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Abstract

The survivable network design (SND) problem seeks a minimum cost set of edges that meet

prescribed node connnectivity requirements. We present a new family of strong mixed integer

programming formulations for this problem, examine the tightness of the associated linear

programming relaxations, and then use the relaxations to analyze heuristics for several variants

of the SND problem and its special cases. The new models are tighter than the usual cutset

formulation when the network contains both regular nodes that must be connected to other nodes

in the network and critical nodes with higher connectivity requirements. Our analysis provides

stronger worst-case bounds or shows that some previously known worst-case performance ratios

of heuristic to optimal (mixed integer programming) costs also hold relative to the optimal ratio

of the heuristic to optimal linear programming values of these stronger formulations. The new

formulations use fractional edge selection variables to split the connectivity requirements of the

critical nodes into two separate requirements. We consider three versions of the model. A

connectivity-peeling version peels off the lowest connectivity level, a connectivity-dividing

version divides the connectivity requirements for all cutsets separating critical nodes, and a

branch-addition version attempts to separate the design decisions for a multi-connected

component of the network from those for the branches.



1. Introduction
Cost and survivability are primary criteria for designing telecommunication and other

infrastructure networks. In configuring these networks, planners must select a configuration that

is not only cost effective but also meets the service requirements of different customer segments.

For telecommunication networks, business and government customers might have more stringent

connectivity requirements than individual households since interruptions of service to

institutions can be life-threatening or result in lost revenues and costs running into millions of

dollars (Cosares et al. [1995]). To guarantee minimal interruptions for these high priority

customers, the network must contain alternate paths and restoration facilities. Since providing

the same high level of protection against failures to all customers is prohibitively expensive,

network planners must judiciously select a topology that contains redundancy only when needed

to provide adequate service for the critical customers.

Motivated by this need to simultaneously consider cost and survivability, researchers have

attempted to understand and solve a core optimization model-the survivable network design
(SND) problem. Given an undirected network G: (N, E) with nonnegative costs ci for each

edge (i, j) E E and nonnegative, symmetric (without loss of generality) integer connectivity

requirements rij specifying the minimum number of edge-disjoint paths needed between nodes

i, j E N, i • j, the SND problem seeks the minimum cost network that meets all the connectivity

requirements. We define the node connectivity of each node i as Pi = max{rij: j N}. We refer

to nodes with Pi equal to zero, one, and greater than one as Steiner, regular, and critical nodes,

respectively. Steiner nodes are optional intermediate points that the design might use to connect

the regular and critical nodes.

This paper presents a new family of extended cutset formulations for the SND problem, called

connectivity-splitting models, and uses this family of formulations to analyze the worst-case

performance ratios of several heuristics. Although our model applies to general SND problems

without any restrictions on node connectivity values, it is stronger than the traditional cutset

formulation only when the network contains one or more regular nodes. Our worst-case analysis

also exploits the presence of regular nodes. In this case, the optimal SND solution consists of a

multi-connected network that spans all the critical nodes and optionally includes some regular

and Steiner nodes, plus a set of branches emanating from this network to span any remaining

regular nodes. We, therefore, refer to SND problems with at least one regular node as the multi-

connected network with branches (MNB) problem.
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One characteristic-whether or not edge duplication is permitted-plays an important role in

modeling, solving, and analyzing SND problems. Edge duplication refers to the option of
installing multiple (parallel) copies of any edge (i, j) E E to create alternate paths. Some

application contexts permit edge duplication while others do not (e.g., if customers require

physically diverse paths). In this paper, we consider both problem variants-with or without

edge duplication.

The literature has addressed several special cases of the SND problem, obtained by limiting the

set of permissible node connectivity values, and assuming special cost structures. In some
instances, (for example, if the network contains a node i with connectivity requirement rij 21 to

all other regular and critical nodes j), every feasible design must necessarily be connected. We

refer to this special case as the unitary SND problem. In other, general, situations, the optimal

solution might contain multiple components. Special cost structures, such as Euclidean or

triangular edge costs (i.e., edge costs that satisfy the triangle inequality) can also lead to

simplifications. SND problems with nodes connectivity values limited to two or three special
values have received particular attention in the literature. Let Q = {q: q = pi for some i E N} be

the set of node connectivity values in the network. One well-studied special case is the Low

Connectivity Steiner (LCS) problem with Q = {0,1, 2}, i.e., all critical nodes have connectivity

requirements of two. Likewise, the Equal Connectivity Steiner (ECS) problem has Q = {0O, p} for

some integer p > 2. In Section 3, we address heuristic worst-case performance for some of

these special cases.

Survivable network design problems are difficult to solve optimally. Even the unitary LCS

special case is NP-hard since it generalizes the classical Steiner tree problem and the traveling

salesman problem. Part of the enormous literature on Steiner network problems focuses on

analyzing the worst-case performance of heuristics, and developing good problem formulations

that can improve the performance of relaxation-based solution methods such as branch-and-

bound. Following this trend, several papers have studied the polyhedral structure of the SND

problem (e.g., Monma, Munson and Pulleyblank [1990], Groetchel, Monma, and Stoer, [1992]),

analyzed the worst-case performance of heuristics (e.g., Goemans and Williamson [1992],

Goemans and Bertsimas [1993]), and developed optimization algorithms (e.g., Gr6etchel, et al.

[1992]). Most of this work studies unitary LCS problems. Williamson et al. [1995] and

Goemans et al. [1994] have developed heuristic bounds for general MNB problems without edge

duplication.
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This paper presents a family of models, and develops heuristic-to-LP worst-case performance

ratios for MNB problems with or without edge duplication. Section 2 improves upon the basic

"cutset" formulation that several authors have used in their analyses of SND heuristics. We first

propose a family of stronger formulations for MNB problems, obtained by introducing additional

edge variables and splitting the connectivity requirement across each critical cutset into two sub-

requirements. Depending on how we split the connectivity requirements, we obtain different

versions of the extended problem formulation. We consider three classes of formulations: a

connectivity-peeling formulation, a connectivity-dividing formulation, and a branch-addition

formulation.

Section 3 analyzes the worst-case performance of two classes of heuristics-an Overlay heuristic

for MNB problems with edge duplication, and a Tree Completion heuristic for problems without

edge duplication but triangular costs. For the overlay heuristic, we either provide tighter bounds

or show that previous bounds with respect to the optimal integer programming value also apply

relative to the optimal linear programming value of our connectivity-splitting model. Using the

branch-addition formulation, we analyze the worst-case performance of the Tree Completion

heuristic in terms of the performance of an embedded multi-connected heuristic, generating new

bounds. The results in this paper can serve as building blocks for more general models, for

instance, to analyze multi-level, multi-connected models incorporating multiple service and

facility types (Balakrishnan, Magnanti, and Mirchandani [1994a, 1994b]).

2. Modeling MNB problems
To date, researchers have largely used a standard cutset formulation of MNB problems (and its

special cases) to analyze heuristic worst-case performance for these problems. In this section,

we describe a stronger connectivity-splitting formulation that splits the connectivity requirement

across critical cutsets into two sets of constraints, and examine three special cases obtained by

considering particular schemes for splitting the connectivities. One formulation peels the lowest

connectivity level, another divides the connectivity requirement in the same proportion for all

critical cutsets, and the third adds branches to a multi-connected solution. In Section 3, we use

these formulations to analyze the worst-case performance of overlay and tree completion

heuristics for the MNB problem.

Developing strong formulations with improved linear programming relaxations has proven

useful both to develop better heuristic bounds and to improve solution performance for several

classical discrete optimization problems (see Nemhauser and Wolsey [1988]). Typically, these

extended formulations introduce additional variables from a different space (e.g., flow or node
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variables for Steiner network models; see, for example, Beasley [1984], Wong [1984], Goemans

and Myung [1993], and Magnanti and Raghavan [1999]), and add appropriate linking

constraints. Our reformulation strategy for the MNB problem also introduces additional

variables, but they all belong to the original space of edge variables.

For notation, we will let ZM denote the optimal value of any (mixed) integer programming

model M and let LM denote the optimal value of its linear programming relaxation.

2.1 Cutset formulation for SND problems
Given a graph G, for any subsets S c N and T = N \ S of nodes, let {S,T} =

{(i, j) E E: i S, jE T} denote the undirected edge cutset defined by S and T. If aii is any

quantity (decision variable, given data) associated with edge (i, j) of the graph, we let

AST = (ij)EXS.TlaiJ . For any cutset {S,T}, we refer to the maximum value of rij over all node

pairs i, j with i E S, j T as the crossing requirement of cutset {S,T}. We refer to cutsets with

crossing requirement of one as regular cutsets and those with crossing requirement of two or
more as critical cutsets. For each q e Q, let q denote the collection of all cutsets of the

underlying graph G with crossing requirement equal to q. For any k E Q, let

Qk+ ={qE Q:q2k}.

The following standard cutset formulation [CUT] for the SND problem without edge duplication
uses binary edge selection variables u for all edges (i, j) E . The variable uii is 1 if the

network design includes edge (i, j) and is 0 otherwise.

Problem [CUT]:

Zco = min ciuij (2.1)
(i,j)EE

subject to:
Usr q for all cutsets {S,T}E aq,q Q+ +, (2.2)

uii = integer for all (i, j) E, and (2.3)

u < 1 for all (i, j)E E. (2.4)

Omitting the upper bounds (2.4) models situations with edge duplication. Jain [1998] has

examined an integer rounding heuristic that iteratively solves the [CUT] formulation with certain
variables fixed at value one (those with value 2> in the previous iteration). He shows that the

2

ratio of objective value of this heuristic to the objective value of the linear programming

relaxation of [CUT] does not exceed 2. In contrast, the heuristics we consider in this paper are

combinatorial (and simple to implement), but do not lead to as sharp performance guarantees.
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2.2 Critical connectivity-splitting formulation for MNB problems
To strengthen the formulation [CUT], we consider a general reformulation scheme for MNB
problems that splits the connectivity requirement q for each critical cutset {S,T}e a,,q Q2+

into two complementary requirements Pqq and (1- q )q, for some given nonnegative fractions

bq . To meet these requirements, we introduce two new continuous edge variables, xij and Yi ,

and replace the previous edge selection variables u with two sets of binary variables ziu and bi.

The z variables select edges belonging to a multi-connected network connecting the critical

nodes, while the b variables choose branches emanating from the multi-connected network to

connect the remaining regular nodes (those not spanned by the multi-connected network).

We consider a family of such critical connectivity-splitting formulations [CCS(u,()],
parameterized by a constant i, with 0 < u < 1, and a vector D = (¢q) of connectivity fractions

4q, with 0 < q < for all q E Q2 . Let = min{: q E Q2+ }, and define:

al = -- , and aq = forall q E Q2+ .

These definitions imply that 0 < aq < 1 for all q E Q .

For a given constant u and a vector 4D of connectivity fractions, consider the following Critical

Connectivity-Splitting model [CCS(u,4)D)] for the MNB problem without edge duplication.

Problem [CCS(p,4)]:

Zccs = min Y cij(bij+zij) (2.5)
(i,j)EE

subject to:

Bs + IXST + aYs 1 for all {S,T}E C1 , (2.6)

Xs + acqYsr qpq for all {S,T}e a,qqe Q2+ , (2.7)

(1-aq )Ys > q(l - 0q) for all {S,T}E aq,qE Q2+ , (2.8)

Zij > xj + Yi for all (i, j)e E, (2.9)

xij,yij > 0 for all (i,j) EE, (2.10)

b, = Oorl for all (i,j)eE, (2.11)

zi = integer for all (i,j)E E, (2.12)

zi +bij < 1 for all (i,j)E E. (2.13)

To relate this model to the original cutset formulation, first note that the formulation [CCS(u,4D)]
replaces the original variables uii in the objective function of formulation [CUT] with the sum
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zo + bi . It also splits the connectivity constraints (2.2) for the critical cutsets (i.e., for

{S,T}e crq,qe Q2+) into the two constraints (2.7) and (2.8). Observe that adding constraints

(2.7) and (2.8) gives XST + YST q, which together with constraints (2.9) and (2.12) ensure that

the z values satisfy the connectivity requirement of q across all critical cutsets

{S,T}e aq'qE Q2+ . That is, the network design defined by the z solution provides the required

number of edge-disjoint paths among all pairs of critical nodes. As we shall see later (in the

proof of Proposition 1), constraints (2.6) ensure that any regular nodes not spanned by the z

solution are connected via edges defined by the b variables. Finally, note that the formulation

permits edge duplication if we eliminate constraints (2.13).

Before formally examining the validity of formulation [CCS(!t,A)], let us justify it intuitively by
considering a specific set of parameters. Suppose ;q = for all q E Q2+ and gu = -. In this case,

a, = -, and aq =0 for all qE Q2+. Constraints (2.7) and (2.8) now specify that the total x-value

across any critical cutset {S,T) E q, q eQ2+ must equal or exceed ql4 while the total y-value

across this cutset must equal or exceed 3q /4. Therefore, u = 2 xij + Yij satisfies the original

constraints (2.2) for this cutset. Now consider constraints (2.6). If an edge (i, j) of the regular

cutset {S,T} e al belongs to the multi-connected subnetwork connecting the critical nodes, then

this subnetwork spans nodes i andj, and must therefore include at least one other edge of {S,T} .

Therefore, the sum of the x-values and y-values over all the edges of this cutset must be at least
2. Since constraint (2.6) specifies that BST + XST + YsT 1 , the solution uij = Zi satisfies

constraint (2.2) for cutset {S,T}. On the other hand, if XST + Y = 0, then {S,T} must contain

at least one branch, i.e., b =1 for some (i,j)E {S,T}.

In analyzing the worst-case performance of a tree heuristic for the SND problem, Goemans and

Bertsimas [1993] have previously divided the optimal integer solution to formulation [CUT] into

two fractional values (half each) corresponding to the edges in the maximal two-connected

component of the optimal design. This scheme for splitting variables corresponds to the

connectivity-halving special case of [CCS(.,j)] that we discuss later. Goemans and Bertsimas

did not explicitly develop the stronger critical connectivity-splitting (or halving) formulation, nor

did they consider the implications of this variable splitting approach for the analysis of heuristics

relative to the optimal linear programming values as we do in this paper.

We next show that formulation [CCS(,()] is a valid model for the MNB problem.
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Theorem 1.
Suppose ( ={q }, with 0<q <-L for all qE Q2+, 0 = min{ 0:qE 'Q2+ , and

aq = (oq - )/(1- ) . Then, for any 0 < u < 1, the formulation [CCS(,,u)]-with

constraints (2.13) if edge duplication is not permitted, and without constraints (2.13)

otherwise-is a valid formulation for the MNB problem.

Proof:
Given any feasible solution to [CCS(gu)], consider the derived solution to formulation [CUT]
obtained by setting uij = bi + zij b + Fx + Yil for all edges (i,j) E E. Since the given CCS

solution satisfies constraints (2.6), either uxj + ayij > 0 or b = 1 for at least one edge (i, j) in

every cutset {S,T}e o,. In the first case, x + Yi > 0, and so rxij + Yijl >1. Therefore, the

derived solution satisfies constraints (2.2). Consider a cutset {S,T} E aq,q Q2+ . Adding

constraints (2.7) and (2.8) gives XST + YST 2 q for all {S,T}E o q,q E Q2+. Moreover, since

zi 2> xi + Y is integral, UST r > Fxj + YIl >y[XsT + Y 1 > q, and so the derived u solution
(i,j)E{(S,T)

satisfies the connectivity requirement for all critical cutsets {S,T} e aq, q e Q2+ . Therefore, the

derived u-solution is feasible in [CUT]; moreover, it has the same cost as the original CCS

solution.

Conversely, given any feasible (integer) solution u to formulation [CUT], we use the following

"allocation" procedure to obtain feasible values of the b, x, y, and z variables in formulation

[CCS(pj)]. The given u solution contains at least q paths connecting every pair of nodes i andj
with rij = q . Let E2+ denote the union of edges contained in all the paths connecting the critical

nodes. For each edge (i, j) E 2+, we set xj = uij, Yij = (1- )uij, and zij = Uj . For edges in

E \ E+, we set bi = uij and xi = Yi = zij = 0. As the following arguments show, this solution

satisfies constraints (2.6) to (2.13). Consider any cutset {S,T} aq for qe Q2+. The u-solution

selects at least q edges in this cutset. By construction, for each of these edges (i, j), xij = Auij

and ij = (1- $)u . Therefore, the lefthand side of the inequality (2.7) is at least

q + qaq(1- 0) = q4q, and the lefthand side of (2.8) is at least q(l - ) > q(l - ) . Finally, for a

cutset {S,T} e o, if the given u-solution contains at least one edge from E/E2 + belonging to

this cutset, then UST = Bs 2>1. Otherwise, the u-solution contains at least two edges from E2,.
On these edges, x = ui = and Yij = (1- )uj = (1- ) . Therefore, XST > 2 and

YS, > 2(1- p), and so the lefthand side of (2.6) in the derived solution is at least

2uP+ 2a,(1 -) = 2 + 2 2(1-0) }l)) =1.

Therefore, the derived solution is feasible in [CCS(u4)].
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Recall that LcuT and Lccs represent the optimal values of the linear programming relaxations of

the formulations [CUT] and [ CCS(u, D) ].

Theorem 2.
LcuT Lccs , i.e., the CCS formulation is at least as strong as the cutset formulation.

Proof:
Since the edge costs are nonnegative, the linear programming relaxation of the CCS formulation
has an optimal solution with zij = x + for all (i, j) e E. Let (x, y,b) be an optimal solution

to this linear programming relaxation. Consider the u solution to the linear programming
relaxation of [CUT] obtained by setting uij = xij + Yij + bij for all edges (i, j) e E. This solution is

nonnegative and has the same cost as the CCS solution. Adding constraints (2.7) and (2.8) of
[ CCS(,A) ] shows that XST + Ys 2 q for all {S,T}E ca,qE Q2+. Therefore, UST > q for all

{S,T}E aq,qE Q2+. Since < 1, a < 1, and all the variables are nonnegative, the constraints

(2.6) imply that BsT + XST + YST > 1, and therefore UST > 1, for all {S,T}E a,. Consequently,

the derived u solution is feasible for the linear programming relaxation of [CUT].

The following example shows that the CCS model can provide a strictly tighter optimal linear

programming value than the cutset formulation.

Example 1. Consider a triangle with three critical nodes. Suppose that Q = {1, 2}. Every pair of

nodes is connected by two parallel, edge-disjoint paths, each with an intermediate regular node.

Thus, the network contains 3 critical nodes, 6 regular nodes, and 12 edges. Suppose each edge
has unit cost. The optimal solution to the linear programming relaxation of [CUT] sets u = on

all edges, with optimal value of 6. An optimal solution to the linear programming relaxation of
[CCS,(D)], withU = 1 and = 2 = , sets xij = and bi. = 0 for all edges, and yi = for 6

edges, two each on one of the parallel paths connecting every pair of critical nodes. The cost of

this solution is 9, strictly exceeding the optimal value of the linear programming relaxation of

[CUT]. Moreover, for this example, the optimal value of the linear programming relaxation of

the CCS formulation equals the optimal value of the integer solution.

2.3 Types of connectivity splitting
We obtain three intuitive versions of the critical connectivity-splitting formulation by selecting

certain special values for the parameters /u and O.
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First, suppose yt = 1. In this case, given any optimal solution with bij > 0 for some edge (i, j),

we can obtain an equal or lower cost feasible solution by setting xij x + bi . Therefore, both

the integer formulation and its linear programming relaxation must have optimal solutions with
bi = O for all edges (i, j) E E, and we can drop the b variables from the model. Within this class

of formulations (with Su = 1), we consider two special connectivity-splitting vectors D, namely,
4q =l/q for all q E Q2+,and q = 1/6 for all q E Q2+ for a given constant 6 > 2.

Connectivity-peeling formulation [PEEL]. When pq = l/q for all q Q2 , and St = 1, the

righthand side of constraint (2.7) is 1, and the righthand side of constraint (2.8) is

q(1-l/q) = q -1, for all critical cutsets. Intuitively, this disaggregation strategy attempts to

separate or peel a single connectivity subproblem (constraints (2.6) and (2.7)) over all the regular

and critical nodes from a "reduced connectivity" subproblem (constraints (2.8)) in which the

connectivity of each critical cutset is reduced by one (or less). We, therefore, refer to this special

case of [CCS(L,)] as the connectivity-peeling formulation [PEEL]. This formulation is

potentially useful for analyzing a heuristic that first finds a Steiner forest spanning all the regular

and critical nodes, and then adds edges belonging to a reduced connectivity solution.

Connectivity-dividing formulation [DIV(b)]. For any 6 > 2, if = 1/6 for all q e Q2+ and u

= 1, formulation [CCS(1,A)] becomes a connectivity-dividing formulation [DIV(o)]. The

righthand side values of constraints (2.7) and (2.8) are now q/6 and q(l -1/6), i.e., this

disaggregation strategy "divides" the connectivity requirement in the same proportion for every
critical cutset. Since Pq = ¢ and aq = 0 for all q E Q2+, constraints (2.7) contain only the x

variables. For the special connectivity-dividing formulation [DIV(2)] obtained by setting 3 = 2,

constraints (2.7) and (2.8) both have equal (possibly fractional) connectivity requirements of
q/2. In essence, this connectivity-halving formulation contains two connectivity subproblems,

one each corresponding to the x and y variables: each provides half the required connectivity for

every critical node. However, only one of these subproblems includes the unit connectivity

requirement of the regular nodes. Thus, for the LCS special case, the X subproblem corresponds

to a "fractional Steiner forest" over all the regular and critical nodes, and the Y subproblem is a

fractional Steiner forest with only the critical nodes as terminals. We later use this connectivity-

halving model to analyze the worst-case performance of an overlay solution strategy that obtains

heuristic solutions to MNB problems with edge duplication by combining integer solutions to the

two subproblems.
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Branch-addition formulation. We obtain a third version of the connectivity-splitting model,
called the branch-addition formulation [BRANCH], by setting Pq = 0 for all q Q2+ and u = 2.

In this case, we cannot drop the b variables, but constraints (2.7) are redundant. Furthermore,
since a, = -, both the integer program [CCS( ,)] and its linear programming relaxation have

optimal solutions with xij = 0 for all edges (i, j) (otherwise, we obtain an equal or lower cost

feasible solution by setting Yij - Yij + x1j ). Therefore, we can drop the x variables, replace zij

with Yij in the formulation, and impose integrality on the y variables. Constraints (2.8) require

that the y variables define a multi-connected network that meets the connectivity requirements of

all the critical nodes. Constraints (2.6) ensure that every regular node either belongs to the

multi-connected network or is spanned by the branches emanating from this component, i.e.,

each cutset {S,T} e a, contains either two or more edges of the multi-connected network or one

edge belonging to a branch. Thus, instead of reducing the connectivities of critical nodes, this

version of the model ensures that the solution completes the multi-connected network by adding

branches to span all the remaining regular nodes. In Section 3, we use the branch-addition

formulation to analyze the worst-case performance of a Tree Completion heuristic.

2.4 Tightness of the extended formulations
First, we show that the connectivity-dividing formulation is the strongest in the family of

[CCS(1,D)] formulations. This result, combined with our earlier observations, helps to rank the

various formulations in terms of the tightness of their linear programming relaxations.

Proposition 3.
Given any vector (I = { }, with 0 <q < 1, the formulation [DIV()] with = 1/0 has an

optimal linear programming value that equals or exceeds the linear programming value of

formulation [CCS(1,D)].

Proof:
Let (x, y) be an optimal solution to the linear programming relaxation of [DIV( 1/0 )]. Since

XT > q and YT q(1- '), Xsr+aqYsr > q+ ) q(l- )=q qq for all {S,T}E aq,qE Q2,

i.e., the solution satisfies constraints (2.7) in [CCS(1,4)]. Moreover,

(1-aq)Ysr > 1( q(l -p)=q(l-Oq). All of the other constraints in [CCS(1,D)] are the same as

those in [DIV( 1/4 )]. Therefore, (x, y) is a feasible solution to the linear programming

relaxation of [CCS(1,4)], implying that the optimal linear programming value of formulation
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[CCS(1,D)] can be no greater than the cost of (x, y) which is also the optimal linear

programming value of [DIV(1/ )].

Proposition 4.
For any value of 3> 2, the formulation [DIV()] is LP-equivalent to formulation [DIV(2)].

Proof:
Let (x', y', z') be any feasible solution to the linear programming relaxation of [DIV(S)].

Consider the solution (x, y, z) with xij = xi + ayI, Y, = (1- a)yj, and zi = z for all (i, j) E .

Clearly, x > 0 and y 2 0, and XT 2>1 for all {S,T} E a. Moreover,

XS = Xsr +aYsr 2 (q/8) + qa(l-1/6) = q/2, and

YT = (1-a)Y q(1-al)(l-1/6) =q/2, for all {S,T}e aq,qE Q2+ .
Therefore, (x, y, z) is feasible for the linear programming relaxation of [DIV(2)].

Now suppose (x, y, z) is feasible for the linear programming relaxation of [DIV(2)]. Without

loss of generality, assume x y. Otherwise, if (x", y ", z") is a feasible solution with x" ,• y",

the solution xj = max {x, yj, y }, Y = min{x,., y' }, and zj = z is feasible. Consider the solution

(x',y',z) with Yj = yi/(1-a,), x = xij -a, yj, and z = zij for all (i,j)e E . Since

a, < 1, y'= y/(1 - a,) 2 0. Therefore,

x'= x-{a,/(1- a)}y = x- (8 - 2)/6}y = (x- y)+ (2/8)y > (2 /8)y >0,

i.e., X > (2/)YT > q/6, for all {S,T}e aq,qe Q2+.

Similarly, YST = {l/(1-a)}YsT 2 q/{2(1-a)} = q(l -1/6), for all {S,T}e aq,qe Q2+ .

For any {S,T}E al, XS +alY = Xsr-{al/(l -a)}YsT +al/(l -a)}Ys = Xs >.

Therefore, (x', y ', z') is a feasible solution to the linear programming relaxation of [DIV(6)].

In this section, we have considered several valid mixed-integer programming models for the

MNB problem that have tighter linear programming relaxations than the traditional [CUT]

formulation. Propositions 3 and 4 and our prior observations have established the following

result.

Theorem 5.
Let D = {0q }, with 0 < < be any vector of connectivity fractions, and let

= min{q: q E Q2+} . Then,

LCUT < Lccs(,,) < LD,(V) = LDv,) for all 8 > 2.
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In the next section, we exploit the tighter linear programming relaxations of the connectivity-

splitting models to develop better (smaller than previous) bounds on the worst-case performance

ratio of two broad families of MNB heuristics.

3. Worst-case Analysis of Heuristics for MNB problems
This section analyzes the worst-case performance, relative to the optimal linear programming

value of the connectivity-splitting formulation, of two heuristic solution methods for the MNB

problem: an Overlay heuristic for MNB problems with edge duplication, and a Tree Completion

heuristic for unitary MNB problems without edge duplication.

3.1 Preliminaries
For any integer p >1 and a specified subset of (terminal) nodes T c N, let Zop (T) and Lop (T)

denote the optimal values of formulation [CUT] and its linear programming relaxation for an

equal connectivity (ECS) version of the survivable network design problem. In this {O,p}-
connectivity problem, all nodes of T have the same connectivity requirement p, and all other
nodes are Steiner nodes. In particular, Z01(T) and LOi (T) denote the cost of the optimal Steiner

forest with T as terminal nodes, and the optimal linear programming value of this problem's cut

formulation.

We will use the {O,p}-connectivity problem in our analysis in the following way. Suppose that

in a given MNB problem, all the positive connectivity requirements q equal or exceed p. Let

ZDv and LDw denote the optimal mixed integer programming and linear programming values

for the connectivity-halving formulation [DIV(2)] of this problem. Then the { O,p}-connectivity
problem is a relaxation of the MNB problem, and so Zp (T) < Zcur = ZDIV and

Lt, (T) < Lco < LD . Note that if edge duplication is permitted, Lp (T) = P4 1 (T).

For a given MNB problem, suppose the set Q contains K distinct connectivity values,

q0 = O,q = 1,..., q, indexed in increasing order. For k = 1,...,K, let Nk and Nk+ denote the set

of all nodes with connectivity requirement equal to qk and greater than or equal to qk, and

define rlk = qk qk- .

3.2 MNB problems with edge duplication: Overlay heuristic
The Overlay heuristic generates a feasible solution for MNB problems with edge duplication by

successively satisfying the connectivity requirements of critical nodes in order of increasing
criticality. For k = 1,2,..., K, the method selects a heuristic or optimal solution Sk to the

{Ork }-connectivity problem, with edge duplication, assuming that all the nodes in Nk+ require
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connectivity of nk Note that, for MNB problems, since q= = rh = 1, S is a Steiner forest (or

Steiner tree, for the unitary special case) over all the regular and critical nodes. The union of the
K solutions S k , for k = 1,..., K, is the overlay heuristic solution to the MNB problem.

3.2.1 Worst-case analysis of Overlay heuristic
Let Z(Sk) be the cost of the solution Sk generated at each stage k of the overlay procedure.

Suppose ok is a known upper bound on the worst-case ratio of Z(Sk) to a'k (Nk+). Then, the

cost Zo' of the Overlay heuristic solution satisfies the inequality:

Zov = Z(Sl)+Z(S2)+...+Z(Sk)

< 80Lo(Nl+)+ 0 2L4N(N 2,+)+ A Q OkrL (Nk+) (3.1)
3!5kK

Since Lok (Nk+) = (7k /qk) Loqk (Nk+) and L,k (Nk+) < LCUT, inequality (3.1) leads to the following

upper bound (obtained previously by Goemans and Bertsimas [1993] for certain specific values
of the 0 parameters) on the ratio of Z" to LcuT:

ZO 01 + 022 -+ Ok *7k (3.2)
LCUT q2 3•kSK qk

We next show how to reduce this bound (in particular, the first two terms in the righthand side of

(3.2)) by considering the tighter connectivity-halving formulation.

Recall that the connectivity-halving formulation [DIV(2)] of the MNB problem selects: (i) u = 1,

and so we drop the b variables, and (ii) 3 = 2 or q = for all qE Q2+, and so aq =0 for all

qE Q, i.e., we drop the y variables in constraints (2.6) and (2.7). Since the costs are

nonnegative, the linear programming relaxation of [DIV(2)], with edge duplication, has an
optimal solution satisfying constraints (2.9) as equalities for all edges (i, j). Substituting

zi = x + y, in the objective function (2.5) decomposes this linear programming relaxation into

two subLPs: LP1 containing only the x variables with constraints (2.6), (2.7), and nonnegativity,

and LP2 containing only the y variables with constraints (2.8) and the nonnegativity
requirements. Both xij and y have the original cost cij as their objective function coefficients.

Let L., and LP2 denote the optimal values of LPI and LP2.

Note that if we reduce all the cutset requirements from q/2 to 1 in constraints (2.7), the first

subLP reduces to the linear programming relaxation of the Steiner Forest problem with terminal
nodes N,,. Therefore, L 2 L o(N 1+) . Similarly, if we downgrade the cutset requirements

from q/2 to q2 /2 in the second subLP, we obtain a relaxation whose optimal value

Oq2 /2(N 2+) = / Loq2 (N2+) underestimates L, 2 . Therefore, the optimal linear programming value

LDIV of the connectivity-halving formulation satisfies the inequalities:
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LDIV 2 LP1 + LLP2 2 Lq(Ni+) + LOq(N 2+) (

The bounds (3.1) and (3.3), and our previous observation that

Lo, (Nk+) = I Lqk (Nk+) < rlT Lc < LV imply that
qk qk qk

Zo' <06L0(Nj+)+ 0Lq,(N2+)- 1 1Loq2(N, )+02 qq, (N2+)+ I Sk)-q (Nk+)

- OILDI + {02 772 01 }qq2 + + ek 6 q+LD +
q2 2 3!5kK qk

Theorem 6.
For MNB problems with edge duplication, the Overlay heuristic produces a solution with the

following worst-case bound relative to the optimal value LDWv of the connectivity-halving

model's linear programming relaxation:

ZO°~ 1 r/ 1
-< 01 + E O6 k if '2 0,, and

LDV 2 2:kK qk q2 2

< 60 + ~ Ok / -k otherwise.
2<k<K qk

3.2.2 Forest Overlay method
For the general (nonunitary) MNB problem, suppose we use a Steiner forest heuristic to

approximately solve the {O,r/k }-connectivity problem at each stage k of the overlay procedure.

In step k, the method sets Sk equal to k copies of the heuristic Steiner forest solution over the

terminal nodes Nk+. We refer to this implementation of the Overlay heuristic as the Forest

Overlay method, and denote the cost of the heuristic solution it generates as ZFOI.

Goemans and Williamson [1992] proposed a dual-based heuristic for the Steiner forest problem.

If T is the set of terminal nodes, this heuristic produces a Steiner forest solution FOREST(T)

whose cost, ZFORE sr(T), satisfies the upper bound:
ZFORESrT(T) < 2, (T) , (3.4)

i.e., 0 < 2. Note that if we select lk* copies of FOREST( 7k ) as the approximate solution to the

{0,1k } -connectivity problem in the Forest Overlay procedure, then the inequality (3.4) and the

fact that L, (Nk+) = /kol (Nk+). imply that Ok < 2 for all k = 2,..., K . Therefore, from Theorem

6, we obtain the following result if we use the dual-based Steiner forest heuristic in each step of

the Forest Overlay procedure.

- 14-
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Corollary 7.
For MNB problems with edge duplication, the Forest Overlay heuristic has the following
worst-case bound relative to optimal value LDIv of the connectivity-halving formulation' s

linear programming relaxation:
z FOvl

<1+2 E r-

LDIV 2<k<K qk

To show that this bound is asymptotically tight, suppose all critical nodes have connectivity

requirement p (i.e., with Q = {0,1, p} ) for a situation permitting edge duplication. As applied to

this {0,1,p}-connectivity problem, Corollary 7 implies that
ZFOvl 2
-- <3--. (3.5)
LDV P

For unitary LCS problems (i.e., with p = 2) with edge duplication, the heuristic method selects

all the edges belonging to MST( N+ ) and MST( N2+ ). The overlay heuristic has a worst-case

performance ratio of 2(1- /IN 2I) relative to the optimal integer value of the LCS problem

(Balakrishnan, Magnanti, and Mirchandani [1994c]). Inequality (3.5) strengthens this result by

showing that the same bound applies asymptotically to the ratio of the heuristic cost to linear

programming value of the connectivity-halving formulation.

Example 2. The bound of 2 for unitary LCS problems is tight. Consider a ring with m equally

spaced critical (connectivity 2) nodes on its circumference and a regular node in the center.
Suppose each edge on the ring costs l/m, and the regular node is connected to one of the critical

nodes with a zero cost edge. The linear programming solution (which is also the optimal integer

solution) chooses all the ring edges and the spoke edge; the cost of this solution is 1. In contrast,

the tree + tree heuristic chooses the spoke edge and two copies of all but one ring edge, incurring

a total cost of 2(1-1/mn) which approaches 2 as m increases.

3.2.3 Tree + Matching Overlay method
For the unitary MNB special case (with edge duplication), using tree-based heuristics at each

step of the Overlay procedure provides better bounds. For any given subset of nodes T, let

MST(7) denote the minimum cost tree spanning just T. Goemans and Bertsimas [1993]

proposed the following method, which we call the tree + matching overlay heuristic, for the

unitary MNB problem with edge duplication. The method first selects the minimum spanning
tree MST(N1+) spanning the terminal nodes N1 as S, and for k = 2,...,K,obtains Sk by

adding[rk/2] copies of a minimum spanning tree MST(Nk+) to Lr7k/2j copies of an optimal

matching MATCH(Nk+) on the nodes of Nk+ that have odd degree in MST(Nk+). Using this
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method, the worst-case ratios are: (i) 0 = 2, and (ii) for k = 2,..., K, k = 3/2 if rk > 2 is even,

and Ok = 3/2 + 1/2fk if k > 3 is odd. Let ZT+M denote the cost of the tree plus matching

heuristic solution. Substituting these bounds in Theorem 6 gives the following result.

Corollary 8.
For unitary MNB problems with edge duplication, the tree + matching heuristic has the
following worst-case bound relative to the optimal value LDNv of the linear programming

relaxation of the connectivity-halving formulation:
ZT+M< 2 E k {3 Isn(r/k/2)1}

.<1+ 3
LDIV 2kK 2qk k

Goemans and Bertsimas previously established the same bound, but relative to the cost of the

optimal integer solution to the MNB problem.

Consider, the performance of the tree + matching heuristic for unitary { IO, l,p}-connectivity

problems with edge duplication. In this case, Corollary 8 implies the following worst-case

bound relative to LD :

ZT+M 5 3
-Tm < --- if p > 2 is odd, and (3.6a)
LDN 2 2p

ZT+M 5 1
<--- if p > 2 is even. (3.6b)

LDVe 2 p

In particular, when p = 3, this corollary implies a bound of 2. Appendix A shows that this bound

of 2 is tight, and also shows that the known bound of 3 (Goemans and Bertsimas [1993]) relative

to the linear programming value of formulation [CUT] is tight.

3.3 Unitary MNB problems without edge duplication: Tree Completion
Heuristic

This section analyzes the worst-case performance of a family of Tree Completion heuristics for

unitary MNB problems without edge duplication, assuming that edge costs satisfy the triangle

inequality. Given a MNB problem with connectivity set Q, we define the associated

Q2+ -connectivity problem (without edge duplication) as the SND problem over the same graph

but with the connectivity requirement of all regular nodes reduced to 0. Let Z, denote its

optimal value.
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3.3.1 Tree Completion heuristic

Step 1: Find an approximate or optimal solution MCN (multi-connected network) to the

associated Q2+-connectivity problem. Denote its cost by ZHeu" 2+.

Step 2: Contract MCN into a single node 0, choosing the least cost edge whenever this

contraction step creates parallel edges. Find the minimum cost tree TREE spanning node

0 and the remaining regular nodes (not spanned by MCN). Denote the cost of the tree by

z Addtree

Step 3: The union of the edges in MCN and those in TREE is the Tree Completion heuristic

solution to the MNB problem. Let ZTC = ZHeurQ2 + ZAdree denote the cost of this

solution.

We now develop an upper bound on ZTC relative to LBRNcH and ZBRANH , the optimal linear

programming and integer programming values of the branch-addition formulation [BRANCH].
Recall that in this formulation (see Section 2.3), q = 0 for all q E Q2+, and 4u = a, = . So, we

omit the x variables, and substitute Yij for z but now require the y variables to be binary.

Suppose we replace yii with yi; in constraints (2.6) and (2.13) and y in constraints (2.8), and

add the linking constraint:
yj = Y for all edges (i, j) E. (3.7)

Both yj and yij are required to be binary. Dualizing constraints (3.7) using multipliers of l for

all edges (i, j) decomposes the problem into two integer programs: a Q2+-connectivity problem

(without edge duplication) over all the critical nodes, but with half the original edge costs, and a
Steiner tree-like subproblem [ST*] that we discuss next. If Zs,. and LsT denote the optimal

integer programming and linear programming values of this latter subproblem, then

ZBRANC 212ZQ2+ +Zs,, and (3.8a)

1
LBRANCH > LQ2 + LST. (3.8b)

Problem [ST] has the following formulation:

ZST = min I cj (bij + y;) (3.9)
(i,j)eE

subject to:
BST + YST > 1 for all {S,T}E Cr, (3.10)

bi + y, < 1 for all (i, j)E E, and (3.11)

bo,y = 0 or 1 for all (i, j) E . (3.12)
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The unitary network assumption implies that rij = 1 for at least one regular node i and a critical

nodej. Therefore, a, contains a special class of cutsets {S,T} in which all the regular nodes

belong to S and all the critical nodes belong to T. The connectivity requirements across these

cutsets ensure that the regular nodes are connected to at least one critical node.

Consider the linear programming relaxation of [ST*]. We can assume, without loss of
generality, that this linear programming relaxation has an optimal solution with yi = 0 for all

edges (i, j) . Otherwise, given an optimal linear programming solution with y, > 0, we can

obtain an equal or lower cost feasible solution by setting bij <-- bi + Y /2. Therefore, the linear

programming relaxation of [ST*] is the same as the linear programming relaxation of a Modified
Steiner Tree (ModST) problem that seeks a minimum cost tree (with ci as edge costs) spanning

all the regular nodes and at least one critical node. If we reduce to zero the cost of all the edges

connecting pairs of critical nodes, then requiring the regular nodes to be connected to at least one

critical node is equivalent to requiring connectivity to all the critical nodes. Therefore, we obtain

the following Extended Steiner Tree (EST) problem as a relaxation of the ModST problem. If G'

denotes the graph obtained by contracting all the critical nodes into a single node 0, the EST

problem is the Steiner tree problem defined on G', treating all the regular nodes and node 0 as

terminals. The minimum spanning tree heuristic applied to EST selects the minimum tree EMST

in G' spanning just the regular nodes and node 0; the cost of this solution, ZEMSr is no more than

2(1 - 1/(n, + 1)) times the optimal linear programming value LEsT of the EST problem (Magnanti

and Wolsey [1995]). Moreover, the cost ZAd d tr
ee of the edges added in Step 2 of the Tree

Completion heuristic does not exceed ZEmS .

If LM denotes the optimal value of the linear programming relaxation of the cutset formulation

of Problem M, then the preceding observations establish the following bounds:

ZAdree <ZE" < 2LEST < 2LMOS = 2LST*,. (3.13)

Proposition 9.
Suppose, in the Tree Completion heuristic, we solve the triangular cost Q2 -connectivity

problem (without edge duplication) using a heuristic method that has integer programming

and linear programming performance guarantees of 0 and 0,L (the linear programming

guarantee is relative to the problem's cutset formulation). Then, the Tree Completion

heuristic satisfies the following worst-case bounds:
ZTC zTC
Z. <0+1, and <0, +I

ZBRANCH LRANCH
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Proof:
Inequalities (3.8a) and (3.13), and the observation that ZQ2+ < ZBANc (since the

Q2 +-connectivity problem is a relaxation of [BRANCH] with certain node connectivities reduced

to zero) imply that

ZTC = ZHeU rQ2 + ZAddtree < OZ + 2Ls. = (O- 1)ZQ+ + 2( ZQ 2+ + LSr) < ( + )ZBRANCH.

Let LQ2+ denote the optimal linear programming values of the cutset formulation of the

Q2+-connectivity subproblem. Using inequality (3.8b) and the inequality LQ2+ < LBRANCH,

ZTC < O,LQ,, + 2LES = (0JL - 1)LQ2+ + 2(1 LQ2+ + LES) < (0L, + 1)LBmc .

3.3.2 Special case: LCS problems without edge duplication
To solve unitary LCS problems without edge duplication, suppose we apply the following tree +

matching heuristic to approximately solve the {0,2}-connectivity problem in Step 1 of the Tree

Completion heuristic: find the minimum cost tree spanning the critical nodes, and construct an

Eulerian graph by adding the edges of the minimum cost matching over the odd degree nodes in

this tree. Consider an Eulerian tour in this tree + matching solution. As Goemans and Bertsimas

have shown, 6 LP = 3/2 for this solution. By short-circuiting edges, we can transform this

solution into an equal or lower cost hamiltonian tour over the critical nodes. This transformed

(called tree + matching) solution does not duplicate edges whenever the costs are triangular and

the number of critical is nodes is at least 3. Therefore, Proposition 9 implies the following

corollary.

Corollary 10.
For the triangular cost LCS problem without edge duplication, the Tree Completion heuristic

has an linear programming worst-case ratio of 5/2 if we use the tree + matching heuristic to

solve the embedded {0,2}-connectivity problem.

Observe that our bound improves upon the best previously known worst-case bound of 3 for this

version of the LCS problem (Goemans et al.).

Example 3. To show that the bound of 5/2 in Corollary 10 is tight, consider the example in

Figure l(a). This figure has two concentric rings each consisting of q critical nodes. The critical

nodes on the rings are aligned. Every critical node on each ring is connected to its two neighbors

on that same ring with edges of cost 1. Every critical node on a ring is also connected to 3 other

nodes on the other ring: the node directly aligned with it via a (spoke) edge of cost 1, and the two
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nodes to the immediate right and left; each of these (spoke) edges has a cost of 2. An alternate

path (of total length 1) consisting of p-1 regular nodes also connects every pair of adjacent

critical nodes on the same ring.

Figure 1(b) shows the heuristic solution if we use the Tree+Matching heuristic to connect the

critical nodes. We first choose the inner ring (except one edge), and all unit-cost spoke edges in

the MST. The matching step then selects q-2 of the remaining spoke edges and an edge on the

outer ring. Short circuiting provides us with a two-connected solution that costs 3q-2. To obtain

a heuristic solution to the LCS problem, we then connect all the regular nodes to this subgraph

and incur an additional cost of 2q(1-1/p). Thus, the total heuristic cost is 5q - (2q/p) - 2. The

optimal solution in Figure l(c) costs 2q+2, and thus we obtain an asymptotic heuristic-to-optimal

cost bound of 5/2 for large values of p and q.

Instead of the tree + matching heuristic, suppose we use the optimal TSP tour over the critical

nodes as the heuristic {0,2}-connectivity solution in Step 1 of the Tree Completion method.

With triangular costs, Monma et al. [1990] have shown that ZTSP/L 4 2 = 4/3. Substituting

0Lp = 4/3 in Proposition 9 gives the following result:

Corollary 11.
For the triangular cost LCS problem without edge duplication, the Tree Completion method

with the embedded TSP solution procedure has an linear programming worst-case ratio of

7/3.

Example 4. To show that this bound of 7/3 is tight, consider the example shown in Figure 2(a).

This example, an extension of a problem instance in Monma et al. [1990], has three paths

connecting two special critical nodes 1 and 2. Each path has q-l critical nodes, and the cost of

each edge on these three paths is 1. A path containing p-1 regular nodes also connects every

pair of adjacent critical nodes; the total cost of this alternate path is 1. The cost between any

other pair of nodes is the shortest path cost between these nodes.

Figure 2(b) shows the heuristic solution whose the cost is 4q-1 + 3q(1-lp). Figure 2(c) shows

the optimal solution with a cost of 3q. This example achieves the bound of 7/3 for large values

of p and q. Note that since this example does not contain a Steiner node, the worst-case bound

also applies to { 1,2-connected problems.
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3.3.3 Other special cases
(i) K-path Steiner tree problem

The K-path Steiner tree problem is a special {O,1,K-connectivity problem containing only two

critical nodes that must be connected via K edge-disjoint paths (that possibly pass through

regular nodes or Steiner points). In this case, the { 0O,K}-connectivity subproblem without edge

duplication (in Step 1) is solvable as a minimum cost flow problem. Therefore, ,p = 1 and so

the Tree Completion method has an linear programming worst-case ratio of at most 2.

(ii) MNB problems with side constraints

The model and our analysis extends to more general classes of MNB problems with additional

configuration constraints imposed on the multi-connected network. Consider, for instance, the

Ring on Steiner tree problem, a constrained version of the LCS problem which requires the two-

connected subgraph of the LCS solution to be a hamiltonian tour that visits all the critical nodes

(and optionally visits regular or Steiner nodes). In this case, we have additional configuration

constraints in the formulation [BRANCH] specifying that every critical node must have degree 2.

The formulation, and therefore our analysis, remains valid even with these additional constraints

as long as we use an appropriate heuristic method in Step 1 of the completion procedure. So, if

we find the optimal TSP tour over the critical nodes, then 0 = 1 and the Tree Completion method

has an integer programming worst-case ratio of 2.

4. Conclusions
Since even the simplest cases of survivable network design problems are NP-hard, researchers

have focused on modeling enhancements to improve the effectiveness of linear programming-

based solution methods, and on analyzing tree, tour, and matching-based heuristics. In this

paper, we have studied modeling and heuristic methods for the MNB problem and its special

cases, both with and without edge duplication.

Our discussion of MNB modeling issues builds upon a traditional cut formulation for modeling

survivability problems. Because it is more tractable, most researchers have used the cut

formulation to develop lower bounds in order to analyze the worst-case performance of SND

heuristics. However, since the cut formulation has a weak linear programming relaxation,

developing and guaranteeing strong worst-case bounds is difficult even though the heuristics

might inherently be good. Our modeling and analysis approach in this paper differs from

previous approaches in two respects: (i) we strengthen the problem's linear programming

formulation without sacrificing its tractability for heuristic analysis, and (ii) we analyze

relatively simple heuristics that use MST, matching, and forest heuristics as building blocks.
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Even with these simple heuristics, we are able to achieve or improve upon some of the existing

bounds in the literature.

Consider, for instance, MNB problems with edge duplication and contiguous connectivities, i.e.,
Q = {0,1,2,..., K} . Our linear programming bound of 2(1+ + +... + ) - 1 for this problem is

one less than Goemans et al.'s bound (which does not assume edge duplication); it is also lower

than Williamson et al.'s bound of 2K - 1. If some intermediate connectivity levels are missing,
then Theorem 6 provides a bound of 2(1 + 2 •kK (qk - q-l)lqk)- 1 which further improves

upon Goemans et al.'s bound.

In developing these bounds, we have used a new connectivity-splitting mixed-integer

programming formulation (2.5)-(2.13) for survivable network design problems. This
formulation generalizes in two ways. First, by allowing b to be any positive integer in (2.11),

and by changing the righthand side of (2.13) to 3ij allows us to choose up to ,ij copies of edge

(i, j), and thus model a "capacitated" version of the problem. Second, the formulation (2.5)-

(2.13) applies with minor modifications even when the righthand side of (2.2) is a proper

function (see Goemans et al. [1994]). To incorporate this change, we alter the righthand sides of
(2.7) and (2.8) to f(S)4f (s) and f(S)(1- of (s)) for some pre-specified connectivity fractions

0 < f(S) < for all f(S) > 2. As earlier, the parameter aq is defined using 0, the minimum of

all values f(s), f (S) 2 2. The proof of the validity of this formulation is similar to the proof of

Theorem 1. This observation suggests the possibility of extending this paper's approach to

survivable network design problems with proper connectivity functions and without edge

duplication.
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APPENDIX A
Worst-case Example for Tree + Matching Heuristic

Example 5. The "honeycomb" example in Figure 3(a) shows that the Tree + Matching heuristic

achieves an asymptotic bound of 2 relative to the linear programming relaxation of formulation

[DIV(3)]. This example has m hexagons packed in a plane, for a sufficiently large integer m. All

the hexagon vertices represent critical nodes with connectivity requirement 3. Each pair of

adjacent critical nodes is connected by two alternate indirect paths containing (p-l) regular

nodes. The direct edge cost, as well as the total cost of the indirect paths connecting adjacent

critical nodes, is 1.

Since the honeycomb has m hexagons, and each edge belongs to two hexagons, the netowrk

contains 2m critical nodes and 3m direct edges. (We ignore boundary effects since the number

of boundary edges grows sublinearly with in.) For each direct edge in the network, the optimal

solution chooses all the edges in one of the corresponding indirect paths and all but one edge of

the other indirect path. The cost of this optimal solution is 3m + 3m(1-lIp).

In Step 1, the Tree + Matching overlay heuristic finds an MST spanning all the terminal nodes,

incurring a total cost of 3m + 3m(1-1/p). In step 2, the heuristic finds an MST spanning the

critical nodes, thus selecting 2m-1 direct edges. Figure 3(b) shows one such tree as bold edges.

The heuristic then finds a minimum matching over the odd degree nodes of the tree. This

matching duplicates the pendant edges; since each hexagon has, on average, one pendant edge,

the cost of the minimum matching is m. Thus, the total heuristic cost is

(3m + 3m(1-lip)) + (2m-1) + m = 9m - 3mlp - 1.

Next, consider the linear programming relaxation of formulation [DIV(3)]. Setting Yi = 1/3 and

xij = 5/12 for each edge on all the indirect paths, we obtain a feasible solution to this linear

programming relaxation costing 4.5m. Therefore, asymptotically, for large values of p and m,
this example achieves the desired bound of 2. For the cutset formulation [CUT], setting ui = 1/2

for each edge on all the indirect paths, with total cost equal to 3m, is optimal. Therefore, this

example also asymptotically achieves the heuristic-to-LP (with respect to the cutset formulation)

worst-case bound of 3.
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