
- ~ ~ .;t-.- - ~ - ~ ! I :I .': -.-- I - . .I.I.

' ~ ~ ~ ~ ~ ~ .:' , ~ .' ~ ~ - I . -l'- .
-, -- -. -~ ~ - " ,~- , --- :i:.:~ : i l - ~ 1 ,. ' - ~ - ~ ~ , - - . ",,: ' ,- : , - ,... I I -I I ,-~~~~~~~~ ,~~.~. . :-,- ,~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~: -:i,::. : L:.::Iii.:...-. - 1-.'i:~' 1,I'.I-. :~ :-i -, . :I,-,-,-- ~ ~ ~ ~ ~ ~ ~ ? ::- -- . -I.I ~ , ~ , ,..: .%.'~::

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- II z - I~ " ? ~ - ~ - q~-...,.~ _,-., , : . I.-:,' ..''...:.I... ; . .~ ! I.:-11~il --.- I"-- -~ . .-, .~ .- ' -: ;., - ,, -~ 1- - - . -: ', I, . -_, ~ ~ ~ ~ -~~~I - ~ ~ ~ ~ ~ - I- , .~~~~~~~~~~:~~~~~' ~~~~~ -- r,-,-. '.' '~ ~ ~ ~~~~~~~~~~~~~~. {*'

.?~. ,.:, -,:I,,~ ~ .. ' -I ,~~-' .t .~- ,, .,I .- ,,:..: ....-_ ~ ~ ~ , %- :I~~~. .~ , , ~ . ?.. ~ ' ' I - ,-- , I - . , - , I -. -~ -I I - L .

~~~~~~~~~~- ,,? , ;';. ;- : ' " r - .- , , .: '1~- . , - .
· .. , ~ - - -, 2- :. --,,~. -, ~-,-_. 11 ...->, -,'- : - I , -. ~ .. .. : ....: - .11 I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ . -,, -- ..'. L'': . , , . .. ,.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' , ..' - ,:': 4 ' 1I,

"' ' ;_ ;rj': ,' ' " :i - ' ' I'~ ~" ' -.. -.: ~ . " -, ~ ~ -' - ' '_~~.-., . .~~~~~~~~~~~~~~~ . .I"I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.I I ."~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~..]~~~. .<..-1 -- I II -.. -, , ,, . ~ - - - .:' . . . . . .i-~ :. . - - :i .I . . . .~
-, . , , - . . .. .. ;.I...I .?.; , I I .I .. - I I . -- : - . 7 . .-. .: I ..~' ,% . I .- .- .L .: . - - '- r .. '?..:., , , .- ~ "·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. ~ ...-~ -- --- ~.;"' :' ' :' -~ ., .. ~ -~. . , -7; ; '-- ~ - . ':.. ' , ; ..: . -: :. . .-.. .: :' ." .*..~--7: . 'J-' -'-~~~~~~~~'. II ,~~~~~~~,~~~~~~., -i~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~.I- ,~~~~~~~~~~~~~~~~~.~~~: . '.~ . .Z

........~- , , :.% , .̀, ' -- - 4. , .. ,,. .....

,- .. - . - -. :, I.. I I ...~~~~~-1 : ~ ..- ,1.. -? ,.-- -- ,~ - "~~~I~- -I ~ -~ ~ .. .-.~~ :: ~ -~ ~~ ':~: : :- :' , I .~ ~ , I I . .-. .I - I..I. :. - .,,.: _ 

~~~~~~~~~~~~~~-~ ~ ~ ~ ~ ~ ~~~ ~ ~~~~~~~~~~~~~~¥ ". . .... ",'!I:; :!:::':-""?'I''''" :.-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' " " .' -.- , ,' -II . - . . , -- - ,~.. , , ,,'- " ' ~ .

- - ~~~~~- - - - ~~~~~~~~~, , ' ' . .~~~~~~~~~~--. ~ ~ ~ ~ ~ - ,~ ~ ~~-~~~,~~~,-~~~~:."- ., : - ~~. . .;

-, - ' ', :, . . . -.- :. .;. . . . , ,, I~ . m - ...
'": ,: !, ., ~~~~~' ' - , . . . .-: ', ' " . ' .. - ' - .- ' .-



WHAT THE TEXTBOOKS SAY
ABOUT THE DESIGN OF EXPERIMENTS

by

Bruce W. Lamar

OR 073-78 March 1978

Prepared under Grant Number 78NI-AX-0007 from the National Insti-
tute of Law Enforcement and Criminal Justice, Law Enforcement Assis-
tance Administration, U.S. Department of Justice. Points of view
or opinions stated in this document are those of the author and do
not necessarily represent the official position or policies of the
U.S. Department of Justice.



- i -

TABLE OF CONTENTS

ABSTRACT ii

1 INTRODUCTION 1

2 FUNDAMENTAL EXPERIMENTAL DESIGNS 1

2.1 Assumptions 2
2.2 Single Factor Design 2
2.3 Two Factors Design 7
2.4 Two Factor With Interaction Design 9
2.5 Additional Design Considerations 12

3 VIOLATIONS OF ASSUMPTIONS 15

3.1 Normal Distribution Violations 15
3.2 Unequal Variances 16
3.3 Nonadditive Terms 17
3.4 Nonrandomization 17
3.5 Analysis of Covariance 18
3.6 Complete Block Designs 22
3.7 Incomplete Block Designs 25

APPENDIX - Summary of Notation 31

SELECTED BIBLIOGRAPHY 34



- ii -

ABSTRACT

This report reviews classical experimental designs including single

and multiple factor analysis of variance, analysis of covariance, and

Latin squares designs. Assumptions used in the models are presented, and

tests for violations of the assumptions are described. Examples illus-

trating primary designs and remarks discussing further model extensions

and considerations are also included.
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1 INTRODUCTION

Evaluations of criminal justice systems frequently involve the test-

ing of alternative programps or treatments. Foremost among the questions

that may be asked in such evaluations is: "Did the treatments make any

difference?" To answer this question effectively, an organized statisti-

cal plan, that is an experimental design, must be developed and imple-

mented.

This report is a review of the textbook material relating to experi-

mental designs. The Selected Bibliography contained at the end of this

report lists a few of the plethora of mathematical statistics and special-

ized books available in the M.I.T. libraries on the subject. Such books

range from the quite descriptive (Chapin) to the quite mathematical (Winer).

There are two main sections into which this report is organized. The

first section reviews the fundamental experimental designs in which all the

assumptions in implementing the model are satisfied. The other section

reviews the procedures undertaken when the basic assumptions are violated.

This latter section includes procedures for testing for violations as well

as alternative designs that may be implemented when the assumptions are

not satisfied or when policy decisions cause a change in the experimental

environment during the course of the experiment.

2 FUNDAMENTAL EXPERIMENTAL DESIGNS

The most extensively employed technique used in experimental designs

is the analysis of variance (ANOVA) which tests whether or not there is

variation in the treatments under consideration by assigning the variations

observed in experimental data to known sources (Ferguson, p. 223). In the

experiment, observations or measurements are madeon experimental units
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which are subjected to the various treatments. The experimental units

may be individuals, police squads, townships, or the like (Neter, p. 674).

This section introduces the ANOVA techniques by first summarizing the

basic assumptions involved and then by applying ANOVA to several funda-

mental designs.

2.1 Assumptions

The assumptions underlying the fundamental ANOVA models described in

this section are as follows (Kirk pp. 102-103; Neter, p. 426):

· The experimental errors within each treatment population

are normally distributed.

· The experimental errors within each treatment population

have the same variance.

· Each observation may be represented as a linear combination

of terms.

The treatments are randomly assigned to experimental units

to ensure independence between observations.

2.2 Single Factor Design

Most fundamental of the fundamental designs is the single factor

design which tests only for differences among treatments. The experimental

layout is shown in Figure 2-1.
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Figure 2-1

1 2 c

1 Y Y .... YI Y1 .

2 IY Y ... Y Y2.

r Y Y .... Y Y

typical Yij Y..

where: Yij is experimental observations

Yi. is treatment mean

Y.. is overall mean

The model under consideration is

Eqn 2-1 Yij = p + ai+ ij with Ea = 0
i

where: Yij is the observation of experimental unit j

under treatment i;

~P is the overall mean;

ai is the deviation from the mean due to

the treatment i;
2

ij is the random error distributed N(0,o ).

and is used to test the hypothesis

Eqn 2-2 H: a1 = 2 = ...- r =0

Hi: otherwise.

To test this hypothesis two equivalent approaches may be employed.

2.2.1 First Approach

The first approach (Dixon, pp. 147-148; Hoel pp. 289-290) starts by

2

noting that Yij is distributed N(p + ai, ) since ..ij is distributed

2
N(0, a ) and p and a l are parameters (constants).' Since Y.. is distributed
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2 -- 2Normally, the within treatment sample variance si = l/cZ(Yij -Yi. pro-

2 2
vides the ratio cs i/a which is chi-square distributed with c-1 degrees

of freedom. The sum of these values,

C(s2 + + r)2

k =
1

is also chi-squared distributed with d = r(c - 1) degrees of freedom.

In addition, since Yij is Normal,this implies that Yi is distributed

N( + ai' 2/r). So in a similar fashion

2
Y.

k =
2 o2 /c

is also chi-square distributed with d2 = (r - 1) degrees of freedom.

Taking the ratio of k2 to k divided by their respective degrees of freedom,

we achieve the formula

k2/d2
F kl/d

which is F-distributed with d2, d1 degrees of freedom. By noting that k2

should be small if H is true, we have our means of testing H , namely

to reject Ho if F is too large.

2.2.2 Second Approach

The second approach (Ferguson pp. 226-228; Neter pp. 436-441; Winer

pp. 152-155) is developed by first observing the deviation of sample values

about the estimate of the mean via the following identity:

Y.. - Y.. Y.. - Yi. +Yi. - Y..
13 1by squaring both sides and summing over i and j we obtain:

Then by squaring both sides and summing over i and j we obtain:

'
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Eqn 2-3 E(Yj - Y..) = (Yi + -)
i j 1i j 13- Y i. Y Yi. '

ij i, 
+ (Y Y.. -Y ) Y

i,j 13j

where 2(Yi. -Y..)(Yij - Yi.) = 0 since it is a sum of deviations about

i, j

the mean.

Equation 2-3 may be interpreted as the total variation (SSy) equaling

the variation between rows (i.e., treatments) (SSRy) plus the unexplained

(i.e., residual) variation within treatments (SSUy). That is,

SS = SSR + SSU
Y y Y

Dividing SSUy by its appropriate degrees of freedom [d1 = r(c - 1)] we arrive

at the mean square of residuals (MSUy) which is an unbiased estimate of 2.

Similarly, the mean square of treatments (MSRy) is obtained by dividing SSRy

by its degrees of freedom (d2 = r - 1). MSR is an unbiased estimate of 2
Y

2
if H is true; else E(MSR ) > . Hence, we again arrive at the ratioo Y

MSR
F= Y

MSU

which is F-distributed with d2, dl degrees of freedom. Again, we reject

Ho if F is too large.

2.2.3 Example

Consider an experiment in which three different dispatching methods

(treatments) are randomly assigned to police officers (experimental units)

and the response times (observations) are measured. Typical data for this

experiment is shown in Figure 2-2.
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Figure 2-2

Experimental Units

1 2 3 4 Yi.

M 1

2
-
q

4 3
EH

45.5

53.25

53.0

Y.j 51.67 53.67 46.67 50.33 Y.. = 50.5833

To test whether or not differences between treatments exist the ANOVA

calculations are compiled in an ANOVA Table such as in the one below:

Source of Sum of Degrees of Mean F-
Variation Squares Freedom Squares Statistic

Row (treatment) SSR = 155.167 r-l = 2 MSR = 75.58 F = 3.84

Unexplained SSU = 181.75 r(c-l)=9 MSU = 20.19

Total SS = 336.91 rc-l =11 .. ---
.........

Since at the 95% level the critical F value is 4.26 (Hoel, p. 395), then

F = 3.84 < 4.26 implies that we accept H and infer that no difference

between treatments exists.

2.2.4 Remarks

1) In order to aid in comparison and validity of experimental results,

one of the treatments is frequently a control group (Campbell, p. 13).

2) Instead of absolute measurements, the difference between pretreat-

ment and post-treatment measurement may be used. This helps to eliminate

external effects and so increases the internal validity of the model but

makes it less generalizable to situations without pretreatment measurements

and so decreases the model's external validity (Campbell, p.25).

3) "Tea for two." If just two treatments are under consideration,

then the assumptions described in Section 2.1 equivalently allow for a
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T-test between two means to be employed (Chapin, p. 197).

2.3 Two Factors Design

There are many extensions that may be made to the single factor design.

One such extension is the two factor design which takes into account vari-

ations in both treatments and experimental units. The experimental layout

is shown in Figure 2-3 which is identical to Figure 2-1 save for the inclu-

sion of the experimental unit means.

Figure 2-3

Experimental Units

1

2

4r

4J

c r

H

Y1.

2.

Y
r.

.1 .2 .c

where: , Yij Y.. are as described in Figure 2-1

Y j is the experimental unit mean.

The model of Eqn 2-1 is extended in the two factor design to

Eqn 2-4 Yij = + i+j+ij with ECi = 0, B = 0

where: Yij, , Eij are as described in Eqn 2-1

B is the deviation from the mean due to experi-

mental units.

Here, in addition to the hypothesis, "Is there a difference in treatments?."

given in Eqn 2-2, the model also simultaneously tests the hypothesis, "Is

there a difference in experimental units?." in the following form:

Ho: == = 0

H1: Otherwise
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To test each of these hypotheses the procedure for partitioning the

sum of squares is utilized. The equation

- 2 -2 - - 2
CYi _ Y)2 = .. ) +iCY - j_ Y..)

2
+iYi -Yi. - Y + Y.)

may be rewritten using the acronyms

Eqn 2-5 SS = SSR + SSC + SSU
y Y y Y

where: SS is the total variation
Y

SSR is the variation between rows (treatments)
Y

SSC is the variation between columns (experimental
Y

units)

SSU is the unexplained variation.
Y

As before, the sum of squares divided by their respective degrees of freedom

provide the mean squares (MSR . MSC , MSU ) as estimates of 02. The statistic

MSR
F = -y

MSU
Y

tests for treatment effects, while

MSC
F = Y
2 MSU

y

tests for experimental unit effects.
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2.3.1 Example

Consider again the data in Figure 2-2. The ANOVA Table incorpor-

ating experimental unit effects is given in the table below:

Source of Sum of Degrees of Mean F-

Variation Squares Freedom Squares Statistics

Row(treatment) SSR = 155.167 r-1 = 2 MSR = 77.58 F1 = 4.49
Y .... Y

Column(exp.unit) SSC = 775.99 c-l = 3 MSC = 258.66 F2 = 14.99

Unexplained SSU = 103.47 (r-l)(c-l) = 6 MSU = 17.25
..... SY .... 3.6 r 1 Y

Total SS = 1034.64 rc - 1 =11 .. ---
C r Fl .1, Y e

Comparing F1 with its critical value (5.14), we decide to accept H

(i.e., no row effect). Comparing F2 with its critical value (4.76), we

decide to reject H (i.e., column effect exists).

2.3.2 Remark

If each of the treatments is assigned to an experimental unit, then

observations may not be independent as required by the randomness assump-

tion in Section 2.1. In order to control for this dependence, a block

design as described in Section 3.6 may be required (Neter, p. 429).

2.4 Two Factors with Interaction Design

Another possible design extension is the inclusion of interaction

terms in the model. To illustrate the effect of interaction, consider

the data of Figure 2-2 which is graphed in Figure 2-4.
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Figure 2-4

Observations

60

50

40

30

1

3

2 Treatments
1)

2
Experimental Units

3 4

Note that the differences between treatments varies with the experimental

units. This variance implies interaction between treatments and experimental

units. Had the lines in Figure 2-4 been mutually parallel then no inter-

action between factors would have been present (Campbell, p. 27-29).

The presence of interaction may be tested by having multiple

observations per treatment/experimental unit cell and using the model

[Neter, p. 568]:

aI
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Eqn 2-6 Yij =1 + i + Bi + ( )ij + ij

with C a. 0, B O0, (8)ij = , E(cW) = 0
i j i J

where: P ,ai,Bj, are as described in Eqn 2-4

Yij. is the th replication of observations
Yij 

of experimental unit j under treatment i;

(a)ij is the deviation from the mean due to the

interaction between experimental unit j

and treatment i;

C.. is the random error term.
1J

Hypotheses about differences in the treatment, experimental unit, and

interaction means may be tested in the usual manner by partitioning the

sum of squares in the form

SS = SSR + SSC + SSRC + SSU
Y Y Y Y Y

where SSy , SSRy, SSCy, SSU are as described in Eqn 2-5

SSRC is the interaction variation.
y

The F-statistics to test for treatment, experimental unit, and inter-

action effects are, respectively,

MSR MSC MSRC
Eqn 2-7 F -= -Y- F =

1Eqn 2-7 MSU F2 MSU 3 MSU
y Y Y

2.4.1. Example

If the data in Figure 2-2 is supplemented with a second observation in

each cell, as indicated in Figure 2-5, then ANOVA may also include

4'



- 12 -

Figure 2-5

Experimental Units

1 2 3 4

50 46 39 47

50 58 55 50

55 57 46 54

Co
4-i

U)

.1-i

a)

P
E-4

First set of observations

interactions as is the case in the

1

2

3

Experimental Units

1 2 3 4

52 43 36 50

57 57 44 62

45 44 42 56

Second set of observations

table below:

Source of Sum of Degrees Mean F-
Variation Squares of Freedom Squares Statistics

Row (treatment) SSR = 306.33 r-l = 2 MSR = 153.17 F1 = 5.78

Column (exp.unit) SSC = 317.46 c-l = 3 MSC = 105.82 F2 = 4.0

Layer SSRC = 86.67 (r-l)(c-1) = 6 MSRC = 14.44 F3 = 0.54
(interaction) 3

Unexplained SSU = 316.5 rc(h-l) = 12 MSU = 26.46 ---
Total SS 1027.95 ch- 23

Total SS = 1027.95 rch-l = 23 --- ---
Y

The conclusions to be drawn from the table above are summarized as follows:

F-Statistic Critical Value Conclusion

F1 = 5.78 3.88 row effect

F2 = 4.0 3.49 column effect

F3 = 0.54 2.85 no interactio
effect

2.5 Additional Design Considerations

Other possible fundamental experimental design considerations are

briefly reviewed in this section.

(I,
0U)4-i

-I

H

1

2

3
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2.5.1 General Model

Additional factor and interaction term effects may be added to the

model. For example, the three factor with interaction model has the form

YijkQ = + i +j + Yk+ ()ij+ ()ik + (Y)jk + ijk

where terms are defined analogously to Eqn 2-6.

2.5.2 Unequal Sample Sizes

In the designs presented so far in Section 2, the number of replications

of observations for each combination of factors has been assumed to be equal.

However, in real life applications, this situation may not be the case.

The simplest case of unequal sample sizes is where the number of repli-

cations between any two factors is proportional. For example, in the two

factor case in Section 2.4, the number of replications will be proportional if

(Zh )(th. )
ij j1J

h.. = h..

ij lj

where: hij is the number of replications of treatment i and

experimental unit j.

Here, ordinary ANOVA may be performed by simply weighing observations by

their sample size (Neter, p.613; Winer, p.212)

In the case where unequal sample sizes are not proportional then

ordinary ANOVA is not appropriate since the sum of square variations is not

orthogonal and does not add to the total sum of squares (SSy). Instead, an

approximate ANOVA technique, the Method of Unweighted Means, may be used.

Here, replications in each factor cell are veraged and this average value is

used in the ANOVA calculations rather than the observations themselves

(Neter, pp. 614-615; Winer, pp. 402-404).

4'
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2.5.3 Analysis of Factor Effects

The initial question asked in the design of experiments is: "Did the

treatments make any difference?" If the answer is "yes", then the next

question is "How much difference did the treatments make?" In other words,

a ranking of the treatments is required.

There are numerous tests which make multiple comparisons among

treatment or other factor means, most of which use the unbiased estimate of

variance (MSUy )to develop a T-distributed statistic (Winer, p. 185). One

such test is the Tukey Honesty Significant Difference Test which makes compari-

sons between all pairs of factor means (Kirk, pp. 88-90; Lee, pp.300-301;

Neter, pp.473-477). A second test is the Scheff S Test which allows any

number of factor means to be compared simultaneously (Kirk, pp.90-91; Lee, pp.301-

302; Neter, pp.477-480). Finally, a third test, the Newman-Keuls Test, compares

selected pairs of factor means in a stepwise manner (Kirk, pp.91-92; Lee,

pp. 302-304).

2.5.4 Fixed, Random, and Mixed Models

In some cases, all of the factors under consideration are tested directly

in the experiment. Such experiments, like the ones described in Section 2,

are referred to as Fixed Model experiments. However, in other cases, only a

random sample of factors, e.g., five police squads out of 60, are selected

for testing in the experiment and then inferences to the rest of the factor

population is made. This form of experiment is called a Random Model experi-

ment (Campbell, p.31).

The Random Model has the same form as the Fixed Model, but a different

interpretation is placed upon the terms. For example, in Eqn 2-6 i' j, and

(aB)ij are no longer fixed parameters but are random variables sampled from the

factor population. This results in alternative calculations of the F-statistics.

Specifically, the calculations in Eqn 2-7 are replaced (Neter, p.623) by
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MSR MSU MSRC
= Y F = Y , F = Y1 MSCR 2 MSRC 3 MSU

Lastly, an experiment which contains factors, some of which are random

and some of which a fixed, is referred to as a Mixed Model experiment.

3 VIOLATIONS OF ASSUMPTIONS

In criminal justice evaluations, along with most investigations of social

science behavior, it is not always possible to comply with all the conditions

assumed present in employing a mathematical model. Therefore, it is important

to be able to judge what effect a violated assumption will have on the overall

validity of the model results.

The assumptions under which the designs in Section 2 were developed are

summarized below:

· Experimental errors are Normally distributed

· Experimental errors have the same variance

. Observations are represented by a linear combination of terms

· Treatments are randomly assigned to experimental units.

This section considers the robustness of the ANOVA designs with respect

to each of these assumptions. Tests for compliance with the assumptions as

well as procedures to control for violations are also considered.

3.1 Normal Distribution Variations

Inherent in the formulation of the ANOVA model was the assumption that

each observation was sampled from a Normal distribution. Fortunately, unless

a departure from Normality is very extreme in either skewness or kurtosis,

it will have little effect on the probability associated with the F-test of

significance (Kirk, p.61; Neter, p. 513). Of the two, the F-test is less

sensitive to skewness than to kurtosis (flatness or peakedness) of the

distribution. *
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To test for Normality, standard tests such as the chi-square and

Kulmorgorov-Smirnov tests may be employed. Alternatively, tests that do

not require the estimation of distribution parameters (mean and variance)

such as the Shapiro and Wilk W Test (Anderson, p.25) may be used.

If, indeed, the population distributions are far from Normal, then two

options are available to circumvent this difficulty. The first option is

to transform the data into a form that exhibits Normal behavior by the

techniques described in Section 3.3. The second option is to abandon the

F-statistic and its Normal dependency in favor of nonparametric statistics

such as the median or the Kruskal-Wallis ank statistic (Neter, pp. 520, 522;

Winer, pp. 848-849).

3.2 Unequal Variances

The equality of variances is another basic assumption in the designs of

Section 2. However, like violations of Normality, the ANOVA model is quite

robust to violations of the equal variance assumption (Kirk, p.61; Neter, p.5 14).

Nevertheless, for some of the extended designs described in Section 2.5

(specifically, the designs encompassing unequal sample sizes and random

effects), the effect of unequal variances becomes more pronounced and can

result in misguided inferences from the F-test.

There are several methods available for testing the equality of variances

among sample observations. One set of tests, such as the Bartlett test and

2 2
the Bartlett-Kendall test, uses n S where S is the sample variance of

i 1

treatment i (Anderson, pp.20-21; Dixon, p.179) These tests capitalize on

the fact that n S is approximately Normally distributed so ordinary ANOVA

2
may be applied to the n Si values themselves. A second set of tests, such

as the Hartley test and Cochran test, use ratios of max(S. ) and min(S.2) to
1

test for the equivalence of variances (Dixon pp.180,181; Kirk p.62; Neter p.512).

*,. .,
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A third set of tests, such as the Burr-Foster Q-test, is derived from the

sum of the sample variances squared (Anderson, p.22).

The main technique for equalizing variances is to transform the data

via techniques described in Section 3.3.

3.3 Nonadditive Terms

The models presented in Section 2, such as Eqn 2-1, were a summation

of component terms. In certain circumstances this form of a model may not

accurately describe the real situation and a transformation of data may be

required in order to express the model in additive terms. Frequently, if

the terms are not additive, then the assumptions of Normality and equal

variances may also be unsatisfied; so a judicious choice of transforms may

serve to remedy all of these problems.

For example, in experiments including growth, such as the effect of

diets on the weight of animals, the "true" model may be in the form:

ij e i i

So, the logarithmic transform

kn Yij = P+ ai + ij

reduces the data to the standard additive form (Anderson, p.25). In addition,

this transform is appropriate if treatment means are proportional to treatment

standard deviations (Kirk, p. 65).

3.4 Nonrandomization

There are two major reasons for randomly assigning treatments to experi-

mental units. First, randomization is used to ensure the neutralization of

effects not under consideration in the experiment (Campbell, pp. 13,34)

Second, randomization ensures the independence of observations within and

between treatments.
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Unfortunately, because of costs and the limited supply of experimental

units, investigations of criminal justice systems are not always able to

employ complete randomization. For example, in a survey, one judge (experi-

mental unit) may be questioned about each of the punitive programs (treatments)

under consideration. As a second example, instead of randomly assigning

treatments to police units, all of one squad may receive the first treatment,

all of another squad may receive the second treatment, and so on.

These problems, along with the lack of control created by policy changes

made while the experiment is in progress require modifications to the

designs described in Section 2. Two such modifications are the Analysis of

Covariance design, discussed in Section 3.5, and the Block design, discussed

in Sections 3.6 and 3.7.

3.5 Analysis of Covariance

In order to control for external effects, including those introduced by

policy changes undertaken during the course of the experiment, the ANOVA

model may be augmented by one or more independent regression variables. This

augmented model, combining analysis of variance and regression, is referred

to as an Analysis of Covariance (ANOCOVA) model and the independent re-

gression variables are called covariates.

To illustrate, consider the single factor design of Section 2.2. Say

that, to do policy changes, police officers with fewer years experience

are made available for the experiment. This effect may be controlled by

explicitly incorporating the years of experience in the model in the form

of an independent regression term, i.e., a covariate.
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The single factor ANOCOVA model is

Yij = + p +4i(X X..) + i + with Eti i 

where: Yij ' , ai' £i i are as described in Eqn 2-1

i is the covariate coeficient

Xi. is the covariate variable normalized about

its mean X..

The model is used to test the same hypothesis as Section 2.2 (all a. = 0)

by calculating the total sum of square deviations about the regression line

(instead of the mean) as follows (Ferguson, pp.350-351; Neter, pp.704-706):

2 - 2 .(Xij - X..)(Yi_ y Y..)]
I (Yij - Yij) = E(Yij - Y..) -i

ij ij .- 2
Exij -x..)ij

where: Yij, Y.. are as defined in Figure 2-1

Xij, X.. are defined analogously for the covariate

Yij is the overall regression lined predicted values.

This equation may be rewritten as

[SP ]2
SS = SS -

y SSx

The distinction between the ANOVA and the ANOCOVA models is illustrated

in Figure 3-1.

4-1
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Figure 3-1
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In an analogous fashion, the unexplained variation (SSU) may be

written as follows:

^A~ ~[ Z(X. -X )(Y -Y )2
2 - 2 ij 1 . i.

j (Y Y) = (Y i - Y

i,j ij i.

where: Yij' Yi. are as defined in Figure 2-1

Xij Xi are defined analogously for the covariate

Y is the within treatment regression line

predicted values

In other words:

[SPUxy]2

SSU = SSU -
y SSU

x

Then, the treatment variation in each row (SSR) may be obtained by subtraction:

SSR = SS - SSU

, ,

Y..

Yij
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Next, mean square estimates of the variance (MSU and MSR) are formulated

by dividing SSU and SSR by their degrees of freedom (dl = r(c-l)-l for MSU

and d2
= r-l for MSR). Finally, the hypothesis is tested via the F statistic

MSR
MSU

which is F-distributed with d2, d1 degrees of freedom. Ho is rejected if

F is too large.

3.5.1 Example

Suppose the data in Figure 2-2 did not control for the years of

experience of the police officers. The response time data may be refined

by the years of experience data, contained in Figure 3-2,

Figure 3-2

Experimental Units

1 2 3 4

Observed Values

by use of the ANOCOVA model as

u1

2
a)

H 3

Experimental Units

1 2 3 4

i 4 6 7 5

7 3 5 7

4 3 7 4

Corresponding Covariate
Values

summarized below:

Source of Sum of Degrees of Mean F-
Variation Squares Freedom Squares Statistic

Row (treatment) SSR = 122.75 r - 1 = 2 MSR = 61.3 F = 32.0

Unexplained SSU = 15.34 r(c-1)-l=8 MSU = 1.91 ---

Total SS = 181.75 rc-2 = 10 .. ---

u 2

3
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At the 95% level, F (32.0) is far greater than the critical value (4.46).

So, we conclude there is a difference between treatments. Note that by

controlling for the years of experience we can detect differences between

treatments whereas, without this data, no differences can be detected (as

in the example in Section 2.2.3).

3.5.2 Remarks

1) Although the ANOCOVA design does not require that the randomization

of treatments assumption be met, the other assumptions (Normality, equal

variances, independence of observations) are still assumed to be present.

2) The ANOCOVA model may be extended to incorporate more elaborate

regression terms in a natural manner. This includes multiple covariates

as well as non-linear covariate terms.

3) Another natural extension is to include multiple factors in the

ANOCOVA model (Neter, p.713) such as those described in Section 2.

3.6 Complete Block Designs

An alternative method to the ANOCOVA design for controlling for external

effects is to use a Block design. Here, experimental units that are not

independent may be gathered into homogenous groups, i.e., blocks, and an

additional term to account for the block effects may be explicitly added to

the model. Complete Block designs, i.e., designs which assign each treatment

to each block level (Anderson, p.124), are described in this section. The

description of Incomplete Block designs is deferred to Section 3.7.

3.6.1 Single Block Designs

Consider, for example, an experiment in which treatments are being

applied to several different squads of police officers. There may well be

differences in performance between squads. To account for these differences

the experimental units (the police officers) may be segmented into blocks
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(the squads) and treatments may then be randomly assigned to experimental

units within each block. This design is illustrated in Figure 3-3

Figure 3-3

Blocks

B1 B2 . . Bb

T1

, T
2

4 -

-

T r

\typical Yim

and is modelled by

Eqn 3-1 Yim = + + Pm + m with ca. = 0, ZP = 0
im1 i m . 1 m1 m

where: , i. are as described in Eqn 2-1
1

Y. is the ith observation of block level mlm

Pm is effect due to block level m

z. is the random error distributed N(O, )

The similarity between this model and the two factor- no interaction

model given in Eqn 2-4 implies that the analysis of the single block design

is identical to the design in Section 2.3. This is in fact the case where

the columns of experimental units are replaced by blocks (Neter, p.727).

3.6.2 General Block Designs

Complete Block designs may be generalized in two dimensions. One

dimension refers to the number of factors included in the model. Here,

additional terms may be added to Eqn 3-1 to represent additional factors as

well as interactions between factors and blocks. For example, the

'I

r,
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two factor - single blocking variable model with interaction is

Y = i+ +B + P + ( ij + (p)im +(P)jm +Eijm

The other dimension into which Complete Block designs may be expanded

refers to the number of blocking variables introduced into the model. A

design with two blocking variables, each with three levels is shown in Figure 3-4

Figure 3-4

A A A3

B1 B2 B3 B1 B2 B3 B1 B2 B3
m T

1

a)
F T2

aT
3 T

where one block is nested within the other (Ferguson, pp. 324-325). Letting

a and b represent, respectively, the number of levels of the first and

second block variables, the analysis of multiple block designs is identical

to the single block design described in Section 3.6.1 For the multiple

block designs the block index, m, ranges from 1 to a.b.

3.6.3 Example

Again, starting with Figure 2-2, the single block design may be exempli-

fied by compiling the experimental units into two blocks as shown in Figure 3-5

Figure 3-5

Block 1 Block 2

m 1

2

3H-

w

50 46 39 47

50 58 55 50

55 57 46 54

I I I I
I I i
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The analysis is summarized below:

Source of Sum of Degrees of Mean F-
Variation Squares Freedom Squares Statistic

Row (treatment) SSR = 77.58 r - 1 = 2 MSR = 38.79 F = 0.59

Block SSB = 26.13 b - 1 = 1 MSB = 26.125 F = 0.40

Unexplained SSU = 129.67 (r-l)(b-l)=2 MSU = 64.835 ---

Total SS = 223.37 rb - 1 = 5 .. ___

Since the F-statistics (0.59 and 0.40) are far below the critical values

(19.00 and 18.51) we accept the null hypotheses that there is no treatment

effect and no block effect.

3.6.4 Remark

If the assumptions of both the ANOCOVA and Complete Block designs are

met the external effects may be controlled by either method. The ANOCOVA

design has the advantage that it may be implemented after the data have

been collected while the Complete Block design must be constructed before

the data are gathered, since experimental units are assigned within blocks

(Kirk, p.488). The Complete Block design has the advantage that it is free

of assumptions about the relationship between the observations and the

external variables while the AOCOVA model must incorporate a linear or

nonlinear regression formulation (Neter, p. 757).

3.7 Incomplete Block Designs

Complete Block designs, that is, those in which all treatments are

undertaken for each level of the blocking variables, may become rather

cumbersome. As a case in point, a design using two 6-level blocking

variables and six treatments would require 216 observations. One method to

reduce the number of observations required would be to undertake only
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some of the treatments for each level of the blocking variables. That is,

use an Incomplete Block design (Neter, p.764). Common Incomplete Block

designs include the Latin Squares design, the Graeco-Latin Squares design,

and the Youden Square design.

Although Incomplete Block designs have the advantage of reducing the

number of observations, they have the disadvantage of being restricted to

applications where blocks have only negligible interaction effects between

treatments and other blocks (Neter, p.767). This non-interaction assumption

is required to insure that variations associated with interaction will not

be interpreted as variations due to treatments (Campbell, p.51; Ferguson, p.332).

3.7.1 Latin Squares Design

The Latin Square design* uses two blocking variables with one treatment

per block level. The number of levels of each blocking variable must equal

the number of treatments. In addition, each treatment must occur only once

for each blocking level (Ferguson, p.330; Kirk, p.151; Neter, P.767). To

illustrate, consider the complete Block design of Figure 3-4 with r = 3

treatments. There are r(r-l)! = 12 possible Latin Square designs (Kirk, p.153)

into which this design may be converted. Any of these designs may be chosen

randomly. One such design is shown in Fig. 3-6.

Figure 3-6

Second Blocking Variable

B1 B2 B3
a)

A1

A2

o 3

* The Latin Square design derives its name from an,ancient puzzle that
dealt with the number of ways Latin letters could be arranged in a
square so that each letter appeared only once in each row and column
(Kirk, p. 151).

T2 T1 T3

T1 T3 T2

T3 T2 T1
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The model used for the Latin Square design is

Eqn 3-2 Y = + a + p + T + .
imn + i + Pm n imn

with zc. = 0, p =
i m

where: p and ai are as described in Eqn 2-1

m is as described in Eqn 3-1

th
Y is the ith observation for block level
imn

T is the effect due to the nth level of the
n

second blocking variable

e__ is the random error distributed N(0, 2 )

0, T = 0
n

n

m,n

lmn

The main hypothesis, testing differences between treatments, is

H: Ca =C1 = . = = 0
H1: otherwise

HI: otherwise

In addition, hypotheses about

H: p = =...

H1: otherwise

blocking effects may be tested. Specifically,

=Pa =0a

and

H : T = T2 = ...
H1 otherwise

HI: otherwise

= Tb 0

These hypotheses are tested in the conventional manner by breaking the

variations into sums of squares as follows:

2Y...) = r(Y.
i..

1

- 2
-_ Y...) + E (Y

.m.
m,n

-2
- Y..) + (Y .. n

m,n

_ y .2 +
- Y...) +

Z (Yimn
m,n

-Y + 2Y...)
*1L. . . LI

Z (Yimn
m,n

- y..
- y
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Note that, except for the second term, the sums of squares are not indexed

over i since m and n uniquely identify the treatment undertaken. This

equation may then be rewritten using the acronyms

SS = SSR + SSA + SSB + SSU
Y Y Y Y Y

The mean squares (MSR y, MSAy, MSBy, MSUy) are then obtained by dividing

the sum of squares by their respective degrees of freedom. The F-statistics

MSR MSA MSB
F y F = y
1 MSU 2 MSU ' 3 MSU

Y Y y

are then used to test for treatment effects, first blocking variable effects,

and second blocking variable effects, respectively.

3.7.2 Other Designs

The Latin Squares design described in Section 3.7.1 used two blocking

variables, each with the same number of levels. A design that uses three

blocking variables, each with the same number of levels, is referred to as a

Graeco-Latin Squares design. Designs using more than three blocking variables

are referred to as Hyper-Graeco-Latin Squares designs (Kirk, pp. 166-168;

Neter, p.794). The analysis of these designs is analogous to that of Section

3.7.1 where additional terms for each blocking variable are included in the

model given in Eqn 3-2.

Another incomplete Block design is the Youden Squares Design. This

design allows for differences between the number of levels in the two blocking

variables. The analysis of these designs are more complex than the Latin

Squares designs because not all treatments are undertaken for each level of

the blocking variables (Kirk, pp. 441-448).
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3.7.3 Example

Using the Latin Squares design in Figure 3-6, with three treatments and

two 3-level blocks, data about response times of police officers such as that

in Figure 3-7 may be gathered. This data, assuming no interaction, may be

A1

A2

A3

Figure 3-7

B1 B2 B3

analyzed for differences in treatments and differences in blocks as shown

in the table below:

Source of Sum of Degrees of Mean F-
Variation Squares Freedom Squares Statistic

Treatment SSR = 68.67 r - 1 = 2 MSR = 34.33 F = 5.42

Row block SSA = 40.67 r - 1 = 2 MSA = 20.33 F2 = 3.21
...... Y ._ .. .

Column block SSB = 8.0 r - 1 = 2 MSB = 4.0 F3
= 0.63

Unexplained SSU = 12.67 (r-l)(r-2)= 2 MSU = 6.33 ---

TotalSS = 130.0 r - 1 = 8 --- -2
-Y

Since all of the F values (5.42, 3.21, and 0.63) are below the critical values

(19.0, 19.0, and 19.0) we accept the hypotheses that there is no difference

between treatments and between blocks.

3.7.4 Remarks

1) As emphasized at the start of Section 3.7, the aptness of Incomplete

Block designs, such as the Latin Squares design, are dependent upon negligible

interaction effects. Therefore, it is important to be able to test for the

significance of the interaction effects. One such test is the Tukey Test for

Additivity which employes use of the model's unexplained variation SSUy (Kirk,

p. 160; Neter, pp. 780-781).



- 30 -

2) Note the large critical values (19.0) encountered in the example

in Section 3.7.3. This occured because of the small number of treatments

and block levels used in the experiment. Therefore, it is recommended

that Latin Squares designs employ at least five treatments and block levels.

This will ensure a sufficiently large number of degrees of freedom, which,

in turn, will enable the critical values to be sufficiently small (Kirk,

pp. 151-152).



- 31 -

SUMMARY OF NOTATION

Indices and Ranges

number of blocking levels in first blocking variable

if" " second "
I 

I1

I,

ind

experimental units

degrees of freedom in F-statistic

repeated observations in factor cell

treatments
.ex of first factor (treatments)

" second factor (experimental units)

" third factor

f" repeated observations

" first blocking variable

f" second blocking variable

Model Components

effect of first factor (treatments)

" second factor (experimental units)

" third factor

" first blocking variable

" second "

covariate (regression)coeficient

variance of observations

mean

effect of first factor/second factor interaction

t" first factor/third factor "

" second factor/third factor "

" first factor/first block "

" second factor/first block "

N(, 2 )ij' EijQ' ijk,'' random error distributed

Eim' £ijm' £imn 

a

b

c

dl, d2

h, hij

r

i

k

1

m

n

Ci

Yk

Pm
T
n

o2

(0f) ij

(Y)ik

(ap)im

(BP)jm
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Observations and Statistics

A label for first blocking variable
m
B " second i"
n

F, F1, F2, F3 F-statistics

K1, K2 chi-square statistics

S. 2 sample variance of first factor
1

2

S-y " " first factor mean
1

T. label for first factor
1

Yij' ijV' ijkVA observed values

Yim' Yijm' Yimn 

Yi.' Yi mean of first factor

Y " second factor
.j

Y " first blocking variable
.m.

Y " second "
..n

Y.., Y... overall mean

Yij overall predicted regression values

Y . within first factor "

X.. covariate values

Xi. covariate mean corresponding to first factor

X.. overall covariate mean

Mean Squares, Sum of Squares, and Sum of Products

MSR adusted mean square for first factor (row)

MSU " " unexplained variation

MSAY observed mean square for first blocking variable

MSB " " second "t
Y

MSC " " second factor (column)
Y



- 33 -

MSRy observed mean square for first factor (row)

MSU " " unexplained variation
y

MSRC " " interaction
Y

SS adjusted sum of squares for total variation

SSR " " first factor (row)

SSU " " unexplained variation

SSx covariate sum of squares for total variation

SSU " "I unexplained variation
x

SP observed and covariate sum of products for total variation
xy

SPU " I" " unexplained variation

SSy observed sum of squares for total variation

SSA " " first blocking variable
y

SSB " " second blocking variable
y

SSCy observed sum of squares for second factor

SSR " " first factor
y

SSU " " unexplained variation
y

SSRC observed sum of squares for first factor/second factor interaction
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