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ABSTRACT

Network design problems arise in many different application areas
such as air freight, highway traffic, and communication systems.

The intention of this survey is to present a coherent unified view
of a number of papers in the network design literature. We discuss
suggested solution procedures, computational experience, relations
between various network models, and potential application areas.
Promising topics of research for improving, solving, and extending
the models reviewed in this survey are also indicated.



Titles of Figures

Title

Plant Location as an Arc
Design Problem

Number

1

Page

9



1. Introduction

The selection of an optimal configuration or design of a network

occurs in many different application contexts including transportation (air-

line, railroad, traffic, and mass transit), communication (telephone and com-

puter networks),electric power systems, and oil and gas pipelines. For example,

consider a traffic network whose nodes represent both origin and destination

areas for the vehicular traffic of a city and also intersections in the road

network. The arcs correspond to streets in the city, and the arc flows denote

the amount of traffic traversing the streets. A typical network design problem

would be to select a subset of the possible road improvements subject to a

budget constraint. The design objective would be to minimize the total travel

cost for all travelers in the city network.

In this survey, we will introduce a basic network design model which

frequently occurs in the network literature. Although most real-world network

design problems are more complicated than our general model, we believe that

our basic framework embodies many of the most essential features of network

design problems. Thus, any sophisticated design model will have to deal with

the issues represented in our general framework.

We will discuss a number of network design papers in terms of this

basic model. Although this general framework is applicable to many different

problem domains, we will concentrate mainly on transportation network problems

since most of the work concerning network design has focused on these applica-

tions. Our goal is to present a coherent unified view of these papers and

their contribution to the network design literature. We will review suggested

solution procedures, computational experience, relations between various network

models, and potential application areas. We also indicate promising areas of

research for improving, solving, and extending the models reviewed in this survey.
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Previous survey work in the area of network design problems

includes reports by MacKinnon 391, Schwartz [59], Stairs [62], and

Steenbrink [64].

2. Problem Formulation

This section gives a general framework for the network design problems

that will be discussed in this survey.

Our basic network design model has the following description: we have

a set N of nodes, a set A of arcs, and between each pair (k,Z)ENxN of nodes

there is a required flow Rk that must be routed through the network. Let fki

be the amount of required flow between nodes k and on arc (i,j).

For each node iN we can write the flow conservation equations:

I fk _ Z fkz ='

JEN JN1 

-Rkz k=i

k ri (1)

O otherwise

(k,Z) e NxN.

For each arc in the network we assume there is an initial given

capacity uiJ and a set of possible capacity improvement levels Lij. Thus

we can write the following arc capacity constraints:

(k,Z)cNXN ij 1i - .j i

eQ. Lc (i,j)sA (2)
ij ij

For example, suppose all capacities are initially zero and an

arc (i,j)'s capacity can either remain zero or be increased to a value K.

then Lic = 0,K| and (2) can be represented by:zjThen Lij = 10,Kij and (2) can be represented by:
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ij fi < + Kij Yij
(k,Z)sNxN (iJ)-

yi = or 1

where ij is a 0-1 variable indicating the capacity level of arc (i,j).

Our general framework includes two types of costs. The first

kind, denoted by RCij(fij), is the routing cost for arc (i,J) associated

with satisfying the required flow constraints (1). In various applications

the routing costs may correspond to travel time, risk of accidents or any

other "costs" which.vary with the amount of traffic on the arc.

The second type of cost, the construction cost for the capacity

improvement of arc (i,j), is denoted by CCij (ij) and includes capital con-

struction costs, maintenance fees, and any other costs that depend solely

on the arc capacity level.

In general, our objective will be to minimize the total routing

and construction costs. With the above information, we can state our general

network design problem as:

Minimize ~ RCij (fi) + CCii ( i)
(i,)A

subject to: (1), (2) and any special problem constraints

fi > O (i,j)> A

(k,t)eNxN.

We will further classify our network design problems according

to their routing cost functions RCij(fij). If, for a particular network

design, all routing cost functions are linear and every arc capacity

is either zero or infinite (we usually represent an "infinite" arc capacity

value as some sufficiently large number such as the total amount of required



flow in the problem), then we will refer to the model as a network design

problem without congestion costs. This terminology is chosen to reflect

the fact that if an arc is present in the network (i.e., has nonzero capacity)

then any amount of flow can be routed through it and the marginal cost for

routing an additional unit of flow is always constant, independent of flow

conditions in the network.

If a network design model has convex routing cost functions and/or

some finite nonzero arc capacities, then we will refer to it as a network

design problem with congestion costs. These congestion costs are reflected

in the convex routing cost functions (i.e., increasing marginal costs) and/or

the prohibition of additional flow through an arc after a certain limit has

been reached.

In the following sections we describe and analyze a number of

different problems in terms of this basic network design model.

3. Network Design Problems Without Congestion Costs

Network design problems without congestion costs often model

underutilized systems such as a communications network where the amount

of information transmitted is always below the capacity of a standard

trunk. In this case, the arc capacity is effectively infinite.

Another use for this type of system is to gain insight into more complicated

networks with congestion costs by studying this simpler network model.

Also network design problems without congestion costs can be used as sub-

problems in a procedure for solving more complicated network design models.

The first network problem that we consider was formulated by

Billheimer and Gray [7]. Initially all arcs have zero capacity. The arc
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routing costs are linear functions of the total arc flow. The construction

cost required to build an arc with "infinite" capacity is a fixed charge.

The objective is to minimize the sum of routing and construction costs.

(We will refer to this network design model as the "fixed charge design

problem.")

Since all arc capacities can only take on discrete values (either

zero or "infinity"), we can formulate the fixed charge design problem as the

following mixed integer program:

Minimize diJfi + cijYij

(i,j)A ii

subject to: (1)

iJ Rk YiJ (i,j)eA
ij - k Yij

fk > 0 (k,L)eNxN

Yi = or 1.

YiJ indicates whether or not arc (i,j) is present in the network. Let dij be

the cost of routing a unit of flow through arc (i,J) and c.. be the cost of
1j

adding arc (i,j) to the network (i.e., setting its capacity to "infinity").

Note that the second constraint is a specialization of (2) to the fixed

charge design model.

Note that the above network design formulation gives rise to large

mixed integer programs. For example, a network design with 50 nodes and

200 possible directed arcs will be formulated with 12,500 rows, 10,000

continuous variables and 200 binary variables.
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Magnanti and Wong [42] applied Benders' decomposition to the above

formulation of the fixed charge design problem. They specify a technique

for accelerating the convergence of Benders procedure. Their computational

experience includes satisfactorily solving networks with 10 nodes and 45

arcs in about 60 seconds of IBM 370/168 computer time.

Since this problem is very complex, Billheimer and Gray propose

a heuristic solution procedure. Each iteration of this procedure consists

of either deleting or adding an arc to the network so that the total cost

(routing and construction) is reduced. The iterations are continued until

a local optimum is reached where no further addition or deletion of a single

arc reduces the cost of the network configuration.

The heuristic procedure has been tested on a problem with 68 nodes

and 476 arcs. The method reached a local optimum after about 3 minutes of

computation time on an IBM 360/67 computer. It is difficult to Judge the

quality of the heuristic's solution since no satisfactory method is known

for optimally solving problems of that size.

It is interesting to see the wide range of network models that

are related to the fixed charge design problem. Many combinatorial net-

work problems are special cases of it. If all arc construction costs are

set to zero, then the fixed charge design model becomes a series of shortest

path problems. If all arc routing costs are set to zero, the fixed charge

design model becomes a Steiner tree problem on a graph (Steiner's problem)

[16, 27]. The Steiner problem occurs because the required flows will

necessitate that there be a path between every pair of nodes in some subset

of the nodes in the network.



-7-

Since the fixed charge design problem contains the Steiner problem

as a special case, we can be confident that it is very difficult to solve.

Karp [33] has shown that the Steiner tree problem on a graph is NP-complete.

This implies that the Steiner problem is as difficult to solve as such

combinatorial problems as the traveling salesman problem [6], the maximum

clique problem [28], and the 0-1 integer programming problem (see [33, 34]

for a full discussion of the various NP-complete problems). In view of the

lack of success in solving any of these problems on a large scale, it appears

unlikely that there is an efficient algorithm for the Steiner problem or for

the fixed charge design problem. In fact, the fixed charge design problem

itself is NP-complete. (This result follows from the fact that the Steiner

problem is a special case of fixed charge network design).

If the arc construction costs are all equal and totally dominate

the routing costs (i.e., the optimal network design must be a tree), then

the fixed charge design problem becomes the optimum communication spanning

tree problem defined by Hu [31].

Another special case of Billheimer and Gray's problem is the fixed

charge plant location problem [17, 12]. The plant location problem is

normally associated with the placement of facilities on the nodes of a graph.

The objective is to minimize the sum of the fixed charges for locating the

various plants and the routing costs for servicing customers from the con-

structed plants. However, it is possible to convert the plant location

problem to a network synthesis problem. This can be done in the following

way: add a special node to the plant location network. This node will be

the source of all the flow required by the customer nodes. Also, add a

set of special arcs leading from the special node to each potential plant
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site (see Figure 1). A special arc connecting the special node to a plant

site has a construction cost equal to the fixed charge associated with

opening the site. These special arcs will have no routing costs. Arcs

connecting plant locations with customers have no construction costs. How-

ever, they will have a routing cost equal to the transportation cost from

the plant location to the customer. So now the corresponding synthesis

problem is to design the minimum total cost (construction plus routing cost)

network so that all the flow requirements between the special node and the

customers are satisfied. Thus, the fixed charge plant location problem is

a special case of the fixed charge design problem.

Viewing the fixed charge plant location problem as a special case

of the fixed charge design model gives us additional insight into the net-

work synthesis problem. For instance, Billheimer and Gray describe some

methods for partially characterizing the optimal network configuration.

These techniques can be shown to be generalizations of procedures given by

Efroymsen and Ray 17] for characterizing the optimal set of sites in the

plant location problem.

By using a similar transformation we can show that many other

different facility location problems are special cases of various network

design problems. For example, if we have a capacitated plant location

problem, the node capacity constraint can be represented by a capacity con-

straint on one of the "special" ar s added to the network. Since there has

been so much work done in the area of facility location problems (see [19, 12]),

it may be possible to generalize some of these other techniques in order to

apply them to network design problems. The rules given by Billheimer and

Gray and Efroymson and Ray are one example of such a generalization.
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Scott [60, 61] has introduced another network synthesis problem,

called the "optimal network" problem, that is closely related to the fixed

charge design problem. The arc routing costs in this problem are all linear

functions of the total flow. Arc capacities, which are all initially zero,

can be raised to infinity. The objective is to minimize total routing cost

subject to the usual capacity and flow routing constraints and the added

constraint that the total construction costs cannot exceed a given budget.

The optimal network problem can be formulated as the following

mixed integer program:

Minimize a d.. f..
iJ iJ

(i,j)eA

subject to: (1)

<Q Yi
ij - Yij

Ci YiJ

(i, )eA

(i,j)eA

< BUDGET (k,2Z)eNxN

t> 0
1J -

Yij = 0 or 1.

All variables and constants have the same interpretation as in the formulation

of the fixed charge design problem.

Many researchers have considered this problem since its solution

could be useful to the design of various transportation (highway, rail or air)

systems. As roted by Dionne and Florian [15], since these systems usually
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have many more operating constraints, "the justification for studying this

problem is that its solution may be used as a measuring standard for the

efficiency of proposed designs."

Boyce et al. [8] utilized a branch and bound algorithm to solve

the optimal network problem. They were able to solve problems with 10

nodes and 45 arcs in 3 to 400 seconds of IBM 360/75 computer time depending

on the value of the construction budget. Hoang [30] presented another branch

and bound procedure that has been modified and improved by Dionne and

Florian [15]. Their procedure produced computation times that were com-

parable to the Boyce et al. results. Dionne [14] has shown that the com-

putation time of the Dionne and Florian procedure increases exponentially

with decreasing construction budget. It is believed that the algorithm of

Boyce et al. should behave in a similar manner. Geoffrion [23] has pre-

sented another branch and bound procedure that is based on Lagrangian re-

laxation techniques.

In order to address large-scale optimal network problems, several

researchers have suggested using heuristic procedures. Scott [61] and

Dionne and Florian [15] proposed heuristic algorithms that are closely

related to the Billheimer and Gray procedure for the fixed charge design

problem. Dionne and Florian have solved test problems containing up to

29 nodes and 54 arcs. The computational results were very promising with

the average error relative to the optimal solution less than one percent.

Computation times ranged from .1 to 12 seconds on the CDC Cyber 74 computer.

However, Wong [69] has presented analyses that indicate the maximum error

for such heuristics could be very large. Further computational tests should

be performed in order to resolve this issue.
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It is unlikely that there exists an efficient optimal algorithm

for the optimal network problem since Johnson, Lenstra, and Rinooy Kan [32]

have shown that the optimal network problem is NP-complete.

Another group of network design problems without congestion costs

concerns network improvement where we start with an initial feasible network

and then attach additional arcs. As in the case of the optimal network

problem, there are the usual capacity and flow routing constraints and also

a construction budget for the added arcs.

Ridley [55] suggested a network-based branch and bound approach

for these problems. Stairs [62] indicated that Ridley's method has been

used to solve problems containing up to 12 nodes. Goldman and Nemhauser [25]

consider a special case of the network improvement problem where the ob-

Jective is to improve the shortest path between a single pair of nodes.

They show how to transform the problem into a shortest route problem on an

expanded network. Wollmer [68] and Ridley [54] give efficient procedures

for solving special cases of the shortest path improvement problem. However,

these techniques are ust special cases of Goldman and Nemhauser's procedure.

Stairs [62] presented a network improvement problem that is re-

lated to BilLheimer and Gray's network synthesis problem. She described

an interactive computer solution procedure which has been successfully

applied to a test problem containing 35 nodes and 10 possible arcs that

could be improved.

Note that our network improvement models are all special cases

of the network synthesis models presented earlier. So it should be possible

to adapt the previously described network synthesis techniques to network

improvement applications.
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4. Network Design Problems with Congestion Costs

A more complex type of network design problem incorporates con-

gestion costs for the routing of the network flows. These congestion costs

can be represented by i) convex flow routing costs that could reflect such

effects as highway traffic congestion or communication network queuing

delays; ii) finite arc capacities that could represent physical, environ-

mental or political limits on the total traffic that can pass through an arc.

Some of the models described here have been used to help design

traffic network, rail network and communication network systems. All of

the models that we will discuss are network improvement problems. Unless

specified otherwise, we assume that the initial arc capacities constitute

a feasible network design solution.

The first type of network improvement problem that we consider

is similar to the uncongested design problems of the previous section.

In addition to the usual capacity and flow routing constraints that must

be satisfied, we must select the arc capacities from a discrete set of

values. Thus, the problem is essentially a combinatorial one as was the

case for the uncongested design problems. Roberts and Funk [56], Carter

and Stowers L.O], and Hershdorfer [29] described work in this area.

Hershdorfer utilized a branch and bound procedure with networks containing

up to 12 nodes.

Agarwal [1] considered a different kind of network improvement

problem wher'! the possible capacity of an arc (i,j) ranges continuously

between zero and some upper bound K... Construction costs are linear functions

of the arc capacity increase. Routing costs are convex piecewise linear

functions of the flow. The objective is to minimize the total routing cost

subject to all the usual constraints and a construction budget constraint.
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Agarwal conducted computational tests on a network with 24 nodes

and 38 arcs that was formulated as a linear program with 667 rows and 1938

variables. The results were quite discouraging since the simplex method,

Dantzig-Wolfe decomposition and the Boxstep method [43] all failed to solve

the problem in a reasonable amount of time. Agarwal concluded that none

of the methods was effective because of the arc capacity upper bounds pre-

sent in the problem.

The difficulty caused by the capacity constraints should not be

surprising. Note that the problem of computing the routing cost for a

particular pronosed network solution requires the solution of a difficult

capacitated multicommodity flow problem [2, 66]. Since the problem of

evaluating a proposed solution is so difficult, it should be expected that

the problem of finding the optimal network improvement solution is also

very difficult. Next we review several models that are similar to Agarwal's

problem and discuss some approaches for dealing with the difficulty of the

embedded routing problem.

Steenbrink [63, 64] used a model similar to Agarwal's for the

design of a Dutch roadway network. The capacity of an arc (i,j) is

restricted to be between zero and K... Routing costs are convex but the

construction costs are nonlinear. The objective is to minimize the total

routing and construction costs subject to all the usual flow routing con-

straints.

Steenbrink formulated his model as an optimization problem with

linear constraints and a nonlinear objective function. He suggests decom-

posing the problem into a master problem and a series of subproblems. Each

subproblem concerns finding the optimal capacity for an arc given the total
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flow through it. The master problem is to route the required flows through

the network with a modified flow cost structure. (This master problem is

again a capacitated multicommodity flow problem.) Steenbrink's heuristic

procedure for solving the master problem, as was noted by Nguyen [49], is

closely related to the well-known incremental loading traffic assignment

procedure [44]. So Steenbrink's technique for dealing with the embedded

routing problem is to solve it heuristically.

Steenbrink applied this method to a Dutch roadway design problem

containing 2000 nodes and 6000 arcs. The heuristic procedure required about

50 minutes of IBM 360/65 computer time. Due to the size of the problem,

there is no way to evaluate the quality of Steenbrink's solution.

Dantzig et al. [13] consider a network improvement problem iden-

tical to Agarwal's except for a crucial assumption that there is no upper

limit on an arc capacity. (Note that congestion costs are still present

due to the ccnvex routing costs.) They dualize with respect to the budget

constraint and then use Steenbrink's decomposition. The master problem is

a convex cost multicommodity flow problem which can be solved very

efficiently using the Frank-Wolfe algorithm. The procedure required 10.68

seconds of IM 370/168 computer time on a test problem with 24 nodes and

76 arcs and produced a solution 2.5 percent away from optimality. In

contrast, the simplex method, implemented on the MPS/360 package, required

40.8 minutes to obtain an optimal solution. The authors also report experi-

ence on a problem with 394 nodes and 1042 arcs which required 5.63 minutes of

IBM 370/168 computer time.
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Note that the use of a convex routing cost function to "represent"

a finite flow capacity constraint greatly improved the computational per-

formance for this type of congested network improvement problem. So,

slightly altering the modeling of congestion avoids a difficult embedded

routing problem.

McCallum [45] described a capacitated network planning problem

concerning the location of circuits in a communication (telephone) network.

This capacitated network is similar to Agarwal's except that between every

pair of nodes only a few paths are allowable as flow routes. Thus, the

difficult embedded routing problem is avoided. After formulating the model

as a linear program, McCallum used a specialized implementation of the

generalized upper bounding technique to solve problems containing up to

563 arcs and 1857 required flows between pairs of nodes. The computation

time required for a problem of this size was 173 seconds on an IBM 370/165

computer.

5. Network Design Problems with User Equilibrium Routing

In the network design problems with congestion costs discussed

in the previous sections, all flows were routed according to a "system

optimal" policy which minimized the total routing cost of all flows. In

this section we consider problems where the flows are routed according to

Wardrop's "Principle of Equal Travel Times" [67]. That is, the traffic is

assigned so that the path or paths actually used between each origin and

destination ill have the smallest travel costs. (Under certain circum-

stances [5, L1] the user equilibrium routing problem can be transformed

into a system optimal routing problem.) The User Equilibrium Routing (UER)

policy has been demonstrated to be a useful method of modeling behavior in

transportation systems [18].
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We begin by describing a major difference between network design

problems (with congestion costs) that have UER and those with system optimal

routing. For a network with system optimal routing, the addition of an arc

to the network never increases the total flow routing costs. Since we can

always choose to use the previously determined flow routing pattern, the

total routing cost can never increase and will usually decrease. Somewhat

surprisingly, for a network with UER, the addition of an arc can lead to an

increase in the total flow routing costs. This phenomenon, known as Braess'

paradox 9, 47], indicates that great care should be used in evaluating pro-

posed improvements to a network with UER. Knbdel [36, 47], described an

actual situation in an urban street system where such a phenomenon occurred.

Leblanc [37] considered a network design with UER where all arcs

can have either zero or infinite capacity. The objective is to minimize

total routing costs subject to all the usual constraints and a construction

budget. The branch and bound solution procedure proposed for this model

has solved a network problem containing 24 nodes, 76 arcs, and 5 arcs that

could be added to the network. Computation time was about 136 seconds on

the CDC 6400 computer.

Morlok and LeBlanc [46] address the same network design problem

but with a heuristic procedure. The technique is based on marginal analysis

of the traffic flows. The heuristic procedure essentially solved the same

24 node problem in 17.8 seconds of Cyber 70 computer time.

Ochoa and Silva [51] and Chan [11] also discuss similar types of

network improvement problems.
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Barbier [4, 62] considered a problem similar to LeBlanc's except

that the objective is to minimize the total routing and construction costs

without a budget constraint. His heuristic procedure for obtaining pro-

posed solutions has been used to study additions to the Paris rail network.

Computational experience includes analyzing a network with 36 nodes, over

30 arcs and over 50 candidate arcs. Steenbrink [64] reported that Haubrich

used a revised version of Barbier's method to study the Dutch rail network.

Haubrich's procedure solved a design network problem with about 1250 nodes

and about 000 arcs in less than 40 minutes of IBM 360/75 computer time.

6. Conclusion

In this paper we have reviewed a large number of network design

problems and their proposed solution techniques. Table 1 summarizes this

information.

There still remains a great deal of work to be done on network

design problems. Most of the network design problems without congestion

costs that we have considered are known to be difficult (NP-complete)

combinatorial optimization problems. All of the known exact solution

techniques are limited to small and medium sized networks. In order for

these models to be useful in applications such as transportation planning,

large-scale problems will have to be solved. Branch and bound methods

appear inadequate for this task.

Recent work by several authors [24, 42] has shown that Benders

decomposition could be a useful tool.
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TABLE 1

ARC CAPACITY
VARIABLES/
CONGESTED OR
UNCONGESTED
PROBLEM

SOLUTION
ALGORITHM

(# of nodes in test net-
work, # of arcs, Comp.
time, Machine)
COMPUTATIONAL EXPERIENCE

1. Billheimer
and Gray [7]

2. Magnanti and
Wong [42]

3. Boyce et
al [8]

4. Hoang [30]

5. Dionne and
Florian [15]

6. Scott [61]

7. Ridley [55]

8. Stairs [62]

9. Agarwal [1]

10. Steenbrink
[63, 64]

Discrete/
uncongested

Discrete/
unc ongested

Discrete/
uncongested

Discrete/
uncongested

Discrete/
uncongested

Discrete/
uncongested

Discrete/
uncongested

Discrete/
uncongested

Continuous/
congested

Continuous/
Congested

Heuristic

Benders
Decomposition

Branch and
Bound

Branch and
Bound

1) Branch and
Bound

2) Heuristic

Heuristic

Branch and
Bound

Interactive
Computer
System

1) Simplex
Method

2) Dantzig-
Wolfe De-
Composition

3) Boxstep

Special de-
composition
with a
heuristic

(68 nodes, 476 arcs,
180 seconds, IBM 360/67)

(10 nodes, 45 arcs,
60 seconds, IBM 370/168)

(10 nodes, 45 arcs,
200 seconds, IBM 360/75)

(8 nodes, 20 arcs, ?, ?)

(29 nodes, 54 arcs,
12 seconds, Cyber 74)

(10 nodes, 45 arcs,
60 seconds, IBM 360/65)

(12 nodes, ?,?,?)

(35 nodes, ?,?,?)

(24 nodes, 38 arcs,
840 seconds, CDC 6400)
for simplex method

(2000 nodes, 6000 arcs,
2880 seconds, IBM 360/65)

AUTHORS

__ _
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TABLE 1 (continued)

ARC CAPACITY (# of nodes in test net-
VARIABLES/ work, # of arcs, Comp.

AUTHORS CONGESTED OR SOLUTION time, Machine)
UNCONGESTED ALGORITHM COMPUTATIONAL EXPERIENCE
PROBLEM

11. Dantzig
et al [13]

12. McCallum
[45]

13. LeBlanc
[37]

14. Morlok
and LeBlanc
[46]

15. Barbier
[4,62]

Continuous/
congested

Continuous/
congested

Discrete/
congested

Discrete/
congested

Discrete/
congested

Special de-
composition
with Frank-
Wolfe decom-
position

Generalized
Upper
Bounding

Branch and
Bound

Heuristic

Heuristic

(394 nodes, 1042 arcs,
340 seconds, IBM 370/168)

(?, 563 arcs, 173 seconds,
IBM 370/165)

(24 nodes, 76 arcs,
135 seconds, CDC 6400)

(24 nodes, 76 arcs,
18 seconds, Cyber 70)

(36 nodes, 8 arcs,
?,?)

16. Haubrich
t64]

Discrete/
congested

Heuristic (1250 nodes, 8000 arcs,
2400 seconds, IBM 360/65)
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Another promising approach is to use heuristic algorithms as

approximate solution techniques. Further work is required in evaluating

the accuracy and reliability of these procedures. For example, see [12, 22,

57, 69] for work in analyzing heuristics for various network optimization

problems.

Also, recent advances in large scale system methodology, such as

list processing techniques and network flow algorithms, may have some impact

on the size of problems that can be solved practically. The reader may

consult a recent report by Magnanti [40] for a survey of these new advances.

The network design problem with congestion costs and discrete

arc capacities, is even more difficult than the uncongested case and appears

to be a formidable problem. For a network with congestion costs and con-

tinuous arc capacities, there have been some successful efforts. Although

the embedded multicommodity routing problem poses difficulties for some

versions of this problem, Dantzig et al. and McCallum have successfully

avoided this obstacle. Utilizing special problem structures in formulating

their mathematical programs, they were able to apply linear and convex

programming techniques to solve problems whose size is of practical interest.

It would be interesting to see if these techniques could be used to solve

other versions of network design models with congestion costs.

There are also other kinds of basic network design models that

could be explored in future research. For example, Yaged [70] and Zadeh

[72] considered network design problems with concave objective functions.

Soukoup [651] Newell [48], Bansal and Jacobsen [3], and Rothfarb and Gold-

stein [58] have also explored various other network design models.
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Another promising area for future research is to extend these

network design problems to dynamic situations. The basic models considered

here are all static in that the network is optimized for a single time

period with all changes to the network made instantaneously.

There are several types of time-varying elements that could be

incorporated into network design problems. One kind of model of this

nature involves networks where the required flows between nodes can be

time-varying. For example, in an urban transportation system or a com-

munications network, the traffic demands could vary greatly according to

the time of day or season of the year. Gomory and Hu [26] and Oettli and

Prager [52] have investigated this kind of network problem.

Another type of time varying design problem concerns network

improvements that must be sequenced over a number of time periods. In

most real situations the network can only change gradually over a given

time span. Ochoa-Rosso [50], Funk and TillmaL [21] and Yaged [71] have

considered this type of problem.

The third type of time-dependence is related to the previous

two and concerns the changes in traffic demands when the network is modi-

fied. For example, the evolution of a transportation network will influence

the development of the surrounding geographic region. Therefore, future

traffic demands by region will be dependent on changes to the transportation

network in previous time periods. See Frey and Nemhauser [20] and

Los [38] for examples of this type of problem. Also MacKinnon [391 dis-

cusses these last two types of time-dependent problems in his survey.
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