

feasible MIP solution.

The computational efficiency of Benders' method is relatively unknown

although a few successful applications can be cited. Geoffrion and Graves (1974)

used it on a model to study the location of warehouses in a multi-commodity

distribution system. For their model, the LP subproblem separated into a dis-

tribution problem for each commodity. Noonan and Giglio (1977) used Benders'

method to optimize a model for the long range planning of electric power genera-

tion; Bloom (1978) has extended the model and the decomposition for solving it

to study the reliability of power generating systems. For these problems, the
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LP subproblem separates into an operating subproblem for each period of the

planning horizon. Magnanti and Wong (1978) have used it successfully in the

study of network design problems.

Some definitive experimentation with Benders' method is desirable, perhaps

identifying the class of problems for which it is appropriate and effective means

for integrating it with branch and bound. Another area of useful research is

to extend Benders' method to permit MIP sensitivity analyses; for example, to

characterize the set of demands in the operating subproblems of an electric

power generation problem for which an optimal investment plan remains optimal.

(3) Heuristics

This is an area of considerable current research interest. The approach

is to develop heuristics with known properties to generate feasible solutions to

MIP problems with special structure. Cornuejols, Fisher and Nemhauser (1977)

discovered a "greedy" heuristic for a class of uncapacitated plant location

problems. They use Lagrangean techniques to direct the heuristic and to calcu-

late an upper bound on the objective function error due to non-optimality. More

work along these lines would clearly be very desirable, but there is a question

about the effectiveness of heuristics for complex MIP models. Perhaps MIP model

users should be encouraged to select as much as possible those models with sim-

ple structure for which effective heuristics can be derived.

(4) Multiobjective MIP

Multiple objectives are often appropriate for large scale investment

planning. For example, electric power generation expansion plans should be

studied using a variety of curves for construction costs or the relative costs

of oil, gas and coal. Moreover, when we consider the amount of work that goes

into collecting the data and generating a large scale MIP model, it makes sense

to analyze the model in such a way that many "promising" solutions are generated,

rather than a single "optimal" solution. Multi-objective optimization methods

are a systematic means for describing the characteristics of promising solutions.

Relatively little theoretical or applied work on multi-objective MIP has

been done in spite of its promise as a useful decision making tool (Shapiro (1976),

Bitran (1977). The methodological approach is relatively straightforward and

we give a few indications here.
k k

Suppose we have K objective functions c x + f y for an MIP problem with

constraints
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Qx + Py < r (la)

Ax = b (lb)

x. = O or 1 y > . (ic)

A feasible solution x, y is called efficient (Pareto optimal) if there does
k- k- k- k-

not exist a feasible x, y such that c x + f y < c x + c y for all k, with

strict inequality for some k. Efficient solutions can be generated as follows:

let

S = XR z X 1, X-> 0}'
k=l

and define the MIP problem

v() = min k k
v(X) = min ZX k(C x+f Y) (2)

k=l

s.t. (la), (lb), (c) .

The function v(X) is concave and if all Sk are positive, then any optimal solu-

tion to (2) is efficient. There are, however, efficient solutions which cannot

be generated this way; see Shapiro (1976).

The idea of multi-objective MIP would be to estimate v(X) for all X S,

for all subproblems generated during branch and bound. Specifically, we would

use an upper bound function v(X) > v(X) generated from previously discovered

feasible solutions to the MIP subproblem, and a lower bound function v(X) < v(X)

generated from an MIP dual problem. The given subproblem would be analyzed

parametrically until max {Iv(k) - v(X) , Iv(X) - v(X) X £ SI is sufficiently

small.

(5) MIP Parametric Right Hand Side Analysis and Lagrangean Techniques

A number of large scale MIP investment models are demand driven; that is,

the presence of constraints requiring exogenous demand to be satisfied forces

the expense of investment to be incurred. Since demand is not known with

certainty, it would be useful to perform parametric analysis with respect to it.

Systematic procedures for such parametrics are not available for MIP as they

are for LP, but Lagrangean techniques can be used to implicitly drive the right

hand side parametric analysis.
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To be precise, consider the following capacitated plant location problem

v(d) = min Z (c.. + v)x + f.y. (3a)
1j 1 i

s.t. Z x. d j = 1,...,n (3b)
i 1J J

Z xij - Kiyi < 0 i = 1,...,m, (3c)

xij > 0, yi 0 or 1 .(3d)

We dualize on the demand constraints and form the Lagrangean

L(u) = u.d. + min Z (cij + v - uj)xij + Z fiyi
j i j 1

s.t. (3c) and (3d) .

The quantity L(u) is easier to compute because

{min (ci. + vi - uj)} K + f > 0 Y = 0
1J i-- 1

j

The solution xij, Yi satisfying (3c) and (3d) and the dual variables u are

said to satisfy the global optimality conditions for (3) if

(i) L(u) = u.d. + Z (cij + v - u) Xi + fiYi
i i j i i1

(ii) x.. = d. , j = 1,...,n.
i1

The idea behind the parametric right hand side analysis is to change d if

global optimality condition (ii) is not satisfied. Specifically, let dj = Exij.
i

j = 1,...,n; then xij, Yi is optimal in (3) with d = d and moreover
' j J

v(d) = L(u). We have called this approach to MIP inverse optimization and we

are studying its application to problems such as (3) (Bitran, Elliott and Shapiro,

(1978)). Typical questions being studied are:

- What are the points d > 0 such that v(d) = L(u) for some u?

- How can we strengthen the dual analysis for those points d > 0 such that

v(d) > L(u)

- How should the dual variables u be selected?
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(6) Aggregation and MIP Models

Investment planning models can easily become unmanageably large because of

the multiplicative nature of the factors to be considered such as the number of

time periods, types of plants, levels in the manufacturing or operating system,

markets, etc. Some aggregation is usually required, and research has begun on

systematic theories for doing it (Zipkin (1977), Geoffrion (1976)). The rela-

tionship of aggregation to decomposition theory needs elucidation. In addition,

there may be some important relationships to be discovered and exploited between

theories for aggregation of econometric forecasting models (Ijiri (1971)) and for

aggregation of mathematical programming models.

(7) MIP Investment Planning Models and Econometrics

Thus far, we have discussed MIP investment planning models with exogenous

(fixed) demand for output from the system under study. Many public and private

investment studies involve endogenous (variable) demand (e.g., see Erlenkotter

(1977)). Endogenous demand is described by an econometric model F which predicts

demand d as a function of price; that is, d = F(p).

A typical equilibrium problem is

max {f(d) - cx}

s.t. Ax - d > O

Qx < r

x>O , d>O

where f(d) is a consumer surplus function measuring the benefit of satisfied

demand to the consumer. The Kuhn-Tucker optimality conditions for this problem

are called economic equilibrium conditions by economists. The function f is

related to the econometric model F by f(d) = F (i) d where we have assume

for convenience that F is invertable and interchangeable. In other words,
-1

Vf(d) = F (d). An iterative scheme for solving the equilibrium problem is shown

in figure 1. The vector are the shadow prices on the demand row in (5) for d

fixed. Equilibrium has been reached if it equals the commodity price vector p

such that F(p) = d; we compute p by inverting the function F at d, possibly by

numerical means. Kennedy (1974) gives a model similar to (4) for studying the

world oil market. Florian and Nguyen (1976) present a more distantly related

model for traffic equilibrium.

There are a number of MIP extensions of the equilibrium model just described.

For example, suppose there are new technologies with associated fixed costs
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equilibrium attained
p = = equilibrium

change
d

Figure 1

available to be used in meeting demand. An MIP model describing this situation

is

max {f(d) - cx - fy - dz}

s.t. A0z + Ax - d > 0

Q 0z + Qx < r (5)

z - Kjyj < 0

z > 0, x > , d > 0 , y 0 or 1

A Benders' type decomposition of such a model is depicted in figure 2. The

investment subproblem is an IP that is used to select the new technologies on

the basis of post equilibrium price information. This type of model would be

appropriate for studying new energy technologies or new configurations of road

network systems each inducing its own traffic equilibrium. It has been used by

Armstrong and Willis (1977) to study water resource investment planning and

allocation decisions.

(8) Mathematical Programming Modeling Language

The size and form of a large scale MIP problem is critically important in

determining the difficulty of optimizing it. We have seen that decomposition and
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prices

Figure 2

aggregation methods can be very effective in modularizing and transforming MIP

problems to useful forms. Mathematical programming languages currently under

development should greatly facilitate these model manipulations and analyses

(Kuh and Zisman (1978)). In a similar vein, IBM has developed an Extended Con-

trol Language (ECL) for MPSX/370 which permits recursive use of the LP and MIP

algorithms (Slate and Spielberg (1978)). Computer language developments

are perhaps the most important direction of future research in large scale mathe-

matical programming.
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