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Absrac

Survivability is becoming an increasingly important criterion in network design. This
paper studies formulations, heuristic worst-case performance, and linear programming

relaxations for two classes of survivable network design problems: the low connectivity

Steiner (LCS) problem for graphs containing nodes with connectivity requirement of 0, 1, or

2, and a more general multi-connected network with branches (MNB) that requires

connectivities of two or more for certain (critical) nodes and single connectivity for other

secondary nodes. We consider both unitary and nonunitary MNB problems that
respectively require a connected design or permit multiple components. Using a doubling

argument, we first show how to generalize heuristic bounds of the Steiner tree and traveling

salesman problems to LCS problems. We then develop a disaggregate formulation for the
MNB problem that uses fractional edge selection variables to split the total connectivity

requirement across each critical cutset into two separate requirements. This model, which is

tighter than the usual cutset formulation, has three special cases: a "secondary-peeling"

version that peels off the lowest connectivity level, a "connectivity-dividing" version that

divides the connectivity requirements for all the critical cutsets, and a "secondary-
completion" version that attempts to separate the design decisions for the multi-connected
network from those for the branches. We examine the tightness of the linear programming

relaxations for these extended formulations, and then use them to analyze heuristics for the

LCS and MNB problems. Our analysis strengthens some previously known heuristic-to-IP

worst-case performance ratios for LCS and MNB problems by showing that the same

bounds apply to the heuristic-to-LP ratios using our stronger formulations.





1. Introduction

Cost and survivability are essential criteria for designing communication networks.

Network planners need to configure backbone, interoffice, and local access networks that

are cost effective but also meet differential service requirements for different customer

segments. For instance, typically business and government customers have more stringent

connectivity requirements than individual households. Service interruptions, which include

lost revenues of the customers, can easily run into millions of dollars (Cosares et al.

[1994]). Since failures of individual links or nodes cannot be completely eliminated (e.g.,

cables might be cut inadvertently during road construction work), telecommunication
companies require network designs that have alternate routing capabilities between
"critical" customer sites, providing these customers with guaranteed minimal interruptions
and quick circuit restoration. Alternate routing is possible when the network contains
redundant paths and "intelligent" switching elements (such as SONET-based digital cross-

connect switches and add/drop multiplexers) to reroute traffic in case a particular link fails.
Providing the same high level of protection to all customers makes the networks

prohibitively expensive; instead, network planners must judiciously select a topology that

contains redundancy only when necessary to meet a particular segment's connectivity
requirement.

Motivated by this need to simultaneously consider cost and survivability issues,
operations researchers have attempted to understand and solve a core optimization model-

the survivable network design (SND) problem-that incorporates both cost and
survivability criteria. Given a graph G = (N,E) with a nonnegative fixed cost cij for each
edge {i,j } E E and nonnegative (symmetric) integer connectivity parameters rij for every

pair of nodes i and j E N, the SND problem seeks, for all node pairs i and j E N, the
minimum cost network containing at least rij edge-disjoint paths between these nodes. The
connectivity requirement rij reflects the relative importance of traffic between nodes i and j.
For instance, if rij = 4, nodes i and j can communicate even if three links of the network fail

simultaneously; since this contingency is relatively rare, less critical traffic might not require
as stringent protection. For each node i, we define the node connectivity parameter Pi =
maxj i {rij }. We refer to nodes with connectivity parameters Pi equal to 0, 1, and greater

than 1 as Steiner, secondary, and critical nodes, respectively, and refer to the secondary and
critical nodes together as terminal nodes. Steiner nodes are optional intermediate points
that the design might use to connect the terminal nodes. The connectivity requirements rij
induce a requirement graph with edges { {i,j }: rij>0 }. If this graph has a-single connected
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component, we say that the SND problem is unitary (since the optimal design would be a

single component); otherwise, we say that the SND problem is nonunitary. (In the latter

case, we assume that each component contains at least one secondary node).

The SND model has two variants: with or without edge duplication. Edge duplication

refers to the option of choosing multiple (parallel) copies of any edge {i,j } E E, assuming

that the parallel copies are edge-disjoint for purposes of alternate routing. If the graph

represents a physical rather than logical configuration, a model with edge duplication might

not be appropriate since circuit protection requires physically diverse paths.

For SND problems containing only Steiner and critical nodes, the optimal network

configuration is a multi-connected subgraph(s) in which each node belongs to at least one

cycle. Secondary nodes, if available, might serve as intermediate nodes in the multi-

connected subgraph(s); or, the solution must span them via branches emanating from the

subgraph(s). We, therefore, refer to SND problems with secondary nodes as the multi-

connected network with branches (MNB) problem. This paper focuses on the (nonunitary)

MNB problem, and its two special cases- the unitary MNB problem, and the low

connectivity Steiner (LCS) problem in which all nodes have connectivity parameters of 0, 1,

or 2.

Survivable network design problems are very difficult to solve optimally. Even the

unitary MNB and LCS special cases are NP-hard since they generalize the classical Steiner

tree problem and the traveling salesman problem. Part of the enormous literature on Steiner

network problems (see Winters [1988] for a survey of this literature) is devoted to

analyzing the worst-case performance of heuristics, and developing good problem

formulations that can improve the performance of relaxation-based solution methods such

as branch-and-bound. Following this trend, several recent papers have studied the

polyhedral structure of the SND problem (e.g., Monma, Munson and Pulleyblank [1990],

Gr'etchel, Monma, and Stoer, [1992]) have analyzed the worst-case performance of

heuristics (e.g., Goemans and Bertsimas [1993], Goemans and Williamson [1992]), and

have developed optimization algorithms (e.g., Grietchel, Monma, and Stoer [1992]). Most

of this work studies unitary LCS problems. Recently, Williamson et al. (1993) and

Goemans et al. (1994) have developed heuristic bounds for nonunitary problems without

edge duplication. Both papers use a primal-dual heuristic that builds the network in phases.

Williamson et al. first satisfy the lowest connectivity requirement and then successively

satisfy the next higher connectivity requirements by adding selected edges. The worst-case
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bound of 2PK for this procedure depends on the highest connectivity requirement PK

Using a converse primal-dual heuristic, and by improving the lower bounds on the optimal
value of the linear programming relaxation, Goemans et al. decrease this bound to = 2

ln(PK)-

This paper examines modeling and heuristic performance bounds for MNB and LCS

problems with or without edge duplication. We first explore whether certain worst-case

results developed for the Steiner tree and traveling salesman problems extend to multi-

connected design problems. For instance, a well-known Steiner tree result states that the

minimum cost tree spanning just the terminal nodes is no more than twice as expensive as

the optimal Steiner tree (Takahashi and Matsuyama [1980]). Does a similar result apply to

the LCS problem, i.e., can we show that the solution to the "terminal" version of the LCS

problem, ignoring the Steiner nodes, costs at most twice the optimal value? We confirm this

conjecture using both a familiar "solution doubling" argument (in Section 2) and linear
programming-based arguments (in Section 4).

Section 3 examines ways to improve the basic "cutset" formulation that several authors
have used in their analyses of SND heuristics. We first propose a family of stronger (linear

programming) formulations for nonunitary MNB problems, obtained by introducing

additional edge variables and splitting the connectivity requirement across each critical cutset
into two sub-requirements. Depending on how we split the connectivity requirements, we
obtain different versions of the extended problem formulation. We consider three classes

of formulations: a "secondary-peeling" formulation that decomposes the original problem
into a single connectivity subproblem and a reduced connectivity residual problem, a

"connectivity-dividing" formulation that allocates an equal proportion of the connectivity
requirement for every critical cutset to two subproblems, and a "secondary-completion"

formulation that distinguishes between edges in the multi-connected graph and those

belonging to the branches.

Section 4 analyzes the worst-case performance of two classes of heuristics. For SND

problems with edge duplication, Goemans and Bertsimas [1983] analyzed the worst-case

performance (relative to the optimal integer value) of a heuristic strategy that adds a

sequence of minimum cost trees and matchings to meet the connectivity requirements of
critical nodes. We show that their worst-case bound applies to the linear programming
solution value as well as the optimal integer value. Using the secondary-completion
formulation, we also express the worst-case performance of a generic Forest Completion
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heuristic (for problems with or without edge duplication) in terms of the performance of an

embedded multi-connected heuristic.

Our discussion highlights some differences in the analysis of models that permit or

prohibit edge duplication. The results in this paper can serve as building blocks for more

general models. Balakrishnan, Magnanti, and Mirchandani [1992, 1994a] have used these

"single-level" results to analyze multi-level, multi-connected models that incorporate

multiple service and facility types (for example, fiber or copper cables).

Notation:
Let Q = { po=O, Pi, -', PK} denote the set of distinct node connectivity parameters

indexed in increasing order, and let Qk+ = { pq E Q: pq > k}. When we consider special

connectivity sets Q*, we will denote the corresponding subclass of SND problems as Q*-

connecitivity problems. Using this convention, the LCS problem is a {0,1,2 }-connectivity
problem, and the MNB model is the { 0,1,Q 2+ -connectivity problem.

For any set N' of nodes of the graph G, the induced graph G(N') is a graph with the

node set N' and containing edges of G with both endpoints in N'. By "triangularizing" a
graph G, we mean constructing a complete graph G' with edge costs aj equal to the length

of the shortest path from node i to node j in G. Let MST(N') and TSP(N') denote a
minimum cost tree and traveling salesman tour in the triangularized graph G' spanning just
the nodes in N'. We use MST(N') and TSP(N') to also refer to the MST and TSP
problems defined on the graph G(N').

If P is any optimization problem, we let Zp denote its optimal objective value. If S is

any feasible solution to P, we let Z(S) denote the objective value of this solution. If M is

any solution method (typically a heuristic procedure or a linear programming relaxation of
an integer programming model) for solving P, we let ZM denote the objective value of the

solution that the method produces.

2. Bounding by Doubling

In this section, we show how to use a graphical procedure-a doubling argument-to
establish bounds on the optimal value of some unitary MNB problems. In particular, using
this argument we show that a Tree Completion heuristic has a worst-case bound of 2 for
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LCS problems as well as a "Ring on Steiner tree" problem and certain other MNB special

cases. We begin with a general bounding result.

Proposition 1:
Given a graph G with nonnegative edge costs and a subset T of terminal nodes, for any

connected subgraph SG containing the nodes of T and any Eulerian subgraph EG of

SG,

ZMST(T) + Z(EG) < ZTSP(T) + Z(EG) < 2 Z(SG).

Proof
Let DSG be the Eulerian graph (with multiple edges) formed by doubling the edges of

SG, and let RG be the residual graph formed by removing one copy of EG from DSG. RG
is a connected Eulerian graph. Let il-i2- ...-iK-il be the node sequence of an Eulerian walk

W containing all the edges of RG. For convenience assume i is a terminal node. Let

Z'(W) < Z(W) denote the cost of this walk in the triangularized graph. Form a traveling

salesman tour TOUR of the terminal nodes T by deleting from this node sequence every

Steiner node and every second and later occurrence of every terminal node (except for the
final occurrence of il). The deletion of any such node j short-circuits the cycle, that is,

replaces two edges (i,j) and (j,k) by the edge (i,k). If Z'(TOUR) denotes the cost of this tour

in the triangularized graph, Z'(TOUR) < Z'(W). By removing the largest cost edge from

this tour, we obtain a tree TREE spanning the terminal nodes T whose cost Z(TREE) < (1 -
1/ITI) Z'(TOUR). These arguments, and the fact that ZMST(T) (ZTSP(T)) denotes the cost

of the minimum spanning tree (traveling salesman tour) over the terminal nodes T in the
triangularized graph G'(T), imply ZMST(T) + Z(EG) < ZTSP(T) + Z(EG) < Z'(TOUR) +

Z(EG) < Z(W) + Z(EG) < Z(DSG) = 2 Z(SG).

Note that this proposition remains valid both with and without duplicated edges.

Observations:
(i) If EG is the null graph, then the proof of Proposition 1 shows that ZMSTCr) < 2(1-

1/ITI) Z(SG). In particular, if SG is an optimal Steiner tree spanning the terminal

nodes, then this proposition becomes the familiar Steiner tree result
1

ZMST(T) 2 (1-iI) ZST.
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(ii) If EG is the null graph, G has triangular edge costs and no Steiner nodes, and SG is

a minimum spanning tree on G, then this proposition becomes the familiar TSP

result
ZTSP < 2 ZMST.

Given any LCS problem instance, we call the version of the problem restricted to just the

terminal nodes (i.e., defined over the subgraph of G induced by the terminal nodes) as the

terminal low connectivity (TLC) problem. How much do we sacrifice in solution quality by

ignoring the Steiner nodes?

Corollary 2:
For any graph with triangular costs,

ZLCS ZTLC < ZSP(T) - 2 ZLC S.

Proof.

Select EG in Proposition 1 as the null graph and note that since TSP(T) is a feasible
solution to the terminal low connectivity problem ZT C < ZTSP(T).

Corollary 2 has several implications. First, it implies that any polynomial-time heuristic
with a worst-case bound of ao for the TLC problem is a polynomial-time heuristic with a
worst-case bound of at most 2a for the LCS problem defined on a graph with triangular

edge costs.

In some situations, it is possible to solve the TLC problem optimally. Consider the dual

path tree (DPT) problem: given an undirected graph with triangular edge costs and two

critical nodes 1 and 2, find the minimum cost connected subgraph that spans all the nodes

and contains two edge-disjoint paths between nodes 1 and 2. The dual path Steiner tree

(DPST) problem contains additional Steiner nodes that the solution can optionally use to

reduce total design cost. Balakrishnan, Magnanti and Mirchandani [1994b] describe a

polynomial, matroid intersection-based algorithm for solving the DPT problem. Corollary 2
implies that the optimal DPT solution costs no more than twice the optimal DPST solution.

Finally, consider the nonunitary version of the LCS problem. For this problem, the
optimal solution might have more than one connected component, each containing at least
two terminal nodes. In this case, when we double and then short circuit an optimal solution
to the problem, the resulting TOUR need not be connected, but might be a set of subtours.
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In this case, the Corollary 2 inequalities ZLCS < ZL C < ZTSP(T) < 2 ZLCS are still valid

though we must now interpret TSP(T) as a multi-tour version of the TSP that satisfies the
property that the terminal nodes i and j lie on the same subtour whenever rij > 0.

Suppose that the requirement graph for the nonunitary LCS problem has M

components. As an approximate solution procedure for the problem, we could solve M

separate TSP problems, one defined over the terminal nodes within each component; we

could then use the union U of these TSPs as a heuristic solution to the problem. If the

costs satisfy the triangle inequality, the arguments in the proof of Proposition 1 show that

the solution U costs no more than 2M times the cost of an optimal LCS tree solution.

Examples (which we will not provide here) show that this bound is the best possible if the

LCS problem does not have any critical nodes.

In the next subsection we use Proposition 1 to analyze other heuristics.

2.1 EG-Tree problems
Suppose we wish to find a minimum cost connected graph that contains a subgraph EG

from a given class CEG of Eulerian subgraphs and spans all the terminal nodes T. The

subgraphs in CEG need not span all the terminal nodes, and might contain Steiner nodes.

We also permit Steiner nodes to be part of the additional branches used to span the terminal

nodes. We refer to this class of problems as EG-tree problems. Here are two examples:

(i) The k-path Steiner tree problem is the same as the dual-path Steiner tree problem

except that we now require k edge disjoint paths connecting the designated terminal

nodes 1 and 2. We assume that k is even; otherwise, we can add a zero cost edge

from node 1 to node 2 (with an intermediate dummy node, if necessary) and
increase the connectivity parameter for nodes 1 and 2 to k+l. For this problem, the

class of Eulerian graphs is the set of all k edge-disjoint paths in G connecting nodes

1 and2.

(ii) The Ring-on-Steiner tree problem is a constrained LCS problem in which all the
critical nodes must lie on a common simple circuit. The class of Eulerian graphs is,
therefore, the set of all simple circuits containing the critical nodes and possibly one
or more Steiner or secondary nodes.

These EG-tree problems are special cases of the following problem. Given a graph G
with terminal nodes T c N and a collection C of subgraphs of G, find the minimum cost
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subgraph of G that spans all the nodes in T and contains a subgraph belonging to C. For

EG-tree problems, the collection C contains only Eulerian subgraphs. Consider the

following heuristic procedure for solving this problem.

2.1.1 Tree Completion heuristic:
Step 1: Find an approximate or optimal graph OG from the given collection C of

subgraphs of G.

Step 2: Contract OG into a single node, 0; if this contraction creates multiple edges

between a pair of nodes, replace the multiple edges by the lowest-cost edge

between that pair of nodes. Eliminate all self-loop edges. Next, create a graph G*

by triangularizing the edge costs. Find the minimum spanning tree TREE
spanning the nodes 0 }u T in the triangularized graph G*.

Step 3: As a heuristic solution, choose the edges in OC plus the edges in the shortest path

in G connecting the nodes i and j for every edge {i,j } in TREE.

The complexity of Step 1 depends upon the nature of the class of subgraphs C. For

example, for the Ring on Steiner tree problem, finding the optimal graph OG requires

solving the "Steiner" traveling salesman problem over the terminal nodes with optional

intermediate Steiner nodes. In contrast, for the k-path Steiner tree problem without edge

duplication, the minimum cost k edge-disjoint -to-2 paths in Step 1 is easy to solve as a

minimum cost network flow problem for routing k units of flow from node 1 to node 2 with

unit edge capacities (with edge duplication, the optimal k-path solution is k replications of

the shortest 1-to-2 path).

The next proposition uses Proposition 1 to bound the worst-case performance of the

Tree Completion heuristic for EG-tree problems as a function of the worst-case

performance of the method used to solve Step 1. In Section 4.4, we generalize the Tree

Completion heuristic to solve nonunitary MNB problems in which C is a collection of

multi-connected subgraphs of G spanning the critical nodes.

Proposition 3:
For EG-tree problems with nonnegative costs, if we find an a-approximate solution to

the problem in Step 1, then the cost of the solution produced by the Tree Completion
heuristic is no more than 2a times the optimal EG-tree cost.
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Proof:
If the costs are nonnegative, the cost of the edges that the Tree Completion heuristic

adds to OG in Step 2 is no more than ZMST(T). Let SG* be the optimal solution to the

EG-tree problem. By definition, this solution contains a subgraph C from the given
collection CEG. Since the costs are nonnegative, Z(C) < Z(SG*), and since our embedded

heuristic in Step 1 selects a subgraph OG that costs no more than a times the minimum
cost subgraph in CEG, Z(OG) < aZ(C). The cost ZTC-heur of the heuristic solution is the

cost of OG plus the cost of the added edges, and so Proposition 1 with EG = C and SG =
SC* implies that ZTC-heur < ZMST(T) + Z(OG) < 2 a ZEG-tree 

Proposition 3 implies that for the k-path Steiner tree problem, the Tree Completion
heuristic is a polynomial-time algorithm with a worst-case performance of at most 2. Note
that this analysis does not require triangular costs, and if the given class of Eulerian graphs
does not duplicate any edges, then neither does the heuristic solution. If we permit edge
duplication, then other heuristics are possible. For instance, to heuristically solve the dual
path Steiner tree problem with edge duplication: (i) select the edges of the shortest path
from node 1 to 2, and (ii) add the edges of the minimum spanning tree MST(T). This
heuristic also has a worst-case bound of 2.

Worst-case example:
The DPST example in Figure 1 shows that the worst-case bound of 2 in Proposition 3

is best possible. In Figure 1(a), nodes 1 and 2 are the critical nodes; all the other nodes are
secondary nodes. Four paths connect nodes 1 and 2, each of length q. Two of these paths
have one intermediate node, while the other two paths have q-1 intermediate nodes each.
Figure (b) shows the Tree Completion heuristic solution. The first step chooses the two
paths having a single intermediate node. Step 2 greedily connects the remaining secondary
nodes to this dual path. This solution costs 2q + 2 (q-1) = 4q - 2. The optimal solution
(Figure l(c)) costs 2q; as q becomes large, the ratio of these costs approaches 2.

2.2 A structural property for LCS problems
The doubling argument also permits us to establish a structural property for the broader

class of LCS problems without requiring Eulerian subgraphs. Consider the { 0,1,2 }-
connectivity problem and its counterpart without secondary nodes, i.e., the 0,2}-
connectivity problem. If we can establish a bound on the optimal value of one of these
problems, can we establish a bound for the other problem? For a set of nodes N', let
CLASS(N') denote any class of subgraphs that are defined on the given graph G and that
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span (at least) the nodes N'. For LCS problems, CLASS(C) and CLASS(T) might

represent classes of subgraphs used to construct heuristic {0,2 }-connectivity and {0,1,2 }-

connectivity solutions.

Proposition 4:
Let (.) be a nondecreasing, nonnegative real-valued function of the positive integers.

For any graph G with nonnegative costs, if we permit edge duplication, the following

two results are equivalent.

(a) ZCLASS(C) < 5(ICI) Z0 2 for all {0,2 -connectivity problems.
(b) ZCLASS(T) + ZCLASS(C) < 2 (ITI) Z01 2 for all {0,1,2 -connectivity

problems.

Proof:
If (b) is true, then since the {0,2 1-connectivity problem is a special case of the {0,1,2}-

connectivity problem with T = C, substituting C for T in (b) gives (a), i.e., (b) implies (a).

To establish the converse, choose any optimal solution OS to the {0,1,2 }-connectivity

problem. Between every pair of critical nodes, the solution contains 2 edge-disjoint paths.

Let F be the union of the edges in these paths. Consider a "doubled" solution containing

two copies of each edge in OS. From this solution, extract one copy of F. The residual

graph A contains one copy of F. F contains two paths joining the critical nodes, and A

contains two paths joining every pair of terminal nodes. Therefore, for some constant value
[(ITI) of the function ,(-), property (a) with C = T implies that ZCLASS(T) < (ITI) Z02 <

[(ITI) Z(A), and the monotonicity of 15() implies that ZCLASS(C) < [5(ICI) Z02 < [(ITI)

Z(F). Our use of the bar on the second Z02 emphasizes the fact that Z02 and Z02 are

defined on different graphs and so typically have different values. But by construction, 2

Z012 = Z(A) + Z() which, together with the previous inequalities, implies (b). 

Since the graph defined by the edges r need not be Eulerian, this result uses the

doubling argument in a slightly different way than we have previously. The following three

results are special cases of Proposition 4.

Proposition 5:

(a) ZMST(C) < (1 - I-) Z02 for all { 0,2 -connectivity problems with edge duplication.
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1
(b) ZMST(T) + ZMST(C) < 2 (1 - I-l) Z0 12 for all {0,1,2 1-connectivity problems with

edge duplication.

Proposition 6:
4

(a) ZTSP(C) < 3 Z0 2 for all {0,2 }-connectivity problems with edge duplication.

8
(b) ZTSP(T) + ZTSP(C) < 3 Z01 2 for all {0,1,2}-connectivity problems with edge

duplication.

Proposition 7: If C and T have even cardinalities,

(a) ZMatch(C) < I Z02 for all {0,2 1-connectivity problems with edge duplication.

(b) ZMatch(T) + ZMatch(C) < Z0 12 for all {0,1,2 1-connectivity problems with edge

duplication.

In Proposition 5, CLASS(N') is the set of all spanning trees on the induced graph G(N')

(since we permit edge duplication, without loss of generality we assume that G is

triangular). The function (ITI) = (-1/ITI) is nonincreasing in ITI so that Proposition 4

applies. Both statements in Proposition 5 are special cases of more general results

established by Goemans and Bertsimas [1993] and of those we establish later in this paper.

In Proposition 6, CLASS(N') is the set of all hamiltonian circuits through the nodes N', and

5(-) is a constant. Monma, Munson, and Pulleyblank [1990] established part (a) of

Proposition 6. Part (b) of this proposition is a consequence of Proposition 4. Notice that
1

whenever ZTSP(C) 2 3 ZTSP(T), part (b) of Proposition 6 provides a sharper lower bound

on Z012 than does the bound ZTSP(T) < 2 Z01 2 from Proposition 1. Finally, in

Proposition 7, CLASS(N') is the set of all matchings over N'. In this case, 5(-) equals 1/2

and, as noted by Goemans and Bertsimas [1993], part (a) of this proposition follows from

Edmonds' [1965] perfect matching polytope result and a parsimonious property that they

establish.

In Section 3, we provide a strengthening of each of the statements in Proposition 5 (and

their generalizations to { 0O,p -connectivity and { 0,1,p }-connectivity nonunitary MNB

problems for p 2 2). We also show that we can tighten the bounds by replacing the optimal

IP values Z0 2 and Z012 in the right-hand sides of these expressions by the optimal values of

linear programming relaxations of certain problem formulations.
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3. Modeling MNB problems

This section presents improvements to a standard cutset formulation of MNB problems.

After reviewing the standard formulation, we describe a stronger "connectivity-splitting"

formulation that (i) replaces the single connectivity constraint for each critical cutset with

two constraints, and (ii) uses one integer and two continuous variables for each edge to

replace the single integer edge selection variable. After proving the validity of this

reformulation, we strengthen it and examine three special cases, obtained by considering

particular schemes for splitting the connectivities. One formulation peels the lowest

connectivity level, another divides the connectivity requirement in the same proportion for all

critical cutsets, and the third completes a multi-connected solution to a problem with

secondary nodes treated as Steiner points. In Section 4, we use these formulations to

analyze the worst-case performance of tree-based heuristics for MNB problems with and

without edge duplication.

Developing strong formulations with improved linear programming relaxations has
proven useful both to develop better heuristic bounds and to improve solution performance

for several classical discrete optimization problems (e.g., Nemhauser and Wolsey [1988]).

Typically, these extended formulations introduce additional variables from a different space

(e.g., flow or node variables for Steiner network models; see, for example, Beasley [1984],

Wong [1984], and Goemans and Myung [1991]), and add appropriate linking constraints.

Our reformulation strategy for the MNB problem also introduces additional variables, but

they all belong to the original space of edge variables. We present formulations for MNB

problems without edge duplication: if we eliminate upper bounds on the edge section

variables, these models are valid for problems with edge duplication.

Let us first introduce some notation and conventions. For any subset of nodes S c N

and T = N\S, let {S,T} denote the edge-cutset defined by S and T, i.e., {S,T}= { {i,j } E E
with i E S and j E T } . If xij is any quantity (decision variable, given data) imposed upon

the edges E of the graph, we let XST = x denote the sum of that quantity over all
ST {ij}E{S,T} 

the edges in the cutset { S,T }. Given (symmetric) connectivity requirements rij for all i, j E

N and a cutset { S,T}, we refer to the maximum value of rij over all node pairs {i,j } E { S,

T } as the crossing requirement of cutset { S,T }. For each q E Q1 +, let q denote the

collection of all cutsets of the graph G with crossing requirement equal to q.
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3.1 Cutset formulation for SND problems
The standard cutset formulation, Problem [CUT], for the SND formulation without edge

duplication uses binary edge selection variables uij for all edges { i,j } E E. The variable uij

is 1 if the network design includes edge { i,j }, and is 0 otherwise.

Problem [CUT]:

ZCUT = mimi ize i cCij uij (3.1)

subject to

UST > q for all cutsets {S,T}e aq, q E Q1+, (3.2)

ui = integer for all {i,j}EE, and (3.3)

uij < 1 for all {i,j}E. (3.4)

If Q = { 0,1 }, [CUT] is a standard cutset formulation [ST] for the Steiner tree problem

or [SF] for the Steiner forest problem depending on whether the connectivity requirements

pattern in unitary or nonunitary.

32 Critical connectivity-splitting formulation for MNB problems
We consider a general reformulation scheme for nonunitary MNB problems that

models the crossing requirement q > 2 for every critical cutset { S,T} IE q as two

complementary sets of requirements qqq and q(1--q) across the cutset. For all q E Q 2+, (q
1

E [0,-] is a pre-specified "connectivity fraction" for critical cutsets with connectivity

requirement q. To perform this decomposition, we introduce two additional continuous
edge variables xij and Yij, and a separate set of 0-1 edge selection variables bij that

represents edges belonging to the branches (connecting secondary nodes to the multi-

connected graph) in the solution. Let q = minq Q2+ q and let < 2 be a nonnegative

parameter. We define al - 2(1, and aq =A ) for all q E Q2+. Note that 0 < aq < 1

for all q E Q 1+. We choose the connectivity fractions q so that the parameters satisfy the

condition qaq < 1. Note that choosing either q = l/q, or q = 1/6 for all q and any 6 2 1,

satisfies these assumptions.
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For a given value of g and the vector 4> = (q) of connectivity fractions, consider the

following "critical connectivity-splitting" formulation [CCS(,A)] for the nonunitary

MNB problem:

Problem [CCS(p,)]:

ZCC = min

subject to

BST + gXST + lYST

XST + aqYST

YST

zj ij + Yij

{ij E

> 1

> qq

{cij bij + Cij zij}

for all {S,T} I o 1,

for all {S,T} E q,

> q(1-q) for all { S,T} E q,

q E Q2+,

q E Q2+,

for all {ij} E,

0

=0 orl

= integer

< 1

for all {i,j} E E,

for all

for all

for all

{ij}eE,

{i,j }E, and

{i,j}eE.

Eliminating the upper bound

duplication.

(3.13) gives a model for MNB problems with edge

Theorem 8:
Suppose g E [0,1] and = q} with q E [0,1/2] satisfies the conditions q q < 1.

Then [CCS(g,)] is a valid formulation for the MNB problem without edge duplication.

Proof:
Given any feasible solution to formulation [CCS(pg,d)], as the following argument

shows, we obtain an equal-cost feasible solution to the cutset formulation [CUT] of the

MNB problem by setting uij = bij + Fx+ijl. Since the given CCS solution satisfies
constraints (3.6) and both pg < 1 and al < 1, the derived solution satisfies constraint (3.2)

for every cutset S,T} E a1. Consider a cutset {S,T} E oq for some q E Q2+. If the given

solution satisfies XST > qqq-1 for this cutset, then constraints (3.8) imply that UST >

rFxij+yijl > FXST + YSTI > q and so the derived u-solution satisfies the crossing
S,Tfor this cutset in formulation [CUT]. On the other hand, suppose XT < q

requirement for this cutset in formulation [CUT]. On the other hand, suppose XST • qq
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Zij
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1
1. Since the given solution satisfies (3.7), qYST > 1, i.e., YST 2 a 2 q. Therefore, the

derived u-solution is feasible in formulation [CUT] and has the same cost as the original

CCS solution.

Conversely, given any feasible (integer) solution u to formulation [CUT], we use the

following "allocation" procedure to obtain feasible values of the b, x, y, and z variables in

formulation [CCS(g,D)]. The given u solution contains at least q edge-disjoint paths

connecting every pair of q-critical nodes; let Eq denote the union of the edges contained in

those paths and let E2 + = q > 2 Eq. For each edge {i,j } E E2+, we set xij = uij, Yij = (1-

0)uij, and zij = uij. For edges in E\E2+, we set bij = uij and xij = ij = zij = 0.

This solution [b,x,y,z] satisfies constraints (3.9) to (3.13). Consider any cutset {S,T} E

q with q E Q2+. The u-solution selects at least q edges in this cutset. By construction, on

each such edge {i,j }, xij = 0 uij and Yij = (1-X) uij. Therefore, the left-hand side of (3.7) is

at least q + qaq (1-p) = q + q (0) (1--) = q q, and the left-hand side of (3.8) is at

least q(l--) > q(l--q).

Finally, for a cutset { S,T } E l, if the given u-solution contains at least one edge from

E\E2+, then UST = BST > 1. Otherwise, the u-solution contains at least two edges from

E2 +. But this observation and the definition of al implies that the left-hand side of (3.6) in

the derived solution is at least 1.

Notice that, unlike the original [CUT] formulation, the connectivity requirements in
constraints (3.7) and (3.8) of [CCS(,)] might be fractional. The following { 1,2 }-

connectivity example shows that the CCS model can provide a strictly tighter optimal LP

bound on the IP value than the cutset formulation. Consider a triangle with 3 critical nodes.

Duplicate each edge of the graph and on each edge (including the duplicate edges),

introduce a secondary node. This construction creates a graph with 3 critical nodes, 6

secondary nodes, and 12 edges, each with a cost of 1/6. The optimal solution to the LP
relaxation of [CUT] sets uij = 1/2 on all edges; this solution costs 1. An optimal solution to

the LP relaxation of [CCS(g,p)], with !t = 1 and 01 = 02 = 1/2, sets xij = 1/2 and bij = 0 for

all edges, and Yi = 1/2 for all edges on the outer ring; this solution costs 3/2. So for this
example, ZLCT < ZLPCc

We next describe a way to strengthen the CCS formulation.

- 15-
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3.2.1 Stronger connectivity-splitting formulation:
The x and y values that we derive using the allocation scheme to transform a given u-

solution in the proof of Theorem 8 satisfy the following constraints:

YST > q(1-X-) forall {S,T} e q, qe Q 2+,and (3.8a)

(1--) xij > Yij for all {i,j} E E. (3.14)

Constraints (3.8a) are stronger than (3.8). Replacing constraints (3.8) with (3.8a) and
adding constraints (3.14) retains the validity of the reformulation. We will denote this
stronger connectivity-splitting formulation as [SCS(g,))].

3.3 Special cases of connectivity-splitting
We obtain three intuitive special cases of formulation [SCS(g,()] by selecting certain

special values for p. and 4). First, consider the formulation [SCS(L,))] with g = 1. Note
that, in this case, both the integer formulation and its LP relaxation must have optimal
solutions with bij = 0 for all edges { i,j } E E. For, given an optimal solution with some bij >
0, we can obtain an equal or lower cost feasible solution by setting xij <- xij + bij.
Therefore, we can drop the b variables from formulation [SCS(1,)]. Within this class of
formulations, we consider two special connectivity-splitting vectors (), namely, Oq = l/q for
all q E Q2+, and q = 1/6 for some 6 > 2, for all q E Q2+.

When q = l/q for all q E Q2+, the right-hand side of constraints (3.7) is 1 for all

critical cutsets, and the right-hand side of constraints (3.8) (in the original CCS model) is
(q-1). Intuitively, this disaggregation strategy attempts to separate or peel a single
connectivity subproblem (constraints (3.6) and (3.7)) over all the terminal nodes from a
"reduced connectivity" subproblem (constraints (3.8)) with the connectivity of each critical
node reduced by 1. We, therefore, refer to this special case of [CCS(g,))] as the
secondary-peeling formulation [PEEL]. This formulation is potentially useful for
analyzing a heuristic that first finds a Steiner forest spanning all the terminal nodes and then
adds edges belonging to a reduced connectivity solution.

Given a parameter 6 > 2, if Pq = for all q Q2+, formulation [SCS(1,4))] becomes a

connectivity-dividing formulation [DIV(6)]. In this formulation, the right-hand side
values of constraints (3.7) and (3.8a) are q/6 and q(1-1/6), i.e., the disaggregation strategy
now "divides" the connectivity requirement in the same proportion for every critical cutset.
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Note that since q = p, aq = 0 for all q E Q2+. Therefore, constraints (3.7) contain only the

x variables. The connectivity-dividing formulation might be useful for analyzing a "divide

and conquer" heuristic strategy that solves two problems with, say, half the original
connectivities and treats the union of these two solutions as the heuristic solution to the
original problem (this strategy assumes edge duplication). Note that for { 0,1,p }-

connectivity problems, the secondary-peeling formulation is the same as the connectivity-
dividing formulation with = 1/q.

We obtain a particular connectivity-dividing formulation [DIV(S)] by setting 6 = 2 (i.e.,
b = 1/2). In this case, al = 0 and constraints (3.7) and (3.8) both have equal (possibly

fractional) connectivity requirements of q/2. In essence, this "connectivity-halving"

formulation contains two fractional (i.e., the variables can be fractional) connectivity
subproblems, one each corresponding to the x and y variables: each provides half the
required connectivity for every critical node. However, only one of these subproblems

includes the unit requirement of secondary nodes. In particular, for the {0,1,2 }-connectivity

or LCS problem, the X subproblem corresponds to a "fractional Steiner forest" over all the

secondary and critical nodes, and the Y subproblem is a fractional Steiner forest over the

critical nodes. The forcing constraints (3.14) require the y solution to be "overlayed" on
the x solution, i.e., xij > yij for all edges i,j }. We can show that for LCS problems with

edge duplication, if we use a heuristic with worst-case performance ratio of 0 (relative to the

optimal LP value) to solve the Steiner subproblems, the union of these trees is a feasible
LCS solution and has a worst-case performance ratio of 0.

1
We obtain a third special case of the SCS model by setting g = 2 and q = O for all q E

Q2+. In this case, we cannot drop the b variables, but since aq = 0 for all q > 1, constraints

(3.7) and (3.14) are redundant. Furthermore, since al = 1/2, both the integer version and

linear programming relaxation of formulation [SCS(,0)] have optimal solutions with xij =

O for all edges {ij } (otherwise, we obtain an equal or lower cost feasible solution by setting
Yij Yij + xij). Therefore, we can drop the x variables and replace zij with Yij in the

objective function, the integrality constraints (3.12), and the upper bounds (3.13).
Constraints (3.8) of this reformulation require that the y variables define a multi-connected
graph containing the required number of edge-disjoint paths connecting all the critical
nodes. Constraints (3.6) ensure that every secondary node either belongs to the multi-
connected component or is spanned by the branches emanating from this component, i.e.,
each cutset { S,T } E 1 contains either at least two edges of a multi-connected component or
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one edge belonging to a branch. Notice that, unlike the secondary-peeling and connectivity-

dividing formulations, this third reformulation does not reduce the connectivities of the

critical nodes but instead ensures that the solution completes the multi-connected graph to

span all the remaining secondary nodes. Another difference is that all the variables in this

formulation must be integer valued. We refer to this special version of the SCS model as

the secondary-completion model [COMPL]. We subsequently use this formulation to

analyze the worst-case performance of the Forest Completion heuristic.

In passing, we note that it is possible to derive this formulation by strengthening the

original cutset formulation via a coefficient reduction procedure. To do so, we write any
feasible solution to the problem (3.1)-(3.4) as u = g+h with (i) hij = uij for all edges

(i,j)E E2+ that belong to some subset Gq, q > 2 and hij = 0 otherwise, and (ii) gij = uij on the
remaining edges (i,j)e E\E2+ and gij = 0 otherwise. With this notation, the constraints (3.2)

for the cutsets with a crossing requirement of one are gST + hST 1 for all { S,T} E 1.

(Note that the variables g do not appear in the crossing constraints (3.2) for cutsets { S,T} E

5q for any q > 2.) Since either hST = 0 or hST 2 2 in any feasible solution, we can tighten
1

the constraints to gST + 2 hST 1 for all {S,T} E a1 and hST q for all {S,T} E (sq.

This model, with b = g and y = h, is equivalent to [COMPL] .

3.4 Tightness of extended formulations
In formulation [SCS(,t))], since YST > q(1-) for all {S,T} E sq, q E Q2+, the

constraint (1-)x > qy implies that XST > q4. Moreover, since a(q(1-) = q-, the

inequalities YST > q(1-) and XST > q4 imply XST + aqYST > qq. These observations

imply that constraints (3.7) are redundant in the SCS model; therefore, for any vector (I, we
obtain an equivalent [DIV(6)] model by choosing 6 = l/min{ q: q Q2+ }. We next show

that the value of 6 does not influence the optimal LP value of the formulation [DIV(6)].

Proposition 9:
For any value of 6 > 2, the formulation [DIV(6)] is LP-equivalent to the formulation

[DIV(2)].

Proof:
Let x and y denote a generic solution to formulation [DIV(2)] and x' and y' denote a

generic solution for any fixed, but arbitrary value of 8 > 2. To show the equivalence

between the formulations, we use the transformation

y=(l-al) y' or y'= Y
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and x=x'+aly' or x'=x- _al
l-a 

Note that x + y = x' + y' so we choose z 2> x + y = x' + y' as having the same value in both
problems.

Let x' and y' be a feasible solution to [DIV(o)] and let x and y be defined by the

transformation. Then clearly, x > 0 and y > 0 and by definition of x,

XST > 1 forall{S,T} o1 .

1
Since (6-i) x' > y', and 1-2a1 - (6-1)

X= X'+ al y'
1

681 Y + al Y'

Moreover, for all { S,T} E aq, q E Q2+,

XST = XVW + a 1 YVW > + qa (1

YST = (1- al)YVW q(l-a l ) 1(1-)

(1 - al) Y' = y.

1
-3) = ,and

=-

Therefore, x and y are feasible for the linear programming relaxation of [DIV(2)].

Now suppose x and y are feasible for [DIV(2)]. Then since a 1 < 1, y' = Y > 0, and
1since x > y,

since x > y,

al -2
x= X-l _a Y = x -- f-y = (x-y) +2 y > y2 0.

The last expression implies that for all { S,T I E q, q E Q2+,

Xvw - YsT 2.

Moreover,

I, Iy 1
Yvw =-1 1 YST >

For any { S,T } e 1

XVW a1 YI = XST- -al YST

Finally, x > y, and the fact that 6 2 2 implies that

(-l) x'= (-l)(x- 1_a

Therefore, x' and y' are feasible in [DIV(6)].

y) 2(8-1)

+ 1-a YST = XST > 1.

I
y 1 --a y =y'.
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In this section, we have considered several valid mixed integer programming models for

the MNB problem. These extended formulations have tighter linear programming

relaxations than the original [CUT] formulation. Our observations prior to Proposition 9
show that for any vector of connectivity fractions, the linear programming relaxations of

the [SCS(1,0)] model with the constraints (3.6), (3.8a), (3.14) and constraints (3.9) to (3.13)
is LP-equivalent to the formulation [SCS(1,1/A)] with A = /min{q: qe Q2+}. This
model is the same as [DIV(A)]. Therefore, letting ZP denote the linear programming

relaxation of model M, we have established the following result.

Proposition 10:
Let tD = { q} with Oq E [0,1/2] be any vector of connectivity fractions satisfying the
conditions q a < 1 and let A = 1/min{ : qE Q2+}. Then ZLP <
zL P < LP

C CS(1,<) - DIVSCS(1,) - DIV() for all 2 2.

The results shows that, in general, the connectivity-dividing formulation provides a

tighter linear programming relaxation than the secondary-peeling formulation, but that if we

use the strengthened connectivity-splitting model, the linear programming relaxations for

these models are equivalent; moreover, Proposition 9 shows that every such model
(independent of · and 6) is LP equivalent. As we might expect, and as we show in the next

section, the worst-case ratio of heuristic to optimal LP values of the splitting formulations

are generally smaller than those for the aggregate [CUT] formulation.

4. Worst-case Analysis of Heuristics for MNB problems

This section analyzes the worst-case performance, relative to the optimal LP value of our

extended formulation, of an "overlay" heuristic strategy for MNB problems with edge

duplication, and the Tree Completion heuristic for unitary MNB problems without edge

duplication. Unless otherwise specified, all of our results apply to nonunitary MNB

problems. Section 4.1 introduces some additional notation. Section 4.2 describes an

overlay heuristic for MNB problems with edge duplication and analyzes its worst-case

performance relative to the optimal LP value of the connectivity-dividing formulation. This
analysis shows that the heuristic-to-IP worst-case bound that Goemans and Bertsimas
[1993] derived for a particular version of the overlay method also applies to the heuristic-to-
LP ratio. Section 4.3 analyzes the performance of the Tree Completion heuristic for unitary

MNB problems without edge duplication, generalizing some of the results we obtained in

Section 2 via doubling arguments.
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4.1 Preliminaries
Let T c N denote the set of terminal nodes of a Steiner forest problem, i.e., T is the set

of all critical and secondary nodes (which might belong to different components for the
LPnonunitary MNB problem) of the problem. Let Z0 1(T) and Z 01(T) denote, respectively, the

cost of the optimal Steiner forest with T as terminal nodes and the optimal LP value of the
cut formulation [SF] of this Steiner forest problem. Let Cq denote the set of all nodes with

connectivity requirement equal to q. Cq+ is the set of all nodes with requirement q or

higher. Note that C 1+ is the set of all terminals nodes T, and C 2+ is the set of all critical

nodes C. For any integer q > 1, consider any {O,q}-connectivity (nonunitary) problem with

edge duplication. The nodes in this problem have a connectivity requirement of 0 (Steiner
nodes) or q (the set Cq). Let Zoq(Cq) and Zoq(Cq) be the optimal integer value and optimal

LP value of formulation [CUT] for this problem. For problems with nonnegative edge

costs, Z0q(Cq+) = q Z01 (Cq+).

42 MNB with edge duplication: Analysis of Overlay heuristic
For situations with edge duplication, we consider the following general subgraph

overlay heuristic which successively meets the connectivity requirements of critical nodes in
order of increasing criticality.

Overlay Heuristic for MNB problems with edge duplication:

Step 1: Find a heuristic or optimal solution Si to the Steiner forest problem with all the
secondary and critical nodes as terminals.

Step 2: For k = 2 to K, find a heuristic or optimal solution Sk to the {0, Pk-Pk- }-
connectivity (nonunitary) problem with edge duplication over the terminal nodes
Ck+.

Step 3: The union of solutions Sk for k = 1, 2, ..., K is the overlay heuristic solution to the
MNB problem.

We next analyze the worst-case performance of this heuristic relative to the optimal LP
value of the connectivity-splitting formulation for MNB problems with edge duplication.

4.2.1 Worst-case analysis of Overlay Heuristic
For k = 1 ..... K, let k = Pk-Pk-l' For MNB problems, po = 0 and Pi = 1, and so r

= 1. Let Ok be an upper bound on the worst-case ratio of the cost Z(Sk) of the heuristic
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solution at stage k of the overlay procedure relative to the optimal LP value Z1lPk(Ck+) of the

cutset formulation for the { 0,k}-connectivity problem with Ck+ as critical nodes. Then, the

cost ZOvl of the Overlay heuristic solution satisfies the inequality

ZOV = Z(S1) + Z(S 2 ) + ... + Z(SK)

< 0 1 ZL(T)+ 02 ZLP(C) + OkZ (Ck+) (4.1)

Since ZLP( k+) = Pk OCk+) and since ZLP (Ck+) is a lower bound on the optimal LP
0rlk '=11k Pk zOP ( C . N LP

value ZLPu of the CUT formulation of the MNB problem, inequality (4.1) leads to the

following upper bound on the ratio o of ZOv l to ZUT

Co < 01 + 02 2 + I k (4.2)~ 1 ~P2p3*!9, ~ Pk(4.2)

Goemans and Bertsimas [1993] previously obtained this bound for certain values of the O's

(see the next section). We next show how to reduce this bound (in particular, reduce the

first two terms on the right-hand side of (4.2)) by examining the MNB problem's LP

relaxation.

Consider the connectivity-halving formulation [DIV(2)] of the MNB problem with

edge duplication. This formulation consists of the objective function (3.5) and constraints
(3.6) to (3.10) and (3.12) but with the following modifications: (i) g = 1 and so we ignore
the b variables in (3.5) and (3.6), and (ii) 6 = 2 or q = 1/2 for all q E Q2 +. Consequently,

aq = 0 for all q E Q2 +, i.e., we drop the y variables in constraints (3.6) and (3.7). Since the

costs are nonnegative, the LP relaxation obtained by dropping the integrality restrictions

(3.12) on the z variables has an optimal solution satisfying constraints (3.9) as equalities for
all edges {i,j }. Substituting zij = xij + Yij in the objective function (3.5) and relaxing

constraints (3.9) decomposes the LP relaxation into two subLPs: LP1 containing only the x

variables and constraints (3.6) and (3.7) and nonnegativity, and LP2 containing only the y
variables with constraints (3.8) and the nonnegativity requirements. Both xij and Yij have

the original cost cij as their objective function coefficients.

Note that if we "downgrade" all the cutset requirements from q/2 to 1 in constraints

(3.7), the first subLP reduces to the Steiner Forest problem over all the terminal nodes T =
C 1+. Therefore, ZLP1 > ZLP(T). Similarly, if we downgrade the cutset requirements from

q/2 to P2/2 in the second subLP, we obtain a relaxation whose optimal value ZOLP 2 (C2+) -

1 LP2 Zp(C2 +) underestimates ZLP2 . Therefore,

ZLP 2 ZLP1 + ZLP2
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zLP (C). (43)> ZL P(T ) + 2 ZOLP2(C) (4.3)

(Since the formulation [DIV(6)] is LP-equivalent for all values of 6, we drop the argument 6

in the notation for its optimal LP value.) The bounds (4.1) and (4.3), and our previous

observation
zLP(C lk LP C k ZLP k LP
ZOk(k+)k OPk(Pk+) Pk CUT - Pk 

implies that

ZO vl < 0 ZLP(T) + 0ZLP(C)- 01ZLP(C + ' LP ( C) + 02 pk OPkC
01 2 OP2 OP2 P2 OP2 39c_K

< 1 ZV + kZ + 0 2 01
D 2IV 22 3 1 }Z KP2 2 

Theorem 11:
For MNB problems with edge duplication, the overlay heuristic procedure produces a
solution with the following worst-case bound relative to the optimal LP value ZiV of

the connectivity-dividing formulation:

_zP < _ 01 X+ 0 Pk if 0 12 2 01 and
L~P I 2•k_K kPk 2 P2 -21

_Z ~ 01 lk
< 01 + O k otherwise.
- 3;l9cK Pk

4.2.2 Bounds for tree and forest-based overlay heuristics
We now specialize the bound in Theorem 11 to tree-based and forest-based versions of

the overlay heuristic for unitary and nonunitary MNB problems with edge duplication. For

unitary MNB problems, Goemans and Bertsimas [1993] analyzed two specialized versions

of the overlay heuristic-a tree+tree heuristic and a tree+matching (our terminology)
heuristic--that use particular heuristic solutions as S 1 and Sk. If T denotes the set of

terminal nodes, both methods select the minimum spanning tree MST(T) as the heuristic
solution S1. In Step 2, the tree+tree heuristic selects (Pk-Pk-l) copies of a minimum

spanning tree MST(Ck+) as Sk. Whenever the tree+tree heuristic selects two identical trees,

the tree+matching heuristic improves the solution by replacing the second tree with a

minimum cost matching over the odd-degree nodes of the tree. Thus, in the tree+matching
heuristic, Sk consists of r(pk-Pkl)/2l copies of a minimum spanning tree MST(Ck+) and

L(pk-kl)/2J copies of an optimal matching MATCH(Ck+) on the nodes Ck+.
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The natural extension of tree+tree heuristic to nonunitary MNB problems would

overlay heuristic Steiner forest solutions instead of spanning trees. Step 1 finds an
approximate Steiner forest problem with all secondary and critical nodes as terminal nodes.
In Step 2, for each k = 2, ..., K, the algorithm sets Sk equal to (k-Pk-l) copies of the

Steiner forest over the terminal nodes Ck+. Since this method solves a Steiner forest

problem in each step, we refer to this heuristic as theforest+forest heuristic.

Goemans and Williamson [1992] developed a dual-based heuristic FOREST(N') for the
Steiner forest problem defined on the set N' of terminal nodes. They showed that

ZFOREST(N') < 2 LPZFOREST(N') < 2 (N'). (4.4)

This result generalizes the following Steiner tree bound (Goemans and Bertsimas
[1993]) relating the minimum spanning tree heuristic and the optimal LP value ZsP(N') of

the cutset formulation [ST] of the Steiner tree problem over the terminal nodes N', i.e.,
LP

ZMST(N) < 2 Zs (N'). (4.5)

If we include a multiplicative factor of (1 - IN-'I in the right hand sides of either (4.4) or

(4.5), then the strict inequalities become inequalities.

Suppose we use the forest+forest heuristic for general MNB problems. This heuristic
selects all the edges belonging to FOREST(T) at step 1, and Pk - Pk-l copies of

FOREST(Ck+) at step k, k = 2, 3, ... , K. In this case, (4.4) and (4.5) imply that Ok = 2 for

all k. Observe that the first inequality of Theorem 11 holds for these values of Ok . If ZF+F

denotes the cost of the forest+forest heuristic solution, then Theorem 11 implies the

following result.

Corollary 12:
For nonunitary MNB problems with edge duplication, the forest+forest heuristic has

the following worst-case bound relative to the linear programming relaxation of

[DIV(2)]:
ZF+F

LP < 1+2 C q-
2zW 21ckK Pk'

For unitary MNB problems, we use the tree+matching heuristic. In this case, 01 = 2.

In Step k, the tree+matching heuristic has the following worst-case ratios (Goemans and
Bertsimas [1993]): if Pk-Pkl 2 2 is even, then Ok = 3/2, and if Pk-Pk-l > 3 is odd, then 02
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3 1
3-+ 2(P 1 up Let ZT+M denote the cost of the tree plus matching heuristic solution.=2 + 2(Pkpk-l )'

Theorem 11 implies the following result:

Corollary 13:
For unitary MNB problems with edge duplication, the tree+matching heuristic has the

following worst-case bound relative to the linear programming relaxation of [DIV(2)]:

ZT+M Isin (lk" )I
< + E 2k {3 + 2•kK 2 Pk Ilk

As we noted previously, Goemans and Bertsimas developed the same bound, but relative to

the optimal IP value of the MNB problem.

For specific connectivity values, we can compute the right hand sides of Corollaries 12
and 13 and demonstrate that they are asymptotically tight. Let us first consider {O,l,p}-

connectivity problems first. Using Corollary 12, we obtain

ZF + F 2
FF < 3 - 2 (4.6)LP < 

In particular, for unitary LCS problems, the heuristic method selects all the edges

belonging to MST(T) and MST(C). Proposition 5 showed, using a doubling argument, that

the overlay heuristic has a worst-case performance ratio of 2(1-1/ITI) relative to the optimal

integer value of the LCS problem. The inequality (4.6) strengthens this result by showing

that the same bound applies asymptotically to the ratio of the heuristic cost to LP value of

the connectivity-dividing formulation.

The bound of 2 for unitary LCS problems is tight. Consider a ring with ICI equally

spaced critical nodes on its circumference and a secondary node in the center. Suppose the

total ring cost is 1, and the secondary node is connected to one of the critical nodes with a

zero cost edge. The linear programming solution (which is also the optimal solution)

chooses all the ring edges and the spoke edge; the cost of this solution is 1. In contrast, the

tree+tree heuristic chooses the spoke edge and two copies of all but one ring edge, incurring

a total cost of 2(1-1/ICI) which approaches 2 as ICI increases.
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Next, consider the performance of the tree+matching heuristic for unitary { 0,1,p }-

connectivity problems with edge duplication. In this case, Corollary 13 implies the
following worst-case bound relative to the optimal LP value Zglp of formulation [DIV(6)]:

ZT+M 5 3
LP < 2 2p if p > 2 is odd, and (4.7a)

ZT+M 5 1
ZTP <2 iP if p > 2 is even. (4.7b)alp2 p

In particular, when p = 3, this corollary implies a bound of 2 for large values of ITI.

Appendix A shows that this bound of 2 is tight. Goemans and Bertsimas showed that the

tree+matching heuristic has a worst-case ratio of 3 relative to the LP relaxation of

formulation [CUT], but a bound of 2 relative to the optimal integer value. The example in

Appendix A also shows that the bound of 3 relative to the LP value of formulation [CUT] is

tight.

4.3 Analysis of Tree Completion heuristic for unitary MNB problems
without edge duplication
This section analyzes the worst-case performance of the Tree Completion heuristic we

described in Section 2 for unitary MNB problems without edge duplication, assuming that

edge costs satisfy the triangle inequality. We develop an upper bound on the cost of the

Tree Completion heuristic relative to the optimal LP and IP values of the secondary-

completion formulation [COMPL]. This bound depends upon the worst-case performance

ratio used in Step 1 of the Tree Completion heuristic to configure a multi-connected

network providing the requisite number of edge-disjoint paths between all the critical nodes.

Consider formulation [COMPL], the special version of [CCS(g,A)] with g = 1/2 and q

= 0 for all q. Recall that in this formulation, we omit the x variables and the redundant
constraints (3.7). Suppose we replace yij with y2 in constraints (3.6) and y! in constraints

(3.8) and add the constraint

y = y2 for all edges {ij} E E. (4.8)

If we dualize these linking constraints (4.8) using a multiplier of 1/2 for all edges { i,j , the

problem decomposes into two integer programs: a Q 2+-connectivity problem (without edge

duplication) over all the critical nodes with half the original edge costs, and a "Steiner-like"

problem defined over the set of secondary nodes plus a dummy node representing the
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critical nodes as the terminals. Let [ST*] denote this problem. The Q2+-connectivity

problem is the same as the original MNB problem but with the connectivity requirement for

all secondary nodes reduced to 0. If ZQ2+ denotes the optimal value of this problem

(without edge duplication), ZST* denotes the optimal value of the second subproblem, and

ZCOMPL denotes the optimal value of the problem (that is, the secondary-completion model

[COMPL]), then

ZCOMP L > 2 ZQ2+ + ZST*. (4.9)

Consider the second subproblem containing constraints (3.6), but with variable yi2
instead of Yi, and the integrality (binary) constraints. Unlike the standard Steiner tree

problem, this problem requires not only connecting the secondary nodes to each other but

also requires a path to at least one critical node. Since we have allocated half the edge cost
to yi, this problem's LP relaxation has an optimal solution with y2 = 0 for all edges {i,j }.

Otherwise, given an optimal LP solution with y2 > 0, we can obtain an equal or lower cost

feasible solution by setting bi - y/2. Thus, the LP relaxation of the second subproblem is

the LP relaxation of the following extended Steiner problem:

Problem [ES]:

ZES = min cij bi (4.10)

subject to
BST > 1 for all {S,T} E c 1 , (4.11)

bij = Oorl for all {i,j} E E. (4.12)

We refer to this model as the "extended" Steiner problem because T1 contains a special

class of cutsets that separate all the secondary nodes from the critical nodes. If P denotes

the optimal LP value of this problem, then

ZST* 2 LP (4.13)

4.3.1 Extended Spanning Tree (EST) heuristic:
The following adaptation of the usual minimum spanning tree (MST) heuristic for

Steiner trees applies to the extended problem:

For each critical node i, find the minimum spanning tree T(i) of the subgraph

induced by the secondary nodes and node i.
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Choose the tree T(i) with the lowest cost as the heuristic solution to the Extended

Steiner tree problem.
If ns is the number of secondary nodes and the original edge costs are triangular, this

method produces a heuristic solution that costs no more than 2 (1-1/(ns+l)) Z . This

result is valid because any optimal solution to the extended problem must span some critical

node i. Therefore, the MST heuristic applied to a regular Steiner tree problem in which we

treat all the secondary nodes plus node i as the terminals produces a solution that costs no

more than 2 (1-1/(ns+l)) times the optimal value (Takahashi and Matsuyama [1980]).

Since in this case the MST heuristic selects tree T(i), our heuristic solution also costs no
more than 2(1-1/(ns+l)) times the optimal value of the ES problem.

The following alternative "Extended Spanning Tree" (EST) heuristic does not

necessarily produce a feasible ES solution, but is useful for analyzing the Tree Completion

heuristic.

* Consider the subgraph of G induced by all the secondary and critical nodes. Merge

(contract) all the critical nodes into a single dummy node. In the contracted graph,

the length of the edge connecting a secondary node j to the dummy node is the

length of the smallest edge connecting a critical node to node j.

* Find the minimum spanning tree of the contracted graph, and replace the edges

incident to the dummy node in this solution with the original edges.

Note that: (i) when we replace the edges of the contracted graph with the original edges in

the second step, the resulting solution need not be connected, i.e., this solution is not

necessarily feasible for problem [ES]; (ii) this solution costs no more than the cost of our

previous heuristic solution (i.e., the cost of the least cost tree T(i)); and (iii) the EST

procedure essentially solves a "reduced cost" version of problem [ES] in which we use

zero cost edges to connect all pairs of critical nodes. Since we have decreased the cost of

certain edges to 0, the optimal value of this version is less than or equal to ZES. Therefore,

we have the following result.

Proposition 14:
If the edge costs cij satisfy the triangle inequality, the EST heuristic produces a solution

that costs no more than 2 (1 - (ns+1 ) s
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Recall that Step 2 of the Tree Completion heuristic contracts all the nodes spanned by

the Q2 +-connected solution into a dummy node, and finds the minimum cost tree spanning

this dummy node and the remaining secondary nodes (not spanned by the Q 2+ solution). It

is easy to show that the cost incurred by the tree completion step is no more than the cost of

the EST heuristic solution.

Proposition 15:
Suppose the heuristic method we use to solve the triangular cost Q2+-connectivity
problem (without edge duplication) has IP or LP performance guarantees of 0 or OLP

(the LP guarantee is relative to the problem's cutset formulation). Then the Tree

Completion heuristic produces a MNB solution with the following upper bounds on its
IP and LP worst-case ratios co and oLp (relative to the secondary-completion

formulation):
o < 0+ 1, and

(OLP < OLP + 1.

Proof:
Let ZheurQ2+, Zbranch, and ZTC denote, respectively, the costs of the heuristic solution to

the Q2 +-connectivity problem, the total cost of the branches added in Step 2, and the total

cost of the Tree Completion heuristic solution. Proposition 14, the inequality (4.9), and the
inequalities ZQ2+ < ZCOMPL and LS < ZES = ZST* imply that

ZTC = ZheurQ2 + + Zbranch < ZQ2+ + 2 LP

= (0-1) ZQ2+ + 2 ZQ2+ + ZS) < (0 + 1) ZCOMPL.

Let ZQ+ and ZPpL denote the optimal LP values of the cutset formulation of the Q2+

connectivity subproblem and the secondary-completion formulation of the original MNB

problem. Since the inequality (4.9) also applies to the linear programming relaxations of
problems [COMPL], the Q2 +-connectivity problem, and [ST*] and since ZQL2P+ <

7LP
O6MPL

ZTC = ZheurQ2 + + Zbranch < 0LpZQP + 2 Z ES

= ' 1 +2LP 1 LP LP
(0LP-1) Z2+ + 2 (2+ + ZES)

< (LP + 1) ZOMpL .
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4.3.2 Some Implications
(i) LCS problems without edge duplication:

To solve unitary LCS problems without edge duplication, consider the following

tree+matching heuristic for the unduplicated {0,2 }-connectivity problem: find the minimum

cost tree spanning the critical nodes and construct an Eulerian graph by adding the edges of

the minimum cost matching over the odd degree nodes in this tree. Consider an Eulerian

tour in this tree+matching solution. By short-circuiting edges, we can transform this

solution into an equal or lower cost hamiltonian tour over the critical nodes. As Goemans
and Bertsimas have shown, OLP = 3/2 for this solution. Therefore, the Tree Completion

method with this embedded solution procedure in Step 1 produces a solution with an LP

worst-case ratio of at most 5/2.

Alternatively, if we use the optimal TSP tour over the critical nodes as the heuristic

{ 0,2)-connectivity solution in Step 1, then since the costs are triangular, from Proposition 6,

0 = 4/3 (Monma, Munson and Pulleyblank [1990]). So, the Tree Completion method with

the embedded TSP solution procedure has an overall LP worst-case ratio of 7/3.

Worst-case examples:

Consider the example in Figure 3(a). This figure has two concentric rings each

consisting of q critical nodes. The critical nodes on the rings are aligned. Every critical

node on each ring is connected to its two neighbors on that same ring with edges of cost 1.

Every critical node on a ring is also connected to 3 other nodes on the other ring: the node

directly aligned with it via a (spoke) edge of cost 1, and the two nodes to the immediate right

and left; each of these (spoke) edges has a cost of 2. An alternate path (of total length 1)

consisting of p-l secondary nodes also connects every pair of adjacent critical nodes on the

same ring.

Figure 3(b) shows the heuristic solution if we use the Tree+Matching heuristic to

connect the critical nodes. We first choose the inner ring (except one edge), and all unit-

cost spoke edges in the MST. The matching step then selects q-2 of the remaining spoke

edges and an edge on the outer ring. Short circuiting provides us with a two-connected

solution that costs 3q-2. To obtain a heuristic solution to the {0,1,2} problem, we then

connect all the secondary nodes to this subgraph and incur an additional cost of 2q(1-1/p).

Thus, the total heuristic cost is 5q-2q/p-2. The optimal solution in Figure 3(c) costs 2q+2,

and thus we obtain an asymptotic heuristic-to-optimal cost bound of 5/2 for large values of
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p and q. But then the asymptotic ratio of the heuristic-to-LP cost is at least 5/2, which is the

worst-case ratio we established earlier.

The example of Figure 4 proves that the bound of 7/3 is tight if we use the TSP as a
heuristic solution for the {0,2 }-connectivity subproblem. This example is an extension of a
problem instance proposed by Monma, Munson, and Pulleyblank [1990]. The network,

shown in Figure 4(a), contains three paths, each with q-1 critical nodes, connecting two

special critical nodes 1 and 2. The cost of each edge on these three paths is 1. Every pair of

adjacent critical nodes is also connected by a path containing p-1 secondary nodes; the total

cost of this alternate path is 1. The cost between any other pair of nodes is the shortest path
cost between these nodes.

Figure 4(b) shows the heuristic solution whose the cost is 4q-1 + 3q(1-l/p). Figure
4(c) shows the optimal solution with a cost of 3q. This example achieves the bound of 7/3
for large values of p and q. Note that since this example does not contain a Steiner node,
the worst-case bound also applies to { 1,2)-connected problems.

(ii) K-path Steiner tree problem:

Recall that the K-path Steiner tree problem contains two critical nodes that must be

connected by K edge-disjoint paths that possibly pass through secondary nodes or Steiner

points; the optimal design must also contain other secondary nodes on Steiner branches

connected to these K paths. In this case, the {0,K}-connectivity subproblem without edge
duplication is solvable as a minimum cost flow problem. Therefore, OLp = 1 and so the

Tree Completion method has a worst-case LP ratio of at most 2.

(iii) MNB problems with side constraints:

The model extends to more general classes of MNB problems with additional

configuration constraints imposed on the multi-connected network. Consider, for instance,

the Ring on Steiner tree problem, which requires the two-connected subgraph of the LCS

solution to be a hamiltonian tour that visits all the critical nodes (and optionally visits

secondary or Steiner nodes). In this case, we have additional configuration constraints in

formulation [COMPL] specify that every critical node must have degree 2. The

formulation, and therefore our analysis, remains valid even with these additional constraints
as long as we use an appropriate heuristic method in Step 1 of the completion procedure.

So, if we find the optimal TSP tour over the critical nodes, then 0 = 1 and so the Tree

Completion method has a worst-case ratio of o = 2. (Note that, with triangular costs, the
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optimal TSP tour that visits just the critical nodes is optimal, i.e., we can ignore the

secondary and Steiner nodes while solving the constrained { 0,2 }-connectivity subproblem

in Step 1.)

5. Condusions

Since even the simplest cases of survivable network design problems are NP-hard,

researchers have focused on modeling enhancements to improve the effectiveness of linear

programming-based solution methods, and on analyzing tree, tour, and matching-based

heuristics. In this paper, we have studied modeling and heuristic methods for unitary and

nonunitary MNB problems (containing one or more single-connectivity secondary nodes)

both with and without edge duplication. We also addressed an important special case,

namely, LCS problems with path connectivity requirements of 0, 1, or 2. Our analysis uses

two complementary approaches: a solution doubling argument to establish heuristic bounds

relative to the optimal IP value, and a connectivity splitting (halving) formulation to establish

bounds relatives to the optimal LP value.

We first developed a result for LCS problems that is analogous to a well-known Steiner

tree result: if we solve an LCS problem without the Steiner nodes, the resulting solution

costs at most twice the optimal value of the original LCS problem. The solution doubling

argument used to prove this result applies to other related problems as well. For example, it

permits us to use any heuristic with a worst-case bound of a for Eulerian graph

optimization problems to develop a Tree Completion heuristic with a worst-case bound of

2a for an MNB version of these problems. A similar doubling argument establishes

relationships among the optimal objective value of certain LCS problems and MST solution

values, TSP solution values, and costs of optimal matchings over secondary and critical

nodes.

Our discussion of MNB modeling issues builds upon a traditional cut formulation for

modeling survivability problems. Because it is more tractable, most researchers have used

the cut formulation to develop lower bounds in order to analyze the worst-case performance

of SND heuristics. However, since the cut formulation has a weak linear programming

relaxation, developing and guaranteeing strong worst-case bounds is difficult even though

the heuristics might inherently be good. Goemans et al. (1994) have recently developed an

elegant heuristic to improve earlier performance bounds (for example, Williamson et al.
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(1993)) for survivability problems. Goemans et al. suggest that improving the performance
guarantee any further might require a completely different solution approach.

Our modeling and analysis approach in this paper differs from previous approaches in
two respects: (i) we strengthen the problem's linear programming formulation without
sacrificing its tractability for heuristic analysis, and (ii) we analyze relatively simple
heuristics that use MST, matching, and forest heuristics as building blocks. Even with these
simple heuristics, we are able to achieve or improve upon some of the existing bounds in the
literature.

Consider, for instance, the {0, 1, 2 -connectivity problem without edge duplication.
Williamson et al.'s (1993) heuristic was the first polynomial time heuristic with a constant
performance bound for this problem. For MNB problems without edge duplication,
Section 4.3 develops a heuristic-to-IP bound of 0 +1 that depends on the worst-case ratio 0
of the heuristic to IP solution value for the Q 2+-connectivity subproblem (obtained by

treating the secondary nodes in the original problem as Steiner nodes.) If the original
problem is a {0,1,2 1-connectivity problem, then the Q2+ subproblem is a {0,2}-connected

problem. Consider the following Tree Completion heuristic, containing the embedded
Christofides heuristic to approximately solve the {0,2 } -connected subproblem.

Step 1: Find an MST spanning all the critical nodes.
Step 2: Find a matching of the odd-degree nodes in this tree.
Step 3: Short circuit edges to obtain a tour through the critical nodes.

(Steps 1 - 3 generate Christofides' heuristic solution for the critical nodes.)
Step 4: Aggregate this tour into a single node, replacing any parallel edges by the

least cost edge.

Step 5: Find an MST spanning this aggregate node and the secondary nodes.

Monma, Munson and Pulleyblank have shown that the optimal TSP objective value is at
most 16/9 of the optimal {0,2}-connected solution value (assuming triangular costs). Since
the Christofides heuristic provides an approximate solution to the { 0,21 connected problem
whose cost is within 3/2 of the optimal TSP solution value, this heuristic solution costs at

3 16 8 8
most 9 = times the optimal { 0,2 }-connected solution. Consequently, 0 = and

8 11
using Proposition 15 we obtain a 8 +1 = -3 approximate solution for the {0,1,21 problem

using the simple MST-matching heuristic. Using the more sophisticated primal-dual
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heuristic, Goemans et al. and Williamson et al. established a worst-case bound of 3 for this

problem.

As another application of our results, consider MNB problems with edge duplication

and complete connectivity (i.e., the set Q contains all integer connectivity values from 0
11 1

through K). Our LP bound of 2 (1 + 2 + + ... + I) - 1 for this problem is 1 less than

Goemans et al.'s bound (which applies to the more complex unduplicated case as well); it is

also lower than Williamson et al.'s bound of 2K - 1. If some intermediate connectivity

levels are missing, then Theorem 11 provides a bound of 2 (1 + 2 1K Pk-pPk) _ 1

1which further improves upon Goemans et al.'s bound of 2 ( 1 1
which further improves upon Goemans et al.'s bound of 2 (1 + + + ... + K ) .

In developing these bounds, we have used a new connectivity-splitting mixed-integer

programming formulation (3.5 - 3.13) for survivable network design problems. This

formulation generalizes in two ways. First, if we change the right hand sides of (3.11) and

(3.13), the formulation models a "capacitated" version of the problem. For example, by
allowing bij to be any positive integer, and by changing the right hand side of (3.13) to Pij

allows us to choose up to Bij copies of edge { i,j }.

Second, the formulation (3.5) - (3.13) applies with minor modifications even when the

right hand side of (3.2) is a proper function (see Goemans et al., [1994]). (An integer

valued function f(-) defined on the subsets of a set N is proper if f(N) = 0, f(S) = f(N\S) for
S _ N, and f(AuB) < max{ f(A), f(B) } whenever A and B are disjoint.) To incorporate this

change, we alter the right hand sides of (3.7) and (3.8) to f(S) of(S) and f(S) (1-0f(s)) for
1

some pre-specified connectivity fractions qf(S) E [0, 2] for all f(S) > 2. The parameter 4 is
defined as the minimum of all values of(S), f(S) 2 2. The proof of the validity of this

formulation is similar to the proof of Theorem 8. This observation suggests the possiblity

of extending this paper's approach to survivable network design problems with proper

connectivity functions and without edge duplication.
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APPENDIX A

The example in Figure 2(a) shows that the Tree+Matching heuristic achieves an

asymptotic bound of 2 relative to the linear programming relaxation of formulation

[DIV(3)]. This "honeycomb" example has m hexagons packed in a plane, with m a

sufficiently large integer. All the hexagon vertices represent critical nodes of connectivity

requirement 3. Each pair of adjacent critical nodes is connected by two alternate indirect

paths containing p-i secondary nodes. The direct edge cost, as well as the total cost of the

indirect paths connecting adjacent critical nodes, is 1.

Since (i) the honeycomb has m hexagons, (ii) each hexagon has 6 edges, and (iii) each

edge belongs to 2 hexagons, the honeycomb example has a total of 3m direct edges. (We

ignore the boundary effects since the number of boundary edges grows sublinearly with m.)

Similarly, the honeycomb has 2m critical nodes. For each direct edge in the network, the

optimal solution chooses all edges of one of the corresponding indirect paths and all but

one edge of the other indirect path. The optimal solution cost is 3m + 3m(1-1/p).

In Step 1, the heuristic finds an MST spanning all terminal nodes: the cost of edges

chosen in this step is 3m + 3m(I-1/p). In Step 2, the heuristic first finds an MST spanning

the critical nodes and chooses 2m-1 direct edges. Figure l(b) shows an MST spanning the

critical nodes as bold edges. The heuristic then finds a minimum matching over the odd

degree nodes of the tree. The minimum matching over the odd degree nodes of the tree

duplicates the pendant edges; since each hexagon has, on average, one pendant edge, the

cost of the minimum matching is m. Thus, the total heuristic cost is

(3m + 3m(i-1/p)) + (2m-1) + m = 9m- 3m/p- 1.

Next consider the linear programming solution to formulation [DIV(3)]. Setting ij =

1/3 and xij = 5/12 for each edge on all the indirect paths, we obtain a feasible solution to the

linear programming relaxation of [DIV(3)]. This solution costs 4.5m, and thus

asymptotically, for large values of p and m, this example achieves the desired bound of 2.

We note that this example also achieves the Goemans and Bertsimas heuristic to linear

programming bound of 3 for formulation [CUT]. Setting uij = 1/2 for each edge on all the

indirect paths, we obtain an optimal solution, of cost 3m, to the linear programming

relaxation of [CUT]. Since the tree+matching heuristic solution costs 9m, this example

asymptotically achieves the bound of 3.
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Figure 2(a): Example to show that the {0,1,3} heuristic to LP bound of 2
is tight
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Figure 2(b) Tree edges chosen by first part of Step 2 of the
Tree+Matching heuristic
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