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ABSTRACT

A mixed integer programming model for planning water resources

investments is presented. The model is a sequencing model applied to

the Vardar-Axios river basin in Yugoslavia and Greece. The structure

of the model is outlined, and computational experience is described. The

size of the model presented some difficulties, which are discussed along

with the results to date. The experience with this model points to areas

where further research is needed.



I. Introduction

Many problems in the area of water resources can be modeled as

mathematical programming problems. In particular, river basin planning

can be facilitated through the use of optimization techniques. Such

problems may be solved using tools such as linear programming, network

optimization, and mixed integer programming, depending on the nature of

the problem. Numerous optimization models have been formulated and tested

on specific problems, including single project models, where conflicting

uses of the project must be balanced to produce the maximum benefitl,

multiple project models, where flow along the river must be considered2,

and entire basin models, where the needs of a large region must be taken

into account3. - Mixed integer programming in particular has been found

useful in problems involvingscheduling, sequencing, returns to scale,

and plant location. One example of such a problem is a sequencing model

of the Vardar-Axios river basin (located in Yugoslavia and Greece). The

purpose of this paper is to examine the problem and how it was solved,

and to see how the techniques used can be generalized and applied to other

problems.

II. Statement of Model and Discussion

The model is adapted from the one used by Cohon, Facet, Marks, and

Haan4 in their work involving project selection and sequencing on the

Rio Colorado in Argentina. The project data is provided by a simulation

model of the basin. Data required includes the locations, costs, benefits,

and possible sizes of the projects, plus flow data for the river in its

current state. The task is to determine which projects should be built

and in which time period, and, in some cases, which of the proposed

sizes. There are budget constraints, water availability limitations,

and logical constraints. The objective is to maximize total benefits.

The decision variables of the model are of two types; flow variables

and project variables. The river basin is marked with checkpoints where
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flow data is available. (Many of these checkpoints are located at pro-

posed sites of projects or immediately downstream.) The flow variables,

which are continuous, give the flow at each checkpoint for each time

period for a given feasible sequence of projects. (Such a feasible

sequence of projects, representing a feasible solution to the integer

part of the problem, will be referred to hereafter as a configuration.)

The project variables, which are zero-one variables, indicate whether or

not a given project is constructed during a given time period. The prob-

lem allows for a planning horizon of more than one time period. Each

time period is assumed to be long enough to allow for the completion of

projects started at the beginning of the time period. The limitation

on the number of periods in the planning horizon is that both the number

of columns and the number of rows grows as the number of time periods,

drastically increasing the computational burden.

The constraints fall into four classes: continuity, conditional,

construction, and budget constraints. The continuity constraints balance

the flow from one checkpoint (or site) to the next to make sure that

the configuration found by the model is consistent with the existing flow

conditions in the river basin. These are equality constraints (the only

such constraints in the model) and there is one for each site in each time

period. The construction constraints simply ensure that a project is built

no more than once and in no more than one of the proposed sizes, if more

than one possible size is given by the data. There is one of these con-

straints for each proposed project. The conditional constraints enforce

limitations such as precedence relationships (a reservoir must be present

for a power plant to be built, for example). The budget constraints

guarantee that for each time period, total caplital costs for project con-

struction will not exceed a given amount. There is one such constraint

for each time period. In the original version of the model there were

also population constraints to make sure that the number of people needed

to develop the irrigation sites did not exceed the number of people avail-

able. (These constraints were later deleted.)

The objective function to be maximized is the sum of the benefits of

the construction of a project minus the capital and operation and main-

tenance costs of building that project. The benefit figures include
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benefits from agriculture, power production, flood control, and recreational

use, all taken from the data for the simulation model, from which the sizes

and locations of the projects were also obtained.

The detailed formulation follows:

Original model: K S

Budget: k bud projsi for all ik=l 8 dsi -proj Si

Population: s Popsi IRRsi - Pi for all i

T
Construction: proi 1 for all s,k

Conditional: PPVsi RESSJ for all s,i

YSi - Zsi =0 for all s,i

Continuity: (general form)

D - D - RES + c REsi + E IRR F - F
for all s,i

(The form of continuity constraints depends on what projects are

proposed at a site. At sites where water returns from an irrigation site

there is also a (l-p)Es* term present, s* indicating location of irrigation

site outflow. In addition, each continuity row at a site where a branch

flows in has a -1 in the column corresponding to the end site of the

inflowing branch.)

Objective function:

max = PPPV PPV )EX EX P +

[si -si )PPVsi i si EX

RR _ d(IRR i + (- i)Yi RES

Decision variables:

Dsi release from reservoir at site s during period i, or flow

at that point if reservoir has not been constructed.

EXPsi construction or not of export to another basin from s during i
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IRRsi construction or not of irrigation site at s during i

PPVsi construction or not of power plant at s during i

RES i construction or not of reservoir at s during i

Ysi construction or not of diversion(in) at s during i

Zsi construction or not of diversion(out) at s during i

Data variables

Bi budget available in time period i

c consumptive use of reservoir at s during construction and
filling

budki capital cost of project of type k at s constructed during i

E diversion for irrigation at s
s

F streamflow measured at s
S
P i total number of persons available to develop irrigation areas

in period i

Y yield from a reservoir at s

<si value of capital and operation and maintenance costs for
a project of type k constructed during i at s

ki value of time stream of benefits resulting from the construc-
tion of a project of type k at s during i

^/ irrigation loss coefficient

The model was applied to the Vardar-Axios river basin in two stages.

Some revisions were required for the second stage. Population constraints

were dropped since it was believed that they would never become binding

in the river basin. Diversions, which in the first stage were treated as

two projects, one flowing into the basin and the other out, were merged

into one. Also, some projects were proposed in several sizes so a new

index is added to the project decision variables. Thus the budget and con-

struction constraint left-hand-sides are now also summed over z, as is the

objective function. Some conditional constraints were added to make certain

irrigation sites dependent on some diversions. Also, a new set of projects

was added to represent municipal and industrial water supply projects, which

behave in the model somewhat like irrigation sites since a fraction of the

water diverted is not returned to the river.



For the first stage a simplified schematic of the basin and proposed

projects was used as the data for the model. This first stage included

four time periods of five years each, for a planning horizon of 20 years.

Seventy-one projects and 113 sites were included, yielding a matrix that

was 608 x 736. The breakdown of projects was as follows:

Reservoirs 18
Irrigation sites 24
Power plants 13
Diversions (in) 6
Diversions (out) 7
Exports 3

71

The second stage was more detailed and resulted in a significantly

larger problem. The number of proposed projects became 111. (Some of

these had been combined into single projects in the first stage.) In

addition, several sizes were proposed for a number of projects, resulting

in not 4 but 8 or even 12 integer variables corresponding to some of the

projects. This resulted in an increase in the number of integer variables

from 284 to 628. The number of sites increased to 194. The size of the

matrix became 1002 x 1404. The structure of the planning horizon was

not changed.

The water flow data chosen was for July, the driest month in the

basin, since if a configuration satisfied water limitations in that month,

it definitely would during. the rest of the year. The breakdown of projects

in the second stage was:

Reservoirs with power plants 10
Reservoirs 20
Power plants 2
Diversions 8
Irrigation sites 47
Municipal & industrial supply 24

111

III. Computational Experience and Results

The model was set up using a matrix generating language and solved

using an interactive branch-and-bound procedure on an IBM 370/168. The

initial optimal linear programming solution had an objective function
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value of 355.21 (in millions of dollars) as compared to the optimal integer

programming solution of 217 (a gap of about 40%). This gap is largely

accounted for by the fact that many irrigation sites were partially built

in the linear programming relaxation, contributing significantly to the

objective function, but had to be eliminated in the integer programming

solution because if completely built they would be too large for the amount

of water availble at the site. This suggested that perhaps alternate

sizes should be considered, or that the data might be inaccurate, or both.

A more detailed model was called for. Further evidence of this need was

the fact that the integer programming solution included no reservoirs

and no power plants. This called into question the benefit figures, the

sizing of the projects, and some of the precedence relationships. All

these considerations suggested a second pass at the river basin, using

less aggregate data than in the first stage.

For the second stage more detailed and up-to-date information was

obtained. As noted above, changes in the formulation resulted in a larger

model, which was consequently much more difficult to handle.

The optimal value for the linear programming relaxation was 29595.123

millions of new dinars (Yugoslavian currency). This corresponds roughly

to 1500 million dollars. The large difference from the results of the

first stage is due to revisions in benefits estimates as well as an

increased number of possible projects. Many projects in this solution

were fractional, falling into two classes: some projects were to be

completely built, but over all four time periods, and others would be only

partially constructed over the entire planning horizon. (This distinction

was useful in planning the branch-and-bound strategy.) In this second

stage as in the first, the budget was more fully utilized toward the end

of the planning horizon. This is not surprising since some expensive

projects depended on the prior construction of relatively cheaper ones.

The mixed integer program was attaked using branch-and-bound, and

several attempts were made before a productive branching stategy was

found. Simply finding a feasible integer solution (other than the trivial

one of no project construction) turned out to be an enormous task. The

first goal was therefore to find a limited feasible solution: one in which

splits in projects over time were allowed, so that the only variables
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treated as. integer were the slack variables on the construction constraints,

which were of the form xll + x 2 + x1 3 + x4 _ 1 . The branching strategy

used in finding this solution was to force as many projects as possible

to be built until the water constraints are violated, and then force the marginal

pne to zero and proceed. The intermediate solution found in this way

had some projects built in stages over the planning horizon but all projects

were either completely built or not at all. The objective function value

for this solution was 27274.269, about 8% less than the solution to the

linear programming relaxation. The budget was at its upper bound for

the third and fourth periods.

The next stage in the solution would be to shift the projects around

within the time periods, keeping the same solution to the intermediate

problem but looking at various feasible solutions stemming from that solution.

Of course, there is no guarantee that the optimal solution to the whole

problem is a descendant of that intermediate solution. It may well be

a descesndant of another feasible solution to the intermediate problem.

However, finding an integer solution as a descendant of that solution

would at least provide a useful lower bound to the problem and indicate

a range in which the optimal solution is to be found. Following such

a procedure with each of the feasible intermediate solutions would ultimately

have to lead to the optimal integer solution. (Unfortunately, this is

more easily said than done with a problem of this size. Storage require-

ments and costs of the iterations needed in branching can become prohibitive

long before a solution is reached.)

Once an integer solution is reached, much work remains to be done.

Some sensitivity analysis is desirable, especially since budget figures

and cost and benefit estimates can be uncertain. This sensitivity analysis

is a difficult problem in mixed integer programming. Furthermore, the

model (although large) left out some aspects that perhaps.should be in-

cluded, such as power production requirements and agricultural water needs.

The objective function also may be oversimplified, since some objectives,

like power and recreational use, which were simply translated into dollar

values, may be conflicting and involve tradeoffs. This would point to
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the need for multiobjective analysis, another difficult area in mixed

integer programming.

IV. Future Research

The experience gained in solving this problem indicates first the

difficulty of solving such a large-scale problem by branch-and-bound.

The process is time-consuming and costly. Even using an interactive

branch-and-bound routine, which allowed choice of branches by one

thoroughly familiar with the structure of the problem rather than simply

random branching, the problem was slow to solve. Furthermore, the storage

requirements were prodigious, even for the extremely sparse matrix in

this problem. For further work on this problem and others of this type

it seems that development of a decomposition strategy would be useful.

But, more interestingly, it also seems that thorough treatment of the

problem in the areas of sensitivity analysis and multiple objectives will

require some ground-breaking work in mixed integer programming techniques.

Much research remains to be done here.
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