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ABSTRACT

This report is a survey of the design of various types of

networks that frequently occur in the study of transportation

and communication problems. The report contains a general

framework which facilitates comparisons between problems. We

discuss a large number of different network design problems and

give computational experience for the various solution techniques.
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1.1 Introduction

In this survey we will discuss the design of various types

of networks that frequently occur in the study of transportation

and communications problems.

In particular, we will analyze networks that satisfy the

following general description. First, we must specify a set of

nodes and a set of arcs (directed or undirected) in the network.

Each node will have a specified capacity which limits the total

amount of flow that can pass through the node. Associated with

each arc is a set of possible arc capacities. For instance, an

arc capacity could be a binary variable taking on the values zero

or some capacity C. Alternatively, the arc capacity could be a

continuous variable assuming any value from zero to some upper

bound C'. Note that setting an arc capacity to zero is equiva-

lent to eliminating the arc from the network. In this survey we

will often refer to increasing an arc capacity from zero as

"adding" an arc or "constructing" an arc in the network.

In these network design problems we will also have a set of

required flows that must be routed through the network. For

example, there could be required flows between pairs of nodes.

In most problems, as is the case for the above example, the re-

quired flows will be multi-commodity flows in the sense that

there will be several types of flow to route through the network.
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For each arc given in the design problem there is a cost

function associated with setting the arc capacity variable at

a particular level. We will refer to these costs as construction

costs. For every arc in the network there is also a routing cost

function that depends on the amount of flow routed through the

arc. A very common routing cost function is one where the cost

is proportional to the amount of flow traveling through the arc.

At this point we should note that there are two different

flow routing policies that will be used in this survey. One

possible routing policy is Wardrop's "Principle of Overall Minim-

ization" [WAR1]. Utilizing this policy means that the flow rout-

ing will be done so that the sum of the routing costs for all of

the required flows is minimized. Such a routing process is

optimal from the viewpoint of the entire system.

In contrast, another possible routing policy uses Wardrop's

"Principle of Equal Travel Times" [WAR1]. Under this routing

principle, each unit of flow will seek to minimize its own origin

to destination routing cost. An optimal traffic flow assignment

according to this strategy has the property that no unit of flow

can improve its routing cost by taking an alternative route be-

tween its origin and destination. We will refer to this type of

routing as user equilibrium routing (in the literature this type

of routing is sometimes referred to as descriptive flow assign-

ment). Unless otherwise noted, all of the network problems dis-

cussed in this survey will use the system optimal routing strategy.
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For network design problems that fit the general description

given above, we shall discuss two types of design problems, net-

work synthesis and network improvement problems. For a network

synthesis problem, all the arc capacities are initially zero.

That is, we start the design process without any part of the net-

work constructed. For network improvement problems, we begin

with a network configuration through which the required flows

can already be routed. The problem is to add additional capaci-

ties to the network arcs in order to improve the performance of

the network.

For either type of design problem, a solution consists of

decisions on how to set the arc capacity levels so that all re-

quired flows can be routed through the network and that a

specified objective function is minimized. There are several

kinds of objective functions that are used to evaluate proposed

network configurations. One consists of the sum of the routing

and construction costs for all the arcs in the network. Another

type of objective function consists of only the sum of the rout-

ing costs for the arcs but with the constraint that the sum of

the construction costs for all the arcs does not exceed a given

budget. We will describe other objective functions in the course

of this survey as they are required.

We can now summarize the above description of network design

problems in the following general framework:
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(1.1.1) OBJECTIVE: minimize a given objective function

CONSTRAINTS:

1) ARC TYPE

2) ARC CAPACITIES

3) CONSTRUCTION COSTS -

4) ROUTING COSTS

5) REQUIRED FLOWS

6) SPECIAL CONSTRAINTS -

here we specify whether

the arcs in the network

are directed and/or un-

directed

here we describe the

set of possible arc

capacity levels

here we specify the set

of arc construction

cost functions

here we specify the set

of arc routing cost

functions

here we describe the

set of required flows

in the problem

here we discuss any

other constraints of

the problem; e.g., a

budget constraint on

the total construction

costs.
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Note that in our general framework we assume that a set of

nodes has already been specified. Unless otherwise stated,

we will also assume that all nodes have infinite flow

capacity.

It should be easy to see that the general framework in

(1.1.1) encompasses a large number of different design problems.

In the following sections we will discuss various special cases

of this general network synthesis and improvement problem.

Previous survey work in the area of network design problems

includes reports by Schwartz [SCH1], Stairs [STAl], and

Steenbrink [ST2, Chapter 4].

4
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1.2 Infinite Capacity Network Design Problems

In this section we will discuss problems that have two

common traits. First, the network arc capacities can either be

zero or infinite. So, once an arc is added to the network, any

amount of flow can be routed through it. Second, all arc routing

costs are linear functions of the flow routed through the arc.

Note that with these two properties, the arc routing cost

per unit of flow is constant and independent of the level of flow

through the arc. Under this condition, both the system optimal

and user equilibrium routing policies will produce flow assign-

ments for the problems in this section that incur the same amount

of routing cost. So, although we are assuming that the routing

is done according to a system optimal policy, the network design

results of this section are valid for either routing policy.

Now we will examine some of the various infinite capacity

network design problems.

1.2.1 Infinite Capacity Network Synthesis Problems

Billheimer and Gray [BILl] formulated the first type of

infinite capacity network synthesis problem which we will present.

We discuss this problem first because it contains as a special

case a variety of combinatorial problems including the Steiner
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tree problem on a graph [HAK3, DRE2], the simple plant location

problem [MAN1, EFR1], the optimum communication spanning tree

problem [HUT3], and the minimum spanning tree problem [KRU1].

Later in this survey, we will consider these special cases.

In terms of our general framework, we can describe

Billheimer and Gray's problem in the following way:

(1.2.1.1) OBJECTIVE: minimize total routing and construction

costs

CONSTRAINTS:

1) ARC TYPE

2) ARC CAPACITIES

3) CONSTRUCTION COSTS -

4) ROUTING COSTS

5) REQUIRED FLOWS

directed and/or undirected

zero or infinite

a fixed cost for con-

structing an arc with

infinite capacity

linear functions of the

arc flows

there are required flows

between all pairs of nodes

in the network

Note that an infinite capacity arc represents an arc which is

capable of carrying every possible flow in the network. So it is

possible to replace an infinite capacity arc with an arc whose

finite capacity is sufficiently large.

4
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This particular problem is quite complex. The formulation

of (1.2.1.1) as a mixed integer program results in a very large

problem. For a network design with 50 nodes and 200 possible

directed arcs, the corresponding mixed integer program will have

2,700 rows, 10,000 continuous variables and 200 binary variables.

Because of the complexity of the problem, Billheimer and Gray

propose a heuristic procedure for obtaining a solution.

The procedure begins with all possible arcs in the network

constructed. Then the procedure applies two iterative algorithms.

The first algorithm reduces the total cost (routing and con-

struction) at each iteration by eliminating from the network the

arc which will produce the largest cost reduction. The other

algorithm reduces the total cost at each iteration by adding to

the network the arc which will produce the largest cost reduction.

Each algorithm continues to remove or add an arc until no further

cost reduction can be obtained. Then the other algorithm is

applied. These two algorithms are used repeatedly until a local

optimum is reached. At this local optimum we cannot reduce the

cost of the network configuration by the addition or deletion of

a single arc.

The heuristic procedure has been tested on a problem with

68 nodes and 476 arcs. The method reached a local optimum after

about 3 minutes of computation time on an IBM 360/67 computer.

It is difficult to judge the quality of heuristic's solutions
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since no satisfactory method is known for solving problems of

that size.

It is interesting to see that special cases of (1.2.1.1)

encompass a wide range of combinatorial problems. If all arc

construction costs are set to zero, then the (1.2.1.1) becomes

a series of shortest path problems [DRE1]. If all arc routing

costs are set to zero, then the problem becomes either the

minimum spanning tree problem [KRU1] or Steiner's tree problem

on a graph (STPG) [HAK3, DRE2]. The problem will be a STPG

when the required flows necessitate that there be a path be-

tween every pair of nodes in some subset of the nodes in the

network. When this subset is the entire set of network nodes,

(1.2.1.1) becomes the minimum spanning tree problem.

Since (1.2.1.1) contains the STPG as a special use, we

can be sure that it is very difficult to solve. Karp [KARl]

has shown that the STPG belongs to the class of NP-complete

problems (this class of problems is also referred to as P-

complete problems and polynomially complete problems). This

implies that the STPG is as difficult to solve as such combina-

torial problems as the traveling salesman problem [BELl], the

maximum clique problem [HAR2] and the 0-1 integer programming

problem (see [KARl, KAR2] for a full discussion of the various

NP-complete problems). In view of the lack of success in solv-

ing any of the above problems on a large scale, it appears un-

likely that there is an efficient algorithm for the STPG or
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or for (1.2.1.1). In fact, it can be shown that (1.2.1.1)

belongs to the class of NP-complete problems. (This follows

from the fact that the STPG is a special case of (1.2.1.1)).

If the arc construction costs are all equal and totally

dominate the routing costs (i.e., the optimal network design

must be a tree), then (1.2.1.1) becomes the optimum communica-

tion spanning tree problem defined by Hu [HUT3].

Another special case of Billheimer and Gray's problem is

the fixed charge plant location problem [MANI, EFR1]. The

plant location problem is normally associated with the place-

ment of facilities on the nodes of a graph. Efroymson and

Ray [EFR1] describe it in the following way: "In its simplest

form, plant location can be posed as a transportation problem

with no constraint on the amount shipped from any source. How-

ever, there is a cost associated with each source (plant).

This cost (called a fixed cost or fixed charge) is zero if

nothing is shipped from the plant, i.e., the plant is 'closed'.

It is positive and independent of the amount shipped if any

shipment from the plant takes place, i.e., the plant is 'open'."

However, it is possible to convert the plant location problem

to a network synthesis problem. This can be done in the follow-

ing way: add a special node to the plant location network.

This node will be the source of all the flow required by the

customer nodes. Also, add a set of special arcs leading from

the special node to each potential plant site (see figure 1.2.1.1).
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"SPECIAL"
NODE

POTENTIAL
PLANT LOCATIONS CUSTOMERS

FIGURE 1.2.1.1

PLANT LOCATION AS AN ARC SYNTHESIS PROBLEM
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A special arc connecting the factory to a plant site has a

construction cost equal to the fixed charge associated with open-

ing the site. These special arcs will have no routing costs.

Arcs connecting plant locations with customers have no construc-

tion costs. However, they will have a routing cost equal to the

transportation cost from the plant location to the customer. So

now the corresponding synthesis problem is to design the minimum

total cost (construction plus routing cost) network so that all

the flow requirements between the special node and the customers

are satisfied. Thus, the fixed charge plant location problem is

a special case of (1.2.1.1) where arcs either have non-zero con-

struction costs or routing costs but not both. Also, in this

special case, the required flows are a single commodity, whereas

in the general case of (1.2.1.1), the required flows are multi-

commodity.

Viewing the fixed charge plant location problem as a special

case (1.2.1.1) gives us additional insight into the network

synthesis problem. For instance, Billheimer and Gray give some

methods for partially characterizing the optimal network con-

figuration. In particular, they give a procedure for identifying

arcs which definitely must or must not be constructed in the

optimal solution. Efroymson and Ray give a procedure for deter-

mining if a plant must or must not be opened in the optimal

solution. By comparing the two procedures, we can see that



-16-

Billheimer and Gray's techniques are a generalization of

Efroymson and Ray's techniques.

Note that by using a similar construction as illustrated

in figure 1.2.1, we can show that many other different facility

location problems are special cases of the network design

problems specified by our general framework. For example, if we

have a capacitated plant location problem, the node capacity

constraint can be represented by a capacity constraint on one of

the "special" arcs added to the network. Since there has been so

much work done in the area of facility location problems (see

[REVI, FR1]), it may be possible to generalize some of the

techniques developed in order to apply them to network design

problems. The rules given by Billheimer and Gray and Efroymson

and Ray are one example of such a generalization.

Scott- [SC01, SC02, SC03] discusses another network synthesis

problem that is closely related to (1.2.1.1). The problem,

called the optimal network problem by Scott, has the following

description:

(1.2.1.2) OBJECTIVE: minimize total routing costs

CONSTRAINTS: same as (1.2.1.1) with an additional

constraint:

6) SPECIAL CONSTRAINT

a) Construction Budget - total construction

costs cannot exceed a given budget.
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Scott proposes several methods for solving the optimal

network problem. The first approach is to formulate the

problem as a mixed integer programming problem [SCO1]. Since

the formulations for this problem are generally quite large,

Scott does not develop this approach any further. The second

method proposed by Scott [SC02] is a branch and backtrack pro-

cedure [GOU1]. The method was tested on a series of 26 problems

each containing from 7 to 10 nodes with undirected arcs connect-

ing all possible pairs of nodes. The total solution time

ranged from under one minute to over one hour of IBM 360/65

computer time. Because of the excessive solution time required

for this method, Scott [SC02] introduces a heuristic procedure

which involves a series of arc exchanges, additions and dele-

tions. The procedure is similar to Billheimer and Gray's

heuristic method for (1.2.1.1). Scott tested the procedure on

the group of problems described above. In all cases the solution

time was less than one minute and all solutions obtained were

within 3% of the global optimum.

Boyce et al. [BOY1] utilize a branch and bound algorithm

to solve (1.2.1.2). They are able to solve problems with 10

nodes and 45 arcs in 3 to 400 seconds of IBM 360/75 computer time

depending on the value of the given construction budget.
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As was the case for Billheimer and Gray's problem, Scott's

problem contains several interesting combinatorial problems as

special cases. If all construction costs are set to zero, then

Scott's problem reduces to a set of shortest path problems. If

all construction costs are set to one, and if the construction

budget is taken as (N-1), where N is the number of nodes in the

network, so that the optimal network must be a tree, then the

problem reduces to Hu's optimum communication spanning tree

problem. Using a construction similar to the one depicted in

figure 1.2.1.1, it can be shown that the P-median problem [HAK1,

HAK2] is also a special case of Scott's problem.

1.2.2 Fixed Charge Transportation Problem

The next network synthesis problem that we will discuss

is the well known fixed charge transportation problem [BALl,

KUH1, SPI1, BAIl]. This problem arises when we consider a

Hitchcock transportation problem [DAN1] with fixed charges

added to the flow variables. Since the Hitchcock transporta-

tion problem can be formulated as a linear programming problem,

the fixed charge transportation problem is a special case of the

fixed charge problem that has been studied by Dantzig and

Hirsch [DAN1].
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In terms of our general framework, the problem has the

following description:

(1.2.2.1) OBJECTIVE: minimize total construction and routing

costs

CONSTRAINTS:

1) ARC TYPE

2) ARC CAPACITIES

3) CONSTRUCTION COSTS

4) ROUTING COSTS

5) REQUIRED FLOW

directed

zero or infinite

a fixed cost for

constructing an arc

with infinite capacity

linear functions of

the arc flows

a single commodity

that must be routed

between the set of

source nodes and the

set of destination

nodes (see below)

6) SPECIAL CONSTRAINT

a) Arc Restrictions - the set of nodes is

divided into a set of source nodes and

a set of destination nodes. Only arcs

between source and destination nodes are

allowed in the network.
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So (1.2.2.1) is similar to (1.2.1.1) except that instead of

having required flows between pairs of nodes, the fixed charge

transportation problem has a required flow between two sets of

nodes.

Many solution methods have been proposed for (1.2.2.1).

For instance, Balinski [BALl] and Kuhn and Baumol [KUH1]

proposed heuristic solution methods. Spielberg [SPIl] suggested

an exact solution method that solves a mixed integer programming

formulation of (1.2.2.1) by using Benders' decomposition pro-

cedure [BEN1]. We will not discuss these methods here. The

interested reader may consult Bair and Hefley's [BAIl] survey of

the fixed charge transportation problem.

1.2.3 Infinite Capacity Network Improvement Problems

In this section we will discuss some network improvement

problems that are closely related to the infinite capacity net-

work synthesis problems described in the previous section.

Ridley [RID1] gives the following version of the infinite

capacity network improvement problem:

(1.2.3.1) OBJECTIVE: minimize total routing cost (same as

in (1.2.1.2))

CONSTRAINTS: same as (1.2.1.2) with the addition

of the following constraints
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6) SPECIAL CONSTRAINTS

b) Initial Arc Capacities - same arc

capacities are initially set at

infinity. They constitute the initial

unimproved network.

c) Integer Values - all fixed charge con-

struction costs and the given budget

must be integer valued.

The main feature of this version is that there will generally be

more than one candidate arc between a pair of nodes. Each arc

will have a different routing cost function. So the optimal

decision involves deciding not only whether to connect a pair of

nodes with an arc but also deciding how "good" an arc to con-

struct. Notice that by constructing another arc between a pair

of nodes which initially has an arc connecting them, we can

"upgrade" service between the two nodes.

It is possible to view Ridley's problem as a special case

of Scott's optimal network problem where all the arcs in the

initial network have zero construction cost. Thus, any method

that solves Scott's problem theoretically will solve Ridley's

problem as well.

Ridley gives a branch and bound procedure for solving

(1.2.3.1). Suppose the construction budget is b units, where

b is an integer. The procedure starts by increasing the budget
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so that the best possible network (in terms of smallest

routing costs) can be constructed. Then the procedure lowers

the budget by one unit and finds the optimal set of arcs to

construct subject to the new budget constraint. The above

process is repeated until the budget is decreased to exactly

b units. The optimal solution is the set of arcs chosen or

the last iteration. Since a larger budget can never increase

our routing costs, a lower bound on the routing costs of any

iteration of the solution process is the routing cost of the

previous iteration. Stairs [STA1] points out that this pro-

cedure is quite sensitive to the size of the budget used. A

large budget would require a large number of iterations and a

great amount of computation. So it does not appear that

Ridley's method will be able to solve medium or large problems

unless the construction budget is quite small. Stairs reports

that Ridley's method has been used to solve problems that have

up to a dozen nodes. She does not give any computation times

for these problems.

Next we will consider a special case of (1.2.3.1) where

there is only one required flow that must be routed. An equiva-

lent statement of this problem is: suppose we have a network

with V nodes. The "length" of every arc (i,j) can be decreased

to any one of L.. different values. Decreasing the length of an
13

arc incurs some construction cost. Subject to a construction

budget, find the optimal investment policy that achieves the
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best improvement in the length of the shortest path between

nodes 1 and V.

Goldman and Nemhauser [GOL1] give an interesting method

for solving the above shortest path improvement problem. Given

a network with the various possible levels of arc improvement,

they show how to form a special expanded network in which a

shortest path provides the optimal investment policy. The

transformation they give can be described as follows:

Let N = set of nodes in the original problem

network

A = set of arcs in the original problem

network

A(i,j) = set of non-negative integers which are

the construction costs associated with

decreasing the length of arc (i,j) to

one of Lij levels.

R = value of the construction budget

N* = set of nodes in the enlarged network

A* = set of arcs in the enlarged network

f.ij(u) = length of arc (i,j) after investing

u units.

Note that fij(O) is the original length of arc (i,j).

Also, fij(u) is assumed to be a non-increasing

function.
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Now N* (i,u): iEN, 0 < u < R, u integer }
A* = ((i,u),(j,v)):(i,j) A, (v-u) A (i,j).

Finally, let d*(x,y) be the length of arc (x,y) in the

expanded network.

Then d*((i,u),(j,v)) = f(v-u).

Many of the nodes and arcs in the expanded network may be un-

necessary. However, they are included in the above description

to keep the notation uniform.

So, if we wish to improve the shortest path between nodes

1 and v in the original network, then the problem is to find the

shortest path between nodes (1,0) and (v,R) in the expanded

network. If arc ((i,u),(j,v)) is part of this shortest path in

the expanded network, then the optimal improvement policy for the

original network is to spend (v-u) units on arc (i,j).

Figures 1.2.3.1 and 1.2.3.2 depict a small example of this

network expansion procedure. Figure 1.2.3.1 shows the original

network. Solid lines denote the original network arcs. Dotted

lines denote the various levels at which an arc can be improved.

The numbers beside the arcs are the arc lengths. The numbers

placed within squares are the construction costs. Figure

1.2.3.2 shows the expanded network. For this example R, the

construction budget equals 2. The problem is to improve the

shortest path between nodes 1 and 3. So in the expanded net-

work, the problem is to find the shortest path between nodes
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FIGURE 1.2.3.1

EXAMPLE OF NETWORK EXPANSION PROBLEM

FIGURE 1.2.3.2

EXPANDED NETWORK REPRESENTATION OF FIGURE 1.2.3.1
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(1,0) and (3,2). Note -that nodes (1,1), (1,2), (3,0), and

(3,1) are not necessary for the problem.

The expanded network can become quite large especially if

R is large. So Goldman and Nemhauser show how to avoid the

brute force application of a shortest path procedure to the ex-

panded network. They adapt various shortest path algorithms to

exploit the special structure of the expanded network.

Wollmer [WOL1] and Ridley [RID2] give efficient procedures

for solving special cases of the shortest path improvement

problem. However, it can be shown that they are just special

cases of Goldman and Nemhauser's procedure.

Stairs [STAl] formulates a network improvement problem that

is identical to Billheimer and Gray's infinite capacity network

synthesis problem except for two constraints: first, an initial

network which can already handle the required flows is given.

Second, it is possible to close down an arc (set its capacity to

zero) as well as to construct one. For an arc that could be

closed down, the construction cost would be negative. This

would represent the savings in costs that would occur if the arc

were closed. Aside from these two differences, the objective

function and the constraints for the two problems are the same.

Stairs suggests the use of an interactive computer program

to solve her problem. Under her approach, the user chooses

which arcs to open or close. The computer then computes the

cost of the proposed solution. Utilizing this information, the
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user modifies his proposed solution. By repeating this inter-

action between user and computer it is hoped that a reasonable

solution will be found. Stairs states that the interactive pro-

cedure could be a useful tool for evaluating medium-sized net-

works. A traffic network designer could use it to gain some

insight into the operation of a given network. The procedure

could be used for a sensitivity analysis of a design problem.

A test problem involving a network with 35 nodes and 10

projects (a project is an arc whose capacity may be increased

or decreased) has been solved using Stairs' procedure.

It may be possible that the interactive program approach

could also be applied to large network problems. With Stairs'

approach the interaction between the user and computer is

comparatively simple. Krolak et al. [KROl1, KR02] have designed

more sophisticated exchanges of information between user and

computer. They stress structuring and displaying the problem

data in a way which complements the human problem solving pro-

cess. Using their approach they are able to find solutions to

200 city traveling salesman problems that are about 4% from the

optimum. So, perhaps with a more sophisticated approach, large

scale network design problems could be handled by an interactive

program.

Funk and Tillman [FUN1, SC03] also consider a variant of

the infinite capacity network improvement problem. However, we

will not discuss their work in this survey.
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1.3 Capacitated Network Improvement Problems

We will now discuss some network improvement problems that

are natural extensions of the network improvement problems

discussed in section 1.2.3. The networks discussed in this

section will contain arcs that have finite flow capacities.

This feature is a more realistic assumption about the structure

of most networks than the infinite capacity arcs of the previous

network design problems. For example, a road in a traffic net-

work certainly has a finite flow capacity.

Several different formulations of this problem will be

described.

Roberts and Funk [ROBl] discuss a version of the capacitated

network improvement problem that has the following formal descrip-

tion:

(1.3.1) OBJECTIVE: minimize total construction and routing

costs

CONSTRAINTS:

1) ARC TYPE - directed

2) ARC CAPACITIES - the capacity of arc

(i,j) can be either

zero or C..
13
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3) CONSTRUCTION COSTS - a fixed charge for

constructing an arc

with non-zero capacity

4) ROUTING COSTS - linear functions of

the arc flows

5) REQUIRED FLOWS - there are required

flows between all

pairs of nodes in the

networks

6) SPECIAL CONSTRAINTS

a) Initial Arc Capacities - some arcs are

initially set to their non-zero capacity

value. They constitute the initial un-

improved network.

b) Construction Budget - the total construc-

tion costs cannot exceed a given budget.

Roberts and Funk formulate (1.3.1) as a mixed integer programming

problem. However, they give no specific method for solving the

formulation.

Ochoa [OCH1] treats another version of the network improve-

ment problem that can be considered as a generalization of the

Roberts-Funk model. Ochoa analyzes the improvement of a network

over K time periods. An arc may be added to the network before

the start of any of K time periods. Now there is a construction
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budget constraint for each of the K time periods. The objective

is to minimize the sum of the routing costs for the K time

periods. Otherwise the problem is identical to (1.3.1).

Note that if the number of time periods is equal to one,

then the model is the same as the Roberts-Funk model except that

the objective function does not include the arc construction

costs. Ochoa also formulates this problem as a mixed integer

programming problem. Since the size of the formulation is quite

large, even for small networks, Ochoa suggests the use of

Benders decomposition procedure BEN1] for solving the problem.

However, he does not report any computational results.

Hershdorfer [HER1] considers a third variant of the network

improvement problem that is much more detailed than (1.3.1).

His model has the following features:

(1.3.2) OBJECTIVE: minimize total construction costs

CONSTRAINTS:

1) ARC TYPE - directed

2) ARC CAPACITIES - each arc can be chosen

3) CONSTRUCTION COSTS

4) ROUTING COSTS

to be one of L possible

values

- arbitrary

- the routing cost of an

arc is a convex piece-

wise linear function
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of the flow. All arcs

have two linear seg-

ments in their cost

functions

5) REQUIRED FLOWS - there are required

flows between all

pairs of nodes in the

network

6) SPECIAL CONSTRAINTS

a) Initial Arc Capacities - some arc capac-

ities are initially set at non-zero

values. They constitute the initial un-

improved networks.

b) Routing Cost Reduction - the routing cost

must be decreased by a certain given

amount from the routing cost for the

original unimproved network.

c) Constant Ratio - the ratio of the

capacities for the two linear segments of

the routing cost function must remain con-

stant no matter what the total arc

capacity is.

Note that the type of cost function that appears in (1.3.1) is

used to model the non-linear relationship between travel time and
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traffic volume in a transportation network. The convex routing

cost function reflects the effects of congestion in a network.

Hershdorfer formulates (1.3.2) as a large mixed-integer pro-

gramming problem. He uses a branch and bound procedure which

involves solving a series of linear programming problems. The

largest network improvement problem that he solved success-

fully contained 12 nodes.

Carter and Stowers [CAR1] consider a problem that is very

similar to (1.3.2). We do not discuss their work here.

In a recent doctoral thesis, Agarwal [AGA1] describes

another version of the network improvement problem. Agarwal's

problem has the following description:

(1.3.3) OBJECTIVE: minimize total routing costs

CONSTRAINTS:

1) ARC TYPE - directed

2) ARC CAPACITIES - the capacity of an arc

(i,j) can range between

0 and some upper bound

Ci.13
3) CONSTRUCTION COSTS

ROUTING COSTS

linear functions of arc

capacity increases

the routing cost of an

arc is a convex piece-

4)
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wise linear function

of the flow

5) REQUIRED FLOWS - there are required

flows between all

pairs of nodes in the

network

6) SPECIAL CONSTRAINTS

a) Initial Arc Capacities - some arc

capacities are initially set at non-zero

values. They constitute the initial un-

improved network.

b) Construction Budget - total construction

costs cannot exceed a given budget.

Agarwal uses a variety of solution techniques in gaining compu-

tational experience. However, the results are quite discouraging.

A test problem with 24 nodes and 38 arcs was formulated as

a linear program with 667 rows and 1938 variables. The solution

of the linear problem required over 14 minutes of CDC 6400 com-

puter time. In an effort to reduce computation time, Agarwal

applied Dantzig-Wolfe decomposition [DAN1] and the Boxstep method

[MAR1]. Neither approach was able to solve the problem in a

reasonable amount of time. Agarwal decided that neither method

was effective because of the arc capacity constraints present in

the problem. The difficulty caused by the capacity constraints
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should not be surprising. Consider the problem of finding the

routing cost for a particular proposed network solution. For

all of the above versions of the network improvement problem,

if the capacity constraints were removed, then computing the

routing cost would only involve solving a series of shortest

path problems (note that this is exactly the case for the in-

finite capacity network design problems which do not have any

capacity constraints). If the capacity constraints are kept,

then computing the routing cost for the Roberts-Funk version

of the problem requires the solution of a difficult minimum

cost multi-commodity flow problem [AS1, KEN1, TOM1]. For the

last two versions (1.3.2 and 1.3.3) with their piecewise-

linear routing cost functions, the computation of the routing

cost is even more difficult. Since the problem of evaluating

a proposed solution is so difficult, it should not be sur-

prising that the problem of finding the optimal solution is also

very difficult.

Steenbrink [STE1, STE2] discusses another variant of the

capacitated network improvement problem which has the following

description:

(1.3.4) OBJECTIVE: minimize total construction and routing

costs

_ __
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CONSTRAINTS:

1) ARC TYPE

2) ARC CAPACITIES

3) CONSTRUCTION COSTS

4) ROUTING COSTS

5) REQUIRED FLOWS

- directed

the capacity of an arc

(i,j) can range be-

tween 0 and some upper

bound Cij

arbitrary

- arbitrary

- there are required

flows between all

pairs of nodes in

the network

6) SPECIAL CONSTRAINT

a) Initial Arc Capacities - some arc

capacities are initially set at non-

zero values. They constitute the initial

unimproved network.

Steenbrink formulates this problem as a mathematical pro-

gramming problem with linear constraints and a non-linear

objective function. He does not propose an exact solution for

the problem. Instead, he suggests a heuristic procedure that

will hopefully produce a reasonable solution to the problem.

Steenbrink's method involves decomposing the original

problem into a master problem and a series of subproblems. Each
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subproblem concerns finding the optimal capacity for an arc

given the total flow through it. The master problem is to route

the required flows through the network with all capacity con-

straints removed. (This master problem is actually a multi-

commodity flow problem [AS1]). Steenbrink solves the master

problem by using a stepwise assignment procedure to route the

flows. Let a 1,..., aJ be fractions such that

J

i= 1

On the i th iteration of the stepwise assignment procedure, the

fraction ai of each of the required flows is routed through the

network. For example, let R12 be the required flow between nodes

1 and 2. At iteration i we route (ai R 12) units of flow from

node 1 and 2 via its shortest route in a specially defined net-

work. In this specially defined network, the "length" of arc

(k,l) =

dFkl

dx
kl

x = i-

where

Fkl = routing cost function for arc (k,l)

kl
x = the total amount of flow routed through arc

i-h St
(k,l) after the (i-l)- iteration.
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So, in effect, the routing cost of an arc in this special net-

work is the marginal routing cost for the arc after the pre-

vious iteration. After J iterations all the required flows will

be routed. Then the arc capacities are adjusted so that the

construction costs are minimized (this is the solution of the

subproblems).

Steenbrink shows that this process does not always terminate

with an optimal solution. Hopefully, the solution generated will

be a reasonable one.

Steenbrink applied this method to a Dutch roadway design

problem which was modelled as a network with 2000 nodes and 6000

arcs. The stepwise assignment procedure used 4 iterations to

assign the flows. Each iteration required about 12 minutes of

IBM 360/65 computer time. Of course, there is no way to evaluate

how close Steenbrink's solution is to the optimal solution.

Finding the optimal solution would require the solution of a very

large non-linear program. In fact, it should be noted that this

problem seems to be by far the largest network design problem

attempted in the literature.

Steenbrink [STE2] discusses in great detail the stepwise

assignment procedure and its application to the design of a Dutch

roadway network. He also describes many practical details of the

procedure's implementation.
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1.4 Network Design Problems with User Equilibrium Routing

In this section we discuss network design problems that

have a user equilibrium routing (UER) policy instead of a

system optimal routing policy. So, instead of routing flows

in order to minimize the total routing cost for all flows, we

seek a traffic flow assignment which has the property that no

unit of flow can improve its routing cost by taking an alterna-

tive route between its origin and destination. First, we

describe a major difference between network design problems

with UER and those with system optimal routing. Braess

[MURl] (for the original German article by Braess see [BRA1])

was the first one to document this difference. For a network

with system optimal routing, the addition of an arc to the net-

work can never increase the total flow routing costs. Since

we can always choose to use the flow routing pattern that was

used before the new arc was added, the total routing cost

can never increase and will usually decrease. Somewhat

surprisingly, for a network with UER, the addition of an arc

can lead to an increase in the total flow routing costs. This

phenomenon is known as Braess' paradox.

We will now describe an example of Braess' paradox taken

from [MUR1]. Figure 1.4.1 gives a sketch of the directed net-

work that will be discussed. Six units of flow must be routed
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l0x
2

l0x

path 1 = arcs (1, 3)

path 2 = arcs (1, 4)

and (3, 2)

and (4, 2)

path 3 = arcs (1, 3), (3, 4) and (4, 2)

FIGURE 1.4.1

Network Example of Braess' Paradox
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from nodes 1 to 2. We also have:

routing cost for arc (i,j) = xij · fij (xij)

where xij = flow on arc (i,j)

f13 (X) = lo0x

f32 (x) = 50 + x

f34 (x) = 10 + x

f42 (x) = lo0x

f14 (x) = 50 + x

The first situation that we will analyze is when arc (3,4) does

not exist. By symmetry, the UER policy is to send 3 units of

flow via paths 1 and 2. The total routing cost is 498. If we

consider the network with arc (3,4) present, the UER policy is

to send 2 units of flow via paths 1, 2, and 3. The total

routing cost is 552. With the addition of arc (3,4) to the net-

work, the routing cost increases by about 11%. It is not known

how prevalent this counter-intuitive behavior is in networks

that have a UER policy. However, Murchland [MUR1] reports on a

recent experience by Knodel, "Knodel remarks that the example

(of Braess) may seem contrived, but a recent experience in

Stuttgart shows that it can occur in reality. Major road in-

vestments in the city centre, in the vicinity of the Schlossplatz,

failed to yield the benefits expected. They were only obtained

when a cross street, the lower part of Konigstrase, was sub-
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sequently withdrawn from traffic use." (see [KNO1] for

Knodel's original German article.)

Braess' paradox indicates that great care should be used

in evaluating proposed improvements to a network with UER.

Now we discuss some work that has dealt with the design

of networks with UER. All of this work concerns the area of

network improvement problems.

The first version of the network improvement problem with

UER has the following description:

(1.4.1) OBJECTIVE: minimize total routing costs

CONSTRAINTS:

1) ARC TYPE - directed

2) ARC CAPACITIES - zero or infinite

3) CONSTRUCTION COSTS - a fixed charge for

4) ROUTING COSTS

5) REQUIRED FLOWS

constructing an arc

with infinite capacity

- arbitrary

- there are required

flows between all pairs

of nodes in the network

6) SPECIAL CONSTRAINTS

a) Initial Arc Capacities - some arc

capacities are initially set to infinity.
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They constitute the initial unimproved

network.

b) Construction Budget - total construction

costs cannot exceed a given budget.

c) Network Restriction - the routing cost

cannot increase when additional arcs are

added to the network. This constraint

forbids networks such as the one used to

demonstrate Braess' paradox.

(1.4.1) is similar to Ridley's network improvement problem

(1.2.3.1) except that (1.4.1) uses UER and in general, the rout-

ing cost functions used will be more complicated than Ridley's

linear functions. Constraint 6c does not appear to be very

practical. For complicated networks it will be very difficult

to verify that the constraint is satisfied. However, constraint

6c is a crucial assumption for the solution technique about to be

given.

Ochoa and Silva [OCH2] suggest using a branch and bound

procedure to solve (1.4.1). At each vertex in the search tree,

a decision is made whether or not to construct a particular

candidate arc. Also, at each vertex the procedure computes

lower bounds on the routing cost. This is done by adding to

the network all arcs for which the construction decision has

not yet been made and then computing the minimum UER cost for
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this network. Of course, this lower bound is only valid if

constraint 6c is satisfied (if constraint 6c is not satisfied,

it might be possible to achieve a lower UER cost by adding only

a subset of the remaining arcs). At each vertex a calculation

is made to see if constraint 6b (the construction budget con-

straint) is satisfied. This is accomplished by computing a

lower bound on the arc construction costs. The lower bound is

merely the sum of the construction costs for all arcs which have

already been added to the network. Ochoa and Silva do not give

any computation experience for their procedure.

Chan [CHAl] also analyzes a network improvement problem

that is very similar to (1.4.1).

Recently, Leblanc [LEBl] considered the following problem:

(1.4.2) Same as (1.4.1) except that constraint 6c is eliminated.

So this version of the network improvement problem does not

require a monotonicity assumption for the routing cost function.

Leblanc formulates (1.4.2) as a large nonlinear programming

problem. He suggests a branch and bound procedure to solve it.

His branch and bound procedure is identical to the one used by

Ochoa and Silva except for a new way to obtain lower bounds on

the routing costs. At a vertex in the search tree, a lower

bound on the total routing costs is obtained without any

assumptions about the behavior of the routing costs. This is
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accomplished by adding all arcs for which the construction

decision has not yet been made and then computing the minimum

total routing cost for the network with a system optimal

routing policy. Leblanc proves that this will always be a valid

lower bound. His proof utilizes an important relationship

between system optimal routing and UER. For any network, a

system optimal routing policy will never have a higher total

routing cost than a UER policy. This is because a UER flow

assignment is always a feasible solution to the system optimal

routing problem.

Leblanc uses his procedure to solve a sample problem with

a network that has 24 nodes, 71 arcs and 5 arcs that could be

added to the network. Finding an optimal solution to the problem

required about 2 1/4 minutes of CDC 6400 computer time.

Although branch and bound has emerged as a very good

technique for determining the exact solution of small and medium

sized optimization problems, it is much less successful with

large sized problems. So the branch and bound techniques given

here for solving (1.4.1-2) will probably be unable to handle

large network improvement problems that have dozens of candidate

arcs. The next article that we discuss gives a problem formula-

tion and solution technique that can be used with very large

networks. The solution technique is not an exact one, but it is

hoped that reasonable solutions will be generated.
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Barbier [STA1, STE2, also see BAR1 for the original French

article by Barbier] defines the following network improvement

problem:

(1.4.3) OBJECTIVE: minimize total construction and routing

costs

CONSTRAINTS: same as (1.4.1) except 6b and 6c are

eliminated and constraint 1 is replaced

by:

11) ARC TYPE - undirected.

(1.4.3) is similar to Stairs' network improvement problem given

in section 1.2.3. The only differences are that (1.4.3) uses UER

and in general, the routing cost functions used will be more com-

plicated.

Barbier gives an iterative algorithm that will hopefully

generate reasonable, although not necessarily optimal solutions

to (1.4.3). Barbier's algorithm has the following steps:

Step 1 Add all possible candidate arcs to the original

unimproved network. Then assign the required flows

according to the UER policy.

Step 2 Change the cost of routing flow through a candidate

arc from just the routing cost to the routing cost

plus a fixed charge equal to the construction cost

of the arc.
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Step 3 All arc flow levels are at their previously de-

termined level (either determined in step 1 or 4).

Choose a required flow R.. that goes from node i
13

to j. Find a path from i to j for Rij so that the

cost of routing is minimized. (Remember that some

routing costs have an added fixed charge). Re-

assign the flow Rij along this path.

Step 4 Take any candidate arc which appears on the path

and eliminate the fixed charge from its cost of

routing. (Since we have routed some flow through

the candidate arc, we essentially have "paid" for

its construction cost. So now we can eliminate the

construction cost). Repeat steps 3 and 4 for every

required flow.

Step 5 Eliminate from the network all candidate arcs which

have zero flow through them. Now take the result-

ant network and reassign all the flows according to

the UER policy.

Repeat steps 2-5 until a stable network is found.

This final network is the proposed solution.

Barbier uses this method to study additions to the Paris

rail network. The method is applied to a network with 36 nodes,

over 30 arcs and over 50 candidate arcs. Steenbrink [STE2]

reports that Haubrich used a revised version of Barbier's method
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to study the Dutch rail network. Haubrich's procedure obtained

a solution to a network with about 1250 nodes and about 8000

arcs. The method required less than 40 minutes of IBM 360/65

computer time.
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1.5 Communication Network Synthesis Problems

In this section we consider a different type of network

synthesis problem. For these problems, no flow routing costs

are involved. Instead, we must design a minimum construction

cost network so that all the required flows can be routed

through the network. Also, the required flows for this kind

of problem are more complicated than the ones described in pre-

vious problems. Usually there are several different time

periods. During each time period a subset of the required

flows must be routed through the network. This type of problem

is called a communication network synthesis problem since this

kind of network usually occurs in the context of communication

network design.

Several versions of the communication synthesis problem

have been formulated. Gomory and Hu [GOM1] and Chien [CHIl1 deal

with the simplest version. In terms of our general framework,

this problem has the following description:

(1.5.1) OBJECTIVE: minimize total arc construction costs

CONSTRAINTS:

1) ARC TYPE - undirected

2) ARC CAPACITIES - any value.from zero to

infinity
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3) CONSTRUCTION COSTS - equal to the arc

capacity

4) ROUTING COSTS - none

5) REQUIRED FLOWS - there is a set {Rijl

of required flows be-

tween nodes. The net-

work must be designed

so that any one particu-

lar R.. can be routed
1

through it.

Since constraint 3 implies that all arc construction cost

functions are identical, an equivalent objective is to minimize

the total arc capacity of the network.

Both Gomory and Hu and Chien give simple efficient solutions

to (1.5.1). We will describe the method given by Gomory and Hu.

First, Gomory and Hu show that, if the flow routing con-

straint for the network is satisfied for a subset of the {Rij}

(known as the dominant requirement tree), then it is satisfied

for the entire set of R... The R.. in the dominant requirement

tree can be found in the following way: consider the network of

our synthesis problem with all arcs (i,j) weighted by the flow

requirement R.., then the dominant requirement tree is the maxi-
13

mal spanning tree of this network. (Note that the maximal

spanning tree problem can be solved by a procedure that is
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completely analagous to the minimal spanning tree solution

procedure [KRU1]).

Using this fact about the synthesis problem, Gomory and

Hu give the following synthesis procedure:

1) Find the dominant requirement tree of the network.

2) Decompose this tree into a "sum" of a "uniform" re-

quirement tree (where all arcs in the tree have equal

arc weight) and a remainder (which is a forest of two

or more trees). This decomposition is done by sub-

tracting the smallest arc weight from every arc weight

in the tree.

3) Take each tree in the remainder and go back to step 2.

4) For each uniform requirement tree formed, sythesize it

by forming a cycle through its nodes. Each arc in the

cycle will have a capacity equal to one-half the re-

quirement of the uniform tree.

An example of this procedure, taken from [FOR1], is sketched

in figures 1.5.1-1.5.4. Figure 1.5.1 contains the given network

with arc (i,j) labeled with flow requirement Rij. The members of

the dominant requirement tree are denoted by heavy lines. Figure

1.5.2 shows the result of the first execution of step 2. Figure

1.5.3 shows the result after all the iterations of step 2 have

been completed. Figure 1.5.4 shows the final result of step 4.

Notice that the network in figure 1.5.4 is the sum of 4 cycles,

since there are 4 uniform requirement trees.
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FIGURE 1.5.1

COMMUNICATION NETWORK SYNTHESIS PROBLEM
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FIGURE 1.5.2

PARTIAL DECOMPOSITION OF COMMUNICATION PROBLEM
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FIGURE 1.5.3

DECOMPOSITION -OF COMMUNICATION NETWORK PROBLEM
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Although Gomory and Hu do not give any computational

results for their procedure, it is easy to see that the pro-

cedure is quite efficient. The worst case computation time of

the procedure is proportional to N2

Gomory and Hu [GOM2] treat the following generalization

of (1.5.1):

(1.5.2) The same objective and constraints as (1.5.1) except

that constraint 3 is replaced by:

1
3 ) CONSTRUCTION COSTS linear functions of the

arc capacities.

So, in this more difficult version of the problem, the arc con-

struction cost functions can all be different.

-The simple algorithm used to solve (1.5.1) cannot be applied

to (.5.2). Instead, Gomory and Hu formulate the synthesis

problem as the following linear program:

(1.5.3) minimize:

i = 1

N

j = 1

c.. b..
13 ii

K?. > R..
1 - 1 for all a with arc (i,j) T.

c.. >O for all i,j.

N

s.t.
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where c.. = capacity of arc (i,j)
13

b.. = cost of constructing a unit of capacity for

arc (i,j)

K?. = capacity of the ath cut separately nodes i and j
13

= C rs

(r,A) e a

T - the dominant requirement tree of the network.

Note that the result concerning the dominant requirement tree of

the network is also applicable to (1.5.2).

Since there are only (N-l) arcs in T (where N is the total

number of nodes in the problem), only (N-l) flow requirements

must be satisfied. However, since the number of cuts separating

two nodes is very large (even for small networks), the number of

rows in P1 is enormous.

Now, if we take the dual of (1.5.3), we obtain the following

linear program:

(1.5.4) maximize: R ija

a Aj..cT
13

s.t. E E Pija TI.. < B

ia Aij eTa3

II.. > 0
ija -
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where P = incidence matrix of cuts aij separating nodes

i and j vs. arcs (k,l) in the network.

B = vector with components bij.

(1.5.4) has many columns and a number of rows equal to the

number of arcs in the network. Gomory and Hu use Dantzig - Wolfe

decomposition [DAN1] to solve the problem. At each iteration

after solving the restricted version of (1.5.4), they perform

(N-1) maximal flow calculations in order to generate additional

columns. The (N-1) maximal flow calculations check to see if

the (N-1) flow requirements in the dominant requirement tree are

satisfied.

The above procedure is a dual method so a feasible solution

is not generated until the optimal network is found. Gomory and

Hu also describe a primal solution method which has the advantage

of producing a feasible solution method even if terminated before

an optimum is reached. However, the primal procedure appears to

be less efficient than the dual procedure.

Gomory and Hu do not give any computational results for

either method.

Gomory and Hu [GOM3] describe another version of the communi-

cation network synthesis problem.
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(1.5.5) The same objective and constraints as (1.5.2) except

that constraint 5 is replaced by:

51) REQUIRED FLOWS - there is a set {Rij} of

required flows between nodes.

The network must be designed

so that all R.. can be

simultaneously routed through

the network.

Gomory and Hu suggest a very simple algorithm to solve

(1.5.5). Start with all arc capacities set equal to zero.

Assign a "distance" to each arc which equals the cost of in-

creasing the arc capacity by one unit. Then for each pair of

nodes i and j, find the shortest pair between i and j, and in-

crease the capacity of each arc along this shortest path by

Rij units. So this algorithm only requires the calculation of

all the shortest path pairs in the network.

Finally, Gomory and Hu [GOM3] give a fourth version of the

problem which is a generalization of the previous three problems.

(1.5.6) The same objective and constraints as (1.5.2) except

that constraint 5 is replaced by:
t

5 1 ) REQUIRED FLOWS - there are T sets Rij , (t = 1,

... ,T), of required flows be-

tween nodes. There are T
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different time periods.

During a particular time

period tl, all required

flows in the set

must be routedi Ri j ( must be routed

through the network.

In (1.5.1) and (1.5.2) the optimal network only had to

handle one Rij during any particular time period. In (1.5.5) the

optimal network had more than one R.. to route during a time

period, but there was only one time period to consider. So

(1.5.6) can be considered a combination of the above problems.

Gomory and Hu formulate (1.5.6) as a linear program with a

large number of rows. The columns represent the values of the

network arc capacities. The rows represent the various flow re-

quirements that the network must satisfy. The linear program is

solved using the dual simplex method. A series of T subproblems

is solved to find constraints that are violated. Each sub-

problem is a check to see if the candidate network (represented

by the present value of the arc capacities) can feasibly route

the flows for a particular time period. These subproblems, which

contain a large number of columns, are solved using a column

generation procedure.



-58-

Computational experience for a ten node and twenty arc

network with flow requirements for two time periods is given.

Finding an optimal solution required ten minutes of IBM 7094

computer time.

For the rest of this section we consider a subclass of

(1.5.1) where the arc capacities and required flows R.. are

restricted to integer values. Problems of this type are usually

treated as combinatorial problems. So the solution techniques

described are usually combinatorial algorithms.

Chou and Frank [CHOl] consider the following discrete version

of (1.5.1):

(1.5.7) The same objective and constraints as (1.5.1) except

that constraints 2 and S are replaced by:

21) ARC CAPACITIES - any integer value from zero

to infinity

5 1 ) REQUIRED FLOWS - there is a set of positive

integers {Rij } of required

flows between nodes. The

network must be designed so

that any one particular Rij

can be routed through it.

The following problem is equivalent to (1.5.7): given a set of

nodes and a set of integers {Rij} , construct a network with a
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minimum number of branches (we will sometimes refer to an arc

with a capacity of one unit as a branch) so that there are at

least R branch disjoint paths between nodes i and j. Parallel

branches between nodes are allowed but no new nodes are allowed.

(By taking the optimal network for this problem and summing the

number of parallel branches between nodes i and j, we get the

capacity of arc (i,j) in the optimal network for (1.5.7)). This

equivalent problem is sometimes known as the survivable communica-

tion network problem.

The algorithms of Gomory and Hu and of Chien for solving

(1.5.1) cannot always be used to solve (1.5.7). Both methods will

sometimes generate networks with non-integer capacities. For

example, the Gomory and Hu algorithm will only generate a network

with all integer capacities if every Rij in the dominant require-

ment tree is an even number.

Chou and Frank give an algorithm to solve (1.5.7). The

method is quite efficient and can probably solve very large

problems (thousands of nodes) in a reasonable amount of time.

They also formulate and give solutions to some related synthesis

problems. One type of problem occurs when the network design is

allowed to be a pseudosymmetric network instead of an undirected

network (a pseudosymmetric network is a directed network in which

the sum of the capacities of the incoming arcs is equal to the

sum of the capacities of the outgoing arcs). Chou and Frank also

consider the optimal realization of terminal capacity matrices for
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symmetric and pseudosymmetric networks. This problem involves

finding the minimum cost network so that the maximum flow

capacity between nodes i and j is exactly Rij.

Frank and Chou [FRAl, FRA2] consider a restricted version

of (1.5.7).

(1.5.8) The same objective and constraints as (1.5.1) except

that constraints 2 and 5 are replaced and a constraint 6 is

added:

2 ) ARC CAPACITIES -

5 ) REQUIRED FLOWS -

zero or one

there is a set of positive

integers {Rij } of required

flows between nodes. The net-

work must be designed so that

any one particular R.. can be
13

routed through it. (This is

the same constraint as in

(1.5.7)).

6) SPECIAL CONSTRAINT

a) Node Additions - if necessary, additional

nodes may be added to the original set of nodes.

We can also describe a problem equivalent to (1.5.8). This

problem is the same as the problem equivalent to (1.5.7) except

that new nodes may be added, but no parallel branches between nodes

are allowed.
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Frank and Chou give a complicated but efficient algorithm

to solve (1.5.8). Due to its excessive length, this algorithm

will not be discussed here.

The logical generalizations of (1.5.7) and (1.5.8) are to

allow the arc construction costs to be arbitrary linear functions

of the capacity. This would create situations where some arcs are

more "expensive" to build than others. However, it can be shown

that these generalizations are very difficult problems. Consider

the case where Rij = 1 for i and j belonging to S (where S is a

subset of the nodes in the network) and R = 0 for all other i

and j. With general linear construction costs this problem is

exactly the Steiner tree problem on a graph [HAK3, DRE2]. So

the generalizations of (1.5.7) and (1.5.8) contain the Steiner

tree problem on a graph as a special case. Therefore, these

generalizations are at least as hard as the class of NP - complete

problems [KARl, KAR2]. So it is not surprising that no work has

been done on these generalizations.

Now we will discuss still another variation of (1.5.1). The

problem can be described in the following way: given a set of

nodes and a set of integers {Rij}, construct a network with a

minimum number of branches so that there are at least R.. node
1J

disjoint paths between nodes i and j. In terms of our general

framework, the problem can be stated as:
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(1.5.9) The same objective and constraints as (1.5.1) except

that constraints 2 and 5 are replaced and a constraint 6 is

added.

2 ) ARC CAPACITIES - any integer value from zero

to infinity

5S) REQUIRED FLOWS - there is a set of positive

integers {Rij} of required

flows between nodes. The

network must be designed so

that any one particular R..

can be routed through it.

6) SPECIAL CONSTRAINT

a) Node Capacity - All nodes have a flow

capacity of one unit.

Notice that (1.5.9) is similar to (1.5.7) except that (1.5.9)

requires node disjoint paths instead of branch disjoint paths

as does (1.5.7). Two paths are branch disjoint if they are node

disjoint, but the opposite is not true. So (1.5.9) is a more

restrictive problem than (1.5.7). Also, notice that any optimal

solution to (1.5.9) will never have any arc capacities greater

than one.

Harary [HAR1] and Boesch and Thomas [BOE1] give procedures

for solving (1.5.9) when all the R.. are equal. The complete
version of 159 with the Ri allowed to be arbitrary integers

version of (1.5.9) with the R.. allowed to be arbitrary integers
1J
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has not been completely solved, although Frank has worked out

many special cases [FRA4].

Steiglitz et al. [STE3] consider the extension of (1.5.9)

where the arc construction costs are general functions of the

capacity. This general problem is quite difficult. For the

case when all Rij equal two, this design problem is exactly the

traveling salesman problem (since a hamiltonian tour creates two

node disjoint paths between every pair of nodes). Since the

traveling salesman problem is an NP - complete problem, this

general design problem is probably intractable.

Instead of trying to find an exact solution, Steiglitz

et al. give a heuristic approach to the problem. A procedure is

given to generate a random feasible solution. Then a local

transformation is applied to the feasible solution. If a

feasible solution of lower cost is found, then the improved net-

work is adopted and the local transformation is applied again.

This continues until a feasible network is found which is locally

optimal in the sense that no local transformations of the type

considered result in a feasible network of lower cost.

The local transformation used in the procedure is a general-

ization of Lin's -change procedure [LIN1]. This local trans-

formation called an X-change, takes a feasible network N1 that

has branches (i,m) and (j,l), but does not have the two branches

(i,l) and (j,m). Let d.. be the cost of constructing branch
1j If (d then we transform N

(i,j). If (dil + dim) < (dim + djl), then we transform N 1 by
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adding branches (i,l) and (j,m) while removing branches (i,m)

and (j,l) (see figure 1.5.5). This paper also presents an

efficient method to check if the transformed network remains

a feasible solution.

Steiglitz et al. apply this series of transformations to

a number of random initial networks. The best local optimum

obtained from all these iterations is selected as the most

appropriate network design.

The authors provide some computational results for their

procedure. For a ten node problem, generating a single local

optimum required about 3.4 seconds on the Univac 1108. For a

58 node problem, the computation time for a local optimum

increased to 12 minutes.

In this section we have only considered a small number of

the problems that could be discussed. There is a large body of

literature that deals with network design problems that are

related to the problems discussed in this section. Most of

these other problems differ with respect to the type of

objective functions and flow constraints used. The interested

reader can find some of these problems discussed in FRA3

(chapters 5, 6 and 7). Also see the set of references given in

Appendix 1.
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1 m 1 m

1 '4
i j J

(a) (b)

FIGURE 1.5.5

EXAMPLE OF X-CHANGE TRANSFORMATION
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1.6 Maximum Flow Capacity Improvement Problems

The next type of problem we will discuss concerns the im-

provement of the maximum flow capacity of a network. The

problem usually has the following description. The network

consists of a set of nodes and a set of undirected and capacitated

arcs. There is a source node S and terminal node T designated in

the network. The goal of the problem involves improving the

maximum flow capacity from S to T by improving the arc capacities

in the network.

Since we are using our general framework (which involves the

definition of required flows and routing costs) to classify

problems, we will now restate the problem in terms of the general

framework.

Our alternative way of stating the problem has the following

description: the network consists of a set of nodes and undirected

and capacitated arcs. There is also a special directed arc

connecting nodes T and S. Figure 1.6.1 provides a sketch of a

typical network. Each arc capacity is originally set at some

level and may be increased. Associated with each arc is a con-

struction cost function for increasing the arc capacity. There

are no flow requirements in the network. There are no routing

costs except on the special directed arc (T,S) which has a routing

cost equal to the negative of the flow through the arc. It is

easy to see that minimizing the routing cost in our modified net-
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S

FIGURE 1.6.1

TYPICAL NETWORK FOR MAXIMUM FLOW IMPROVEMENT PROBLEMS

T

z
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work is equivalent to maximizing the flow between S and T. By

altering the type of construction cost functions and objective

functions used, several different versions of the maximum flow

capacity improvement problem are possible. We will now discuss

several of them.

Fulkerson [FULl] and Hu [HUT1] consider the simplest case

of the flow improvement problem. It has the following descrip-

tion:

(1.6.1) OBJECTIVE: minimize total routing costs

CONSTRAINTS:

1) ARC TYPE - all arcs are undirecte

2) ARC CAPACITIES

3) CONSTRUCTION COSTS

4) ROUTING COSTS

except for arc (T,S)

which connects the source

and sink nodes

any value from zero to

infinity

linear functions of the

arc capacity increases

the only routing cost in

the network is for arc

(T,S). On this arc the

routing cost is equal to

the negative of the flow

through the arc.

d
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5) REQUIRED FLOWS - none

6) SPECIAL CONSTRAINTS

a) Initial Arc Capacities - some arcs are

initially set to non-zero capacity

values. They constitute the initial un-

improved network.

b) Construction Budget - total construction

costs cannot exceed a given budget.

Hu approaches (1.6.1) by solving a series of minimum cost flow

problems. His algorithm starts by finding the maximum possible

flow between nodes S and T without any increase in the arc

capacities. Then the flow is augmented by solving a series of

minimum cost flow problems until the entire budget is spent.

Christofides and Brooker [CHR1] consider a discrete version

of (1.6.1) where the arc capacities can only take on discrete

values. The problem has the following formal description:

(1.6.2) OBJECTIVE: same as (1.6.1)

CONSTRAINTS: same as (1.6.1) except constraints

2 and 3 are replaced by

2 ) ARC CAPACITIES - limited to a discrete

set of values for each

arc

3 ) CONSTRUCTION COSTS - arbitrary
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Christofides and Brooker use a branch and bound procedure

to solve (1.6.2). At each vertex in the search tree, they

generate upper bounds on the total routing cost (i.e., maximum

flow) by using the values of cuts that separate nodes S and T.

Christofides and Brooker provide computational experience

for their procedure. The results are quite satisfactory for

their sample of medium-sized networks. A problem that had 50

nodes, 55 arcs, and 20 other arcs that could be improved, each

to one of 3 possible levels, required about 35 seconds of CDC

6400 computer time. Christofides and Brooker also note the

results "indicate a comparatively slow increase of computation

time with problem size."

Bansal and Jacobsen [BAN1] consider a generalization of

(1.6.1) where the arc construction costs are concave functions

of the capacity increase. The set of feasible solutions for

this problem forms a nonconvex set. They propose a solution

procedure that uses a generalization of Benders decomposition

procedure [GEO1]. The relaxed master problems generated are

also nonconvex. Bansal and Jacobsen give a finite algorithm

for solving the relaxed master problems which involves solving

a series of linear programs. No computational experience is given.

Price [PRI1], Hess [HESl], and Hammer [HAM1] also consider

maximum flow capacity improvement problems that are similar to

(1.6.1) and (1.6.2). However, we will not discuss their work

in this survey.
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1.7 Final Remarks

We have seen that a great many different network design

problems can be accommodated by our general framework. Table

1.7.1 contains a brief summary of the problems discussed in

this report.

For our final remarks, we will discuss the various network

design techniques that have been used in the work surveyed by

this paper. The principle design methods that have been used

are mathematical programming techniques (especially decomposi-

tion methods), branch and bound procedures, efficient special

purpose algorithms, and heuristic procedures.

Efficient special purpose algorithms have been used to

solve only the most basic variants of the network design

problems discussed (see Goldman and Nemhauser's version of

(1.2.3.1), also see (1.5.1), (1.5.7), (1.5.8) and (1.6.1)). It

does not seem likely that the more advanced versions of the

problems discussed will be solvable via this method. Indeed,

many of the more advanced versions contain as special cases such

computationally intractable problems as the traveling salesman

problem or the Steiner tree problem on a graph.

Various authors have used branch and bound procedures to

solve several network improvement problems (see (1.2.1.2),

(1.2.3.1), (1.3.2), (1.4.1), (1.4.2) and (1.6.2)). However,
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most computational experience has been limited to small test

networks. The only exception to this is the work of

Christofides and Brooker [CHR1] with (1.6.2). They were able

to solve medium sized networks (containing up to 60 nodes) in

a reasonable amount of time. In view of this experience, and

also the tendency of branch and bound computation times to

increase greatly with problem size, it appears unlikely that

branch and bound will be useful in solving large network im-

provement problems. Also, it does not seem that branch and

bound will be any more successful if applied to network synthesis

problems. Network synthesis problems generally have many more

capacity variables to set than corresponding network improve-

ment problems of the same size.

Mathematical programming techniques have been used to solve

a variety of network design problems (see (1.2.2.1), (1.3.3),

(1.5.2) and (1.5.6), also see Bansal and Jacobsen's version of

(1.6.1)). Most network design problems require formulations

that have large numbers of constraints and variables. Various

types of decomposition procedures (Benders decomposition,

generalized Benders decomposition, Dantzig-Wolfe decomposition,

and Boxstep have been applied to these large problems. Most of

the computational results for these techniques have not been

encouraging. However, in view of the computational success

achieved by Geoffrion and Graves [GEO2] using Benders decomposi-

tion with strengthened cuts, the application of this technique
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bears reconsideration. The author is currently studying the

application of Benders decomposition to the infinite capacity

network synthesis problems described in section 1.2.1. The

recent advances in solving user equilibrium flow routing

problems [GOL3, LEB2, NGUl] may make feasible the application

of generalized Benders decomposition to the network improve-

ment problems with user equilibrium routing described in

section 1.4. In the application of the technique to these

problems, the subproblems generated are user equilibrium flow

routing problems which can now be solved efficiently. Also,

recent advances in large scale system methodology, such as list

processing techniques and network flow algorithms, may have

some impact on the size of problems that can be solved practically.

The reader may consult a recent report by Magnanti [MAGi] for a

survey of these new advances.

Heuristic procedures have been the most frequently applied

solution technique (see (1.2.1.1), (1.2.1.2), (1.2.2.1), (1.3.4),

(1.4.3) and (1.5.9)). Most heuristic procedures proceed in the

following way: starting from some initial feasible solution a

local transformation is used to obtain another feasible solution

which, hopefully, has lower cost. This continues until a local

optimum is reached where the transformation cannot produce another

feasible solution which might have lower cost. The only heuristic

procedure which uses a different approach is the procedure for
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(1.3.4) where the evaluation of a feasible solution's cost

requires the solution of a difficult multi-commodity flow

problem. Heuristic procedures have obtained non-optimal

solutions to network design problems that would be impractical

to solve with any other technique. However, it is not known how

close these generated solutions are to the optimal solutions.

Recently, Cornuejols, Fisher, and Nemhauser [COR1] have analyzed

the worst case behavior of heuristics that solve uncapacitated

facility location problems. It may be possible to perform a

similar analysis for some network design heuristics.
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