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ABSTRACT

The well-known variational principle of the optimal

distribution of search effort is applied to the case where the

sought-for target has been located momentarily but the search

cannot begin until a time T o later, during which interval the

target may or may not move. The optimal search path, called

the retiring search curve,, is a spiral starting at the point

of original location, with the relationship between r and 

or L, the length of path, given by a differential equation

derived from the variational principle. This equation is

solved for a range of values of the parameters of greatest

practical interest. The results are tabulated and also displayed

in graphical form for use in practice. General conclusions

emerge, of considerable practical value in searches of this kind.



Introduction.

It is fairly evident that much of the mathematical

elaboration of search theory has contributed little to solving

the practical problem of conducting an actual search, whether

for a submarine, a ship in trouble or a lost child. Indeed, the

rough and ready formulasI developed during World War II are

still the basis for most search plans. Among these formulas,

the most important was the logarithmic rule2 for the distri-

bution of search effort among various regions having different

probability of presence of the target.

One search problem, that of search for a possibly moving

target that is known to be at a given point at some given time

prior to the commencement of search, was not solved quantitatively.

The appropriate tactic, called retiring search ,was discussed

qualitatively, but a solution utilizing the rule of optimal

distribution of search effort was not obtained. The present

paper is intended to satisfy that lack. It is not expected that

the details of the retiring search spirals, developed here, can

be followed exactly in practice, but it is hoped that the quant-

itative conclusions presented here can serve to discourage the

expenditure of unprofitable search effort and can serve to

emphasize some of the basic characteristics, such as the rapid

decline in chance of success with increase of the lost time

interval T0 between the initial location of the target and the

start of the search, and the quickly diminishing returns from

search carried on longer than time T (i.e., beyond time 2T0

after the initial location of the target).
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The problem is one often encountered in anti-submarine

warfare but also in many other circumstances, such as small-boat

rescue or the search for a lost child, for example. The target

(U-boat, small-craft, child) is known to be at a given point

(called the origin) at a given time but the search vessel (ship,

aircraft, helicopter, etc.) cannot arrive at the origin until a

time T0 (called the lost time) later. The target may have

remained at the origin, or it may have moved in any direction

at any velocity up to an estimated maximum speed u. The initial

location could come from the last signal from the target itself

or from the observation of a passer-by who could not stop.

Therefore the area within which the target may be found (the

area of presence) is, in the simplest case, bounded by a circle

with radius which expands at rate u. (This assumes an unlimited

field of action; for cases with limits on the area of presence

or with preconceptions as to preferred directions, see the comments

at the end of this paper). By the time the search can start this

area of presence has radius uTo and area A(O)= (uTo)2 ; at time

t after the search has started the area is A(t) -u 2 (To + t) 2 .

Incidentally, the initial location of the target need not

be known precisely; the analysis will not be appreciably altered

as long as the error of location of the origin is less than about

half the radius uTo of the area of presence at the time the search

begins. Because of this lack of knowledge and because of the

uncertainty as to the motion of the target during the lost time,

the probability density p(r) of presence of the target is a

maximum at the origin and decreases to zero for r > u(To + t).

A reasonable assumption is the following:



2(Er2< A(t))

0 (r 2 > A(t))

The search vessel has speed v and its detection equip-

ment has effective search width W, so it can search an effective

area dE= vW dt in time dt, where E(t) Wvt is the search effort

spent in time t. If this search is to be spread over an area

dq in time dt, the density of search coverage is then = dE/dq

= vW(dt/dq). At any time t after the start of the search this

density of search is to be related to the probability of presence

of the target in accord with the principle of optimal distribution

of search2 .

The search procedure would be to start from the origin,

since the probability of presence is greatest there, and to

spiral out, with the search density being (r) when the search

vessel has reached a distance r from the origin. The search

track need not be a simple spiral, as long as the search density.

in the annulus between r and r dr is (r). However a spiral

path is probably simplest (see comments at the end of this paper)

with a spacing S between turns of the spiral such that (r) = W/S.

For convenience we list the definitions of the various

quantities to be dealt with, before proceding further:

To Lost Time = Time between initial location of target at the

origin and the commencement of search.

t = Time after start of search; t + To = time after initial location.

u= Estimated maximum speed of target.

v= Speed of search vessel.

W = Effective search width of searcher.

L- vt = Length of search path since start of search.
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E(t)- Wvt Search effort used up in time t.

z (t/To) = (L/vT0) = Time spent in search in units of lost time.

A(t)w =(uTo)2(1+ z)2 _ =Area of presence of target at time t

after start of search.

k 2m (u/v)(uT0W) = A(O)/E(To) = Ratio between area of presence
at start of search to search effort that could have

been made during lost time T.

r(t) = Radial distance of search vessel from origin at time t
after start of search, required by principle of optimum

distribution of search effort.

q(t) r r2 A(O)x = area already searched over by time t.

x q(t)/A(O) (r/uTo)2 = Ratio of searched-over area to area

of presence of target at start of search.

$(t) dE/dq = (l/k)(dz/dx) = density of search coverage at time

t ToZ and radius r uT o.

S = Spacing between successive tracks of search vessel.

p~(r) 2 it -sprobability density of presence of target

at time t Toz and radius r(t) = uT o.

tm ToZm = Em/Wv = Total time allotted to search effort. Optimal

allocation principle requires that (t ) 0.

Q Probability of discovery of target by end of search (by t ).

rp See Eq.(ll).
The Equation of Motion.

The conditional probability of finding the target in area

element dq, if the target is present, is related to the density

of search at dq. If the search path is piecewise random 3 this

probability is equal to l-e - . Very careful spacing of sequential

search tracks can result in a somewhat larger value than this

but, in view of the difficulty of spacing, it is safer to use

this simpler formula.
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If this formula is used, the principle of optimal

distribution of search effort requires that the search start at

the region of highest probability of presence, the origin, and

proceed monotonically to lower probabilities, with the density

of search everywhere related to the probability of presence p(r)

according to the formula

ln(p/G) (p >G)
$5ZS~~~ '=~~~~ 1(2)

O (p G)

The value of the constant G is adjusted so that the search ends

when the predetermined search effort Em has been expended.

However, from the definitions listed above,

d dq -n() (p> G) or

dz -k [laF(x,z)/Al (F> X)

x o (F AX)

where A= m(uTo) 2 G and F(x,z) (l+z)-2t1-x(l+z) - 2 1

This differential equation can be solved numerically4. For each

step in the integration dz/dx must be adjusted,by successive

trials, so that the integrated value of Zn= Zn-l + (dz/dx)avdx

yields the value of (dz/dx)n required by Eq.(3). Integration

is continued until dz/dx k = 0, when the search stops.

The integration results, for each trial value of X, in

a numerical relationship between z, which is proportional to the

search effort already expended (or to the time already spent

searching) and x, which is proportional to the area already

searched over (or to the square of the distance from the origin).

In other words the solution gives us the distance r the search

vessel should be from the origin at time t after the start.

If the search path is a spiral, with spacing between successive



turns equal to S, then the first part of Eq.(3) shows that

W 1 dz WvTO d(L/vT ) W dL dr S
=dx 0 - onr d r Skdx (uTO)2 d(r/uTo 2rdr d 

indicating that the rate of increase of r with length of search

path is such as to lead to a spacing,between successive turns of

the spiral, of S, in conformity with the definition of .

Equation (3) has been integrated from x. 0 to Xm, where

(dz/dx) = 0. Successive trial integrations were made to find the

values of Xk= (UTo) 2G for which

zm/k ' E(tm)/A(O) vWtm/(uTo)2 (5)

= 0,0.05,0.l,0.2,0.3,0.4,06, 0.8,1.0,1.2,1.62.02., 3.0
and

k = A(O)/E(To ) = 0, 0.5, 1.0, 1.5 (6)

This inverts the solution, to provide xm and as functions of

zm/k, the parameter measuring the maximum expendible search effort.

The special case of k 0, where the search speed v is

much greater than the maximum target speed u and/or the search

width W is much greater than the radius uT0 of the circle of

presence at the start of the search, can be worked out by setting

k= 0 in Eq.(3) and solving the resulting equation for dy/dx (y = z/k),

= ln X( +ky l } - -ln(l-x) - n X

y --- (l-x) in (l-x) - (1 + n )x

Search ceases when dy/dxg ~ = 0, so xm= 1- for this case, and

Zm/k = - ln -(l-)(l + n ) -1 + -n (8)

This last equation can be solved to find as function of zm/k

for the k = 0 case.

- 7 -
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Values of x m and- m (= rm/uTO ) are tabulated in

Table I for the specified values of z /k and k. Values of 

and n(l/X) (= for r= O0) are given in Table II. The large

values of (0) are not surprising; when total search effort is

large the principle of optimal distribution of search often

specifies search coverage greater than unity for the most

promising regions.

Good approximations to the solution of Eq.(3), giving

exact values of (z /k) for x 0 and x x m and discrepancies of

4 percent or less for intermediate values, are

z (x-l _)l[ - x(l- +ln) - (3-2x)

a = 6 - xm+ (zm/k) +xm in 

m 

Note that for k O, when xm = 1- and a 0, the formulas are

exact solutions. Values of a are given in Table III.

The other quantity of interest is the probability &

of discovering the target during the search. From the earlier

discussion we see that is the integral of the probability

of presence p dq of the target in the area element dq, times

the conditional probability (1-e - 0) of finding the target if

it is in dq. Using the relationships already developed we have

2f(1- e )pq= d (1- e )(Ge)A(O)dx

= e(uo) 2 G F (e - l)dx = 2i exp(l dz) - 11 dx

= 2 F(x) - edx (10)

where F(x) is F(x,z) with z(x) being a solution of Eq.(3-).
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Values of are given in Table III.

Curves of as function of (z /k)= E(tm)/A(O) (total

area covered by search divided by area of presence at start of

search), for different values of search slowness parameter k)

are shown in Fig. 1. We see that as k increases (as the lost

time T increases and/or as the search speed v decreases) the

chance of ever catching the target decreases. The asymptotic

value of , for unlimited search effort, is roughly equal to

2/(2+k2), at least for the range of k tabulated. For slow search

vessels and/or for long delay in starting,the search, spiralling

out from the origin, has less and less chance of covering the

expanding area of presence of the target.

We also see that the law of diminishing returns sets

in quickly after (zm/k) = (l/k). In other words, spending more

time in search than an amount roughly equal to the lost time T O

yields very little additional chance of detection. This can be

seen in terms of a cruder model, 'where we assume the target is

equally likely to be anywhere within the area of presence

A(t) = u2 (TO + t)2 . The searched area is E(t) = vWt and the

fraction of the area of presence covered by the search at any

time is E(t) v t

A(t) -u (To+t) This has its maximum

value m at t = T0; beyond that, the search effort cannot keep

up with the expansion of the area of presence. This maximum

value m = (vW/4nu2T ), which is equal to (1/4k) in the notation

of this paper. The larger k is, the smaller is m. Use of the

more sophisticated model discussed in this paper redicts a

somewhat larger chance of detection when the search starts at
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the center and spirals out according to the solution of Eq.(3).

However the general conclusions remain; delay in starting the

search diminishes seriously the chance of success and extending

the search time longer than T O does not add much to that chance.

Discussion of Results.

The solutions of Eq.(3) can most usefully be displayed

by plotting Rx, r/uTo as function of z/k= E(t)/A(O), indicating

the distance from the origin the search vessel should be after it

has been searching for a time t. These plots are shown in Figs.

2 to 5, each for a different value of k. The curves are fairly

similar; r increases rapidly at first because the small area near

the origin can be covered fairly quickly. Then, if more search

effort has been planned (if zm/k is larger than 0.4) the increase

in r slows down for a while; more effort is needed to cover the

next annulus. Near the end of the run r increases more rapidly

again in an effort to cover, at least partially, the expanding

area of presence.

The dashed lines in each Figure show the radius r,

within which the probability of presence is P, according to the

equation
P 2w2 _ w4 ; w = [rp/u(oT 0 + t) (11)

These lines are horizontal for k = 0 because here the search

rate vW is so much greater than the initial rate of increase

2mu2 To of the area of presence that the search is completed

before the area has a chance to expand. For the other three

values of k the area of presence expands appreciably during the

search, so rp expands linearly with z/k, the faster the larger k is.
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Figure 3
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Figure 4
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Figure 5
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For k= 0 (Fig.2) the search, if it continues long

enough, can cover nearly all of the area of presence before this

area expands too far. Therefore the curve for the probability

of success in Fig.l for k 0 approaches unity asymptotically.

On the other hand the dashed lines for k > 0 (Figs.3, 4, 5)

are slanted upward, the larger the value of k the steeper. In

these cases the search cannot reach to the edge of the area of

presence if the search is to be as thorough as needed near the

origin, where the chance of detection is the greatest. Those

r against t curves for k. 0.5 stop just beyond the P 0.8 line,

whereas those for k 1.5 fall short of the P 0.6 line. By

searching thoroughly near the origin (the most rewarding region,

especially at first) the searcher has lost the chance of ever

catching up with the expanding area of presence. Additional

search time just falls farther behind.

Figures 6 and 7 are typical examples of retiring search

spirals, one for k = and z /k = 2 (v/u = 4 and W=uT /2, for

example) and one for k 1 and zm/k = 1 (v/u. 4w and W = UT/4, for

example, though it could be for v/u= 2 and W uTo/2). The

differential equation relating r and 9 for the spiral comes

from the usual one relating the differential length of search

path dL= vdt .vTo dz to rd9 and dr, where r uT ',

(dL)2 = (rd@)2 + (dr)2 or (d) 2 l(v2(dz 2 1]
dx = ) _ - (12)

Approximate values of (dz/dx) can be obtained from Eqs.(9)

and the Tables. The search coverage is shown as a shaded band

of width W/2 on each side of the search path, for one quadrant.

If the bands overlap the shading is continuous.
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In Fig. 6 (k = -) the search speed is great enough and/or

the sweep width is large enough so that the spacing S between

spiral turns is less than W (and thus the coverage is greater

than unity) for about 2 circuits, out to where P is about 0.6.

Beyond this there are gaps in the coverage as the search path

attempts to cover at least part of the rapidly expanding circle

of presence. Thus the probability of success is about 3/4, as

seen in Table III. In Fig. 7 the sweep width is halt as large

so that, although the time spent in search is the same as for

Fig. 6, the total search effort E(tm) is half as large. Thus

more time has to be spent in the inner regions, in order to

cover it as completely as required by the optimal principle.

The tighter spiral winds about 300 ° more around the origin than

does that of Fig. 6, though the total length of path is the same.

In Fig. 7, however, gaps in the swept path (as shown by the

unshaded strips) begin to occur by the time P has reached 0.4

(see also Fig.4) and the non-searched gap grows rapidly during

the last circuit. Consequently the total chance of success for

this case is only about 1/2, as indicated in Table III.

As mentioned in the first section, Fig. 1 shows that

by the time the search has lasted a time equal to the lost time

To, at least 80 percent of the ultimate chance of success has

been achieved. Also, no matter how much additional search effort

is expended, the largest probability of success one can hope to

reach is roughly 1/(l+k 2 ) (at least for k 1.5).

The retiring search path can of course be a rectangular

spiral if this is easier to execute. The successive straight

elements should equal in length the curved path per quadrant,
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which means that the perpendicular distance from each segment to

the origin should be about 0.8 times the intercept of the curved

path with this perpendicular. The dashed line in Fig. 6 shows

a possible exemplar.

Finally we should note that the basic equations (1) and

(3) have primarily to do with the area A(t) of presence of the

target and thus can be modified without much change if there is

some directional asymmetry in the presumed motion of the target

or if there are limits to the expansion of the area in some

directions. For example, if there is a greater likelihood that

the target moves in one direction than in others, the area of

presence might have an expanding elliptical boundary and the

variable x in Eq.(3) would then be related to the dimensions of

this elliptical area. Modification of the definition of x could

also be made if the presence of a "shore line" prevents the

expansion of the area of presence in a range of directions.
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TABLE I

xm = (rm/uTO)2 -m = (rm/UTo)

zm/k k 0 0.5 1.0 1.5 k - 0 0.5 1.0 1.5 Zm/k
.05 0.284 0,280 0.277 0.273 0,533 0.530 0.526 0.522 .05
0.1 .383 .386 .386 .386 .619 .621 .621 .621 0.1
0.2 .507 .535 .555 .569 .712 .732 .745 .754 0.2

0.3 .589 .657 .704 .737 .767 .810 .839 .858 0.3
0.4 .650 .767 .847 .902 .806 .876 .921 .950 0.4

0.6 .738 .973 1.131 1.233 .859 .986 1.063 1.111 0.6
0.8 .798 1.174 1.418 1.571 .893 1.083 1.191 1.254 0.8
1.0 .841 1.376 1.712 1.918 .917 1.173 1.308 1.385 1.0
1.2 .874 1.581 2.013 2.273 .935 1.258 1.419 1.508 1.2
1.6 .920 2.005 2.634 2.999 .959 1.416 1.623 1.732 1.6
2.0 .948 2.449 3.276 3.820 .973 1.565 1.810 1.954 2.0
2.4 .965 2.913 3.939 4.540 .983 1.707 1.985 2.131 2.4
3.0 .981 3.639 5.002 5.744 .991 1.908 2.237 2.397 3.0

TABLE II

X= (uTo) 2 (G/2) ln(x) 5 E)x-O

Zm/k kO0 0.5 1.0 1.5 k=-O 0.5 1.0 1.5 Zm/k
0.05 0.716 0.698 0.679 0.661 0.534 0.360 0.386 0.414 .05
0.1 .617 .600 .568 .536 .483 .511 .575 .624 0.1
0.2 .493 .461 .427 .393 .707 .775 .852 .935 0.2
0.3 .411 .381 .345 .309 .889 .966 1.064 1.175 0.5
0.4 .3550 .325 .290 .253 1.050 1.125 1.239 1.374 0.4
0.6 .262 .251 .218 .182 1.338 1.382 1.523 1.702 0.6
0.8 .202 .205 .174 .140 1.598 1.587 1.751 1.969 0.8
1.0 .158 .173 .143 .111 1.841 1.757 1.945 2.199 1.0
1.2 .1256 .1495 .1207 .0906 2.074 1.902 2.114 2.402 1.2
1.6 .0805 .1176 .0903 .0641 2.520 2.140 2.405 2.748 1.6
2.0 .0525 .0969 .0707 .0476 2.948 2.334 2.650 3.045 2.0
2.4 .0346 .0823 .0570 .0371 3.365 2.498 2.864 3.294 2.4
3.0 .0187 .0668 .0430 .0268 3.981 2.705 3.147 3.620 3.0
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TABLE III.

6 (see Eq. 10) a (see Eq. 9)

z m/ k k = 0 0.5 1.0 1.5 k =0 0.5 1.0 1.5 zm/k

0.05 0.081 0.079 0.076 0.074 0 0.267 0.540 0.834 .05
0.1 .147 .142 .136 .130 0 .278 .869 1.322 0.1
0.2 .257 .241 .225 .209 0 .710 1.356 1.980 0.2

0.3 .347 .318 .292 .264 0 .938 1.690 2.382 0.3

0.4 .423 .380 .343 .304 0 1.126 1.928 2.637 0.4

0.6 .544 .478 .418 .359 0 1.409 2.213 2.894 0.6

0.8 .636 .554 .472 .392 0 1.601 2.347 2.977 0.8

1.0 .708 .612 .512 .411 0 1.729 2.402 2.978 1.0

1.2 .765 .659 .542 .424 0 1.808 2.410 2.938 1.2

1.6 .845 .723 .581 .435 0 1.879 2.360 2.806 1.6

2.0 .898 .762 .604 .439 0 1.881 2.272 2.629 2.0

2.4 .932 .787 .618 .440 0 1.843 2.175 2.500 2.4

3.0 .963 .807 .627 .441 0 1.772 2.026 2.295 3.0


