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Abstract

A transshipment problem with demands that exceed network capacity can be solved by
sending flow in several waves. How can this be done in the minimum number, T, of waves, and
at minimum cost, if costs are piece-wise linear convex functions of the flow? In this paper, we
show that this problem can be solved using min{m,logT, l+og(mu)-g(U )} maximum flow
computations and one minimum (convex) cost flow computation. Here m is the number of arcs,
F is the maximum supply or demand, and U is the maximum capacity. When there is only
one sink, this problem can be solved in the same asymptotic time as one minimum (convex)
cost flow computation. This improves upon the recent algorithm in [5] which solves the quick-
est transshipment problem (the above mentioned problem without costs) on k terminals using
k logT maximum flow computations and k minimum cost flow computations. Our solutions
start with a stationary fractional flow, as described in [5], and use rounding to transform this
into an integral flow. The rounding procedure takes O(n) time.
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1 Introduction

Network flow theory deals with several fundamental problems including the shortest path problem,

the maximum flow problem, the assignment problem, the minimum cost flow problem, and the

multicommodity flow problem. A significant body of literature is devoted to these five problems.

(See [1], for example.) In the 1960s, Ford and Fulkerson [8] introduced network flows over time to

include time in the network model. Since then, network flows over time have been widely used in

a variety of applications to transportation, financial planning, manufacturing, and logistics. See,

for example, the surveys by Aronson [4] and Powell, et al. [18]. Despite the significance of flows

over times to a wide range of problems, the class of network flows over time has not received nearly

as much attention as the more classical network flow problems. Much of the work on problems

of flow over time reduces the problem to a classical flow problem by using an exponentially sized,

time-expanded graph [4, 18].

In this paper, we discuss a special case of flows over time: we assume all transit times are zero.

This special case has been considered in [2, 5, 6, 12, 15, 22, 14], among others. Flows over time

with zero transit times capture some time-related issues: they can be used to model instances when

network capacities restrict the quantity of flow that can be sent at any one time. Solving these

problems efficiently may help in finding a more efficient exact or approximate algorithm to solve

harder problems involving flows over time with transit times or multicommodity demands.

1.1 The Model

A network Af = (V, E, u) has vertex set V of cardinality n, and arc set E of cardinality m. Arc

e has capacity Ue and U := maxe ue. Node i has demand yi, with F := maxi yil. Nodes with

non-zero demands are called terminals. Terminals with negative demand are called sources; those

with positive demand are called sinks. The sum of supplies over all terminals equals zero. We use

k to denote the number of terminals.

A (static) transshipment problem is defined on an arbitrary network with edge capacity vector u and

with node demand vector y. The objective is to find a flow f : E -+ R>o satisfying all demands.

We define fji = -fij for ij E E. In other words we seek f such that fe < Ue for all edges e, and

Ej fij = 7i for all vertices i.

A transshipment over time is a time-dependent flow f(t) through a with non-zero supply and

demand vector y associated with V, and a time bound T. Below we give a discrete-time model

for transshipment over time. However, our algorithm solves both the discrete time and continuous

time problems, since, as noted in [5, 7], an optimal solution to the discrete time problem can be
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easily transformed into an optimal solution for the continuous-time problem. A transshipment

over time obeys edge capacity constraints f(t) < u for all t C {1,2,... ,T}, flow conservation

constraints E=l1 Ej fij(t) < yi for all r E {1, 2,... ,T} and all i E V, and zeroes all supplies and

demands by time T: ET=1 Ejev fij(t) = 7i for all i E V. The quickest transshipment problem is

a transshipment over time that zeroes all supplies and demands in the minimum possible time.

The quickest transshipment defines the minimum time T needed for the existence of a feasible

transshipment. Solving a quickest transshipment problem with fixed supplies is useful for clearing

a network after a communication breakdown.

To further generalize this model, we can include costs. Let Ce be a cost function associated with

edge e. In the problem discussed in this paper, Ce is a function of the flow on the edge at a

particular moment of time, but Ce is not a function of time. The cost of a transshipment f which

completes by time T is T=1 ZeEE ce(fe(t)). A minimum cost transshipment over time is a quickest

transshipment that has minimum cost. In this paper, we present an algorithm to solve this problem

that first finds the minimum time necessary for feasibility. Given this time bound, the algorithm

then finds a minimum cost solution. The converse problem, finding a quickest, minimum cost

transshipment, can be solved by first determining the minimum cost solution by assuming infinite

capacities, and then searching for the minimum time bound that has a solution with this cost.

In this paper, we consider convex cost functions that are piecewise linear between successive integers.

Since we want an integral solution, the assumption that the cost function is piecewise linear between

integers is natural. It is useful to make this assumption, since now there always exists an integer

solution that matches the cost of the cheapest fractional solution.

A flow over time is called stationary if it is the same in each time period. For each of the above

problems, we can define a corresponding stationary version of the problem where in addition to the

above requirements, we insist the flow must be stationary. Fleischer [5] shows that every feasible

transshipment over time problem has a stationary solution. The stationary problem can be solved

by multiplying all arc capacities by T and solving the resulting static transshipment, which is

a maximum flow problem. Since all original supplies, demands, and capacities are integers, the

solution is an integral flow. The stationary flow is then obtained by dividing this flow by T. This

flow has the property that the rate of flow entering a terminal node i is . A feasible stationary

flow that completes in the minimum possible time can then be found using either discrete Newton's

method [20] or binary search to find the minimum feasible time T. The following theorem is a

result from [5].

Theorem 1.1 A quickest stationary flow can be found in mint log(mr mU) log T, m max-
l+log(mow coU)-mputatog(mU)ions.

imum flow computations.
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The maximum flow algorithm with the lowest complexity with respect to m and n is by Goldberg

and Rao, and runs in O(m min{ml/2 , n2 /3 } log n2m log U) time [10].

1.2 Our Contribution

Many of the applications of flows over time need integral solutions: when flows are of big objects,

like airplanes, or train engines, the demands are often small, so fractional solutions are not very

useful. By rounding carefully, we show how a stationary flow f can be transformed into an integral

flow over time maintaining the same flow balance constraints, and such that this new flow g satisfies

c(g) < c(f). The rounding technique is simple and operates in two stages on the support graph of

edges with fractional flow. First cycles in this graph are canceled, and then the edges in each tree

are rounded in linear time, starting from a leaf and proceeding in a depth or breadth first manner.

We think of the interval of time [0, T) as a cycle on a clock, and define a circular interval as an

interval modulo T. If the stationary flow in arc e has value fe per time unit, then the the integral

solution we find has the property that the flow in arc e has value Lfe in a circular interval, and

value fel for the remainder of the time.

Our rounding technique takes only linear time. Since finding a quickest stationary flow takes more

time, this implies that a quickest transshipment can be found in the same asymptotic time as

finding the minimum feasible time T. This is the fastest known algorithm to solve this problem,

and improves upon [5] by almost a factor of k. If there is just one sink, then it is known [5] that the

minimum feasible time T can be found in strongly polynomial time using one call of the parametric

maximum flow algorithm of Gallo, Grigoriadis, and Tarjan [9]. Thus, our rounding technique

implies an improvement over the previous best algorithm by a factor of k [5] for this special case as

well. The Gallo, et al. algorithm is based on the Goldberg and Tarjan [11] maximum flow algorithm

and runs in the same asymptotic time. In addition, since there always exists a minimum (convex)

cost transshipment over time that is stationary (Section 2), our rounding technique yields a fast

algorithm for computing an integral minimum (convex) cost transshipment over time.

The model discussed here solves the problem when the demands and the supplies are fixed at the

beginning of the problem, and there is no external change to these values. However, everyday

usage often involves continuous streams of traffic. In Section 4, we show that all of the algorithms

presented here allow for constant streams of external flow into or out of any node in the network.

The model as presented in this paper can also handle finite buffer capacity at the nodes of the

network. Suppose storage capacity at node i is ai. Then we have the additional constraint (in

the discrete-time model) that Et=l Fj fji(t) < ai + yi, for all r E 1, . .. ,T} and all i E V.

A stationary flow never increases the absolute value of supply or demand at any node, and our
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rounding technique maintains this property. Together with Theorem 2.1 this implies that our

solution solves the problem for all a > 0.

1.3 Related Work

The fastest previous algorithm for solving integral, quickest transshipment problem with zero tran-

sit times uses O(k log F) maximum flow computations and k minimum cost flow computations [5].

Previously, Hoppe and Tardos [13] describe the only known polynomial time algorithm to solve

the quickest transshipment problem with general transit times. However, their algorithm repeat-

edly calls the ellipsoid method as a subroutine, so it is theoretically slow, and also not practical.

Their work improves on the theoretical complexity of previous approaches however. Traditional

approaches to solving the transshipment over time consider the discrete time model and make use

of the time expanded network - a network containing T copies of the original network [4, 18]. For

fine discretizations, this network is very large and not practical to work with.

A slightly different type of convex cost flow over time problem is discussed by Orlin [16]. He looks

at infinite horizon convex cost flows over time and describes an algorithm that finds the minimum

average convex cost circulation that repeats indefinitely in a network with general transit times.

Our paper and the above-mentioned results all look at discrete time problems. Flows over time

have also been considered in the continuous time setting [2, 3, 17, 19]. Most of the work in this area

has examined networks with time-varying edge capacities, storage capacities, or costs. The focus of

this research is on proving the existence of optimal solutions for classes of time-varying functions,

and proving the convergence of algorithms that eventually find solutions. These algorithms are

not polynomial and implementations do not seem able to handle problems with more than a few

nodes. For the case in which capacity functions are constant, Fleischer and Tardos [7] extend the

polynomial, discrete-time transshipment over time algorithm in [13] to work in the continuous-time

setting.

There are some additional continuous time problems that have polynomial time algorithms. A

universally quickest transshipment is a quickest transshipment that simultaneously minimizes the

amount of excess left in the network at every moment of time. An optimal solution may require

fractional flow sent over fractional intervals of time. There is a two-source, two-sink example for

which a universally quickest transshipment does not exist [5]. Hajek and Ogier [12] describe an

algorithm that solves the universally quickest transshipment problem in networks with multiple

sources, a single sink, and zero transit times. Their algorithm uses O(n) maximum flow compu-

tations. Fleischer [5] describes how this problem can be solved in O(mn log(n2 /m)) time - using

the parametric maximum flow algorithm of Gallo, et al., in conjunction with maximum flows. This
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algorithm extends easily to the minimum (convex) cost problem by substituting minimum (convex)

cost flow computations for maximum flow computations.

Another continuous time problem that has a polynomial time algorithm is the universally quickest

flow problem with piecewise constant capacity functions. This is the universally quickest transship-

ment problem with just one source and sink. However, now capacities are allowed to vary over time.

For this problem, Ogier [15] describes an algorithm that uses nl maximum flow computations in a

graph on nl nodes and (m + n)l arcs. Fleischer [6] shows how this can be improved to run in the

same asymptotic time as one preflow-push maximum flow computation in a graph with nl nodes

and (n + m)l arcs. A preflow-push maximum flow algorithm runs in O(mn log(n2 /m)) time [11] on

a graph with n nodes and m arcs.

2 Minimum cost flows over time

As stated in Section 1.1, any feasible transshipment has a stationary solution. In this section, we

show that there is always a minimum cost solution that is stationary.

Theorem 2.1 There is an optimal stationary solution to any feasible minimum (convex) cost trans-

shipment over time, even with non-zero buffer capacity.

Proof: Let f be any minimum convex cost transshipment over time. Let fT be defined by fT :=

Et=1 fe(t), the total flow on edge e. By convexity of the cost function, the cost of this flow is at

least as large as the cost of the flow g = fT/T, which is a feasible, stationary transshipment over

time. Note that this argument is independent of E' Ej fji(t), the amount of buffer capacity used

at node i at time r. U

A stationary, minimum (convex) cost transshipment over time can be obtained by computing a

minimum cost static transshipment in the network with capacities multiplied by T and with the

cost function defined by (f) = c(f/T) x T. Note that is convex when c is, and that is

minimized at f if and only if c is minimized at f/T. Thus the resulting flow f, when divided

by T, gives a feasible flow over time whose cost equals (f) and is minimum among all feasible

transshipments over time.

3 Rounding a stationary flow

In this section, we explain how to transform a stationary transshipment into an integral transship-

ment over time that has the same cost. We do this by considering the graph G' consisting of just
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the arcs with fractional flow. The algorithm proceeds in two stages: It first cancels cycles in this

graph. Then, one arc at a time, it determines an interval in which the flow on the arc will be

rounded up to the nearest integer. For the remaining time, the flow on this arc is rounded down

to the nearest integer. This is done in a way to ensure that the total flow sent along the arc in the

interval [0, T) remains the same. This then implies that the cost of sending the flow remains the

same.

3.1 Canceling fractional flow cycles

If the graph consisting of the edges with fractional flow contains cycles, then we can cancel these

cycles by sending flow around the cycle until the flow on at least one edge in the cycle becomes

integral. Iterating, we eventually obtain a stationary flow such that the graph consisting of edges

with fractional flow is acyclic. Such a solution is a basic feasible solution for the stationary problem.

Let f denote the optimal stationary flow. Let LfJ denote f rounded down and let fl denote

f rounded up. Consider the stationary transshipment problem with the additional constraints

LfJ f < Ffl. Since we assume that costs are linear between successive integers, this modified

problem is a minimum cost flow problem, even if the original problem has convex costs. We can

convert f to a basic feasible flow for this problem by canceling fractional flow cycles. We can cancel

a cycle by sending flow in either direction. Optimality conditions for minimum cost flow imply that

if a cycle exists, the cost of the cycle (obtained by summing the costs on all edges of the cycle)

must be 0. Thus we can cancel flow in either direction and maintain the cost of the initial solution.

It takes O(n) time to find a (undirected) cycle in G' using depth first search, and at most m cycles

are cancelled since each cancellation removes at least one edge from the set of edges with fractional

flow. Thus all cycles are cancelled in O(mn) time.

For the minimum cost transshipment over time problem, this step is not a bottleneck, since comput-

ing a minimum cost flow takes more time. However, for the quickest transshipment, the maximum

flow algorithm of Goldberg and Rao [10] has a run time that does not dominate this one. Hence, we

note that it is possible to cancel cycles in O(m log n) time, using the dynamic tree data structure

of Sleator and Tarjan [21]. The details of this procedure are described in [21].

3.2 Rounding fractional flow

In this section, we assume that G', the graph of fractional flows, is a forest. The rounding algorithm

considers each tree in this forest independently, roots each tree at an arbitrary leaf, and rounds the

flow on the edges in a tree starting from the root and spreading throughout the tree in a breadth

first manner. For each arc, the rounding procedure determines an interval in which the flow on

6



the arc will be rounded up to the nearest integer. For the remaining time, the flow on this arc is

rounded down to the nearest integer. The algorithm does this while ensuring that the total flow

sent along the arc in the interval [0, T) remains the same. This then implies that the cost of sending

the flow remains the same.

We assume a tree F of fractional flows is stored in a simple data structure so that the tree has a

root, which is assigned to be a node with degree one. Thus the root node has a single child. The

arcs are oriented according to the direction that the fractional flow travels down the arc. Without

loss of generality, we assume all arcs in F are directed away from the root: Each arc with fractional

flow a directed toward the root is replaced by two arcs, one with unit flow directed towards the

root, and one with fractional flow 1 - a directed away from the root. Only the new arc with

fractional flow is kept in the tree.

For each arc (i, j) of the tree, we define the predecessor of j to be i and denote this by pred(j) = i.

Suppose that nodes 2, 3, 4, and 5 are the children of node 1. We refer to node 2 as the left child of

node 1, and refer to node 3 as the right sibling of node 2. Similarly node 4 (respectively, node 5)

is the right sibling of node 3 (respectively, node 4).

Recall that we are considering all addition and intervals to be modulo T, so that if a > b, then

[a, b) denotes the circular interval [a, T) U [0, b).

Let x(u, v) denote the fractional part of the flow in arc (u, v). Let d(v) denote the fractional part

of the rate of increase of supply at node v. That is, d(v) is the fractional part of TA. Rounding

the flows entering and leaving v implicitly has the effect of rounding the rate of increase of supply

at v. We make this explicit to provide a cleaner explanation, by introducing a new node v' with

arc (v, v'), and set x(v, v') = d(v). The transformed problem has fractional rates of increase of

supply d' defined by d'(v) = 0 and d'(v') = d(v). Rounding up the flow on arc (v,v') in the

transformed problem corresponds to rounding up the rate of increase of supply at node v in the

original problem. With this transformation, all internal nodes v of F appear as non-terminal nodes.

Thus for all internal nodes of F, the fractional part of the flow into v equals the fractional part of

the sum of flows out of v.

Let a(u, v) denote the "start time" for the round up of arc (u, v). It is the first period in the cyclic

interval in which flow in (u, v) is rounded up. Let b(u, v) denote the start time for the round down

of arc (u, v). Given a(u, v), we define b(u, v) := a(u, v) + T x x(u, v) mod T. The flow on arc (u, v)

is rounded up in the circular interval [a(u, v), b(u, v)) and rounded down in the circular interval

[b(u, v), a(u, v)).

We determine a(u, v) as follows, and discuss a concrete example below and in Figure 1. If u is a

node in F with predecessor node w, and v is the left child of u, then we set a(u, v) = a(w, u). If
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Rounded Flow
True flow values Fractional flow tree 0 T/6 T/2 5T/6 T

,a,
4

a

b c
1/ 1/2

1I 1/3

1 1/6
d

b'
C'
d'

Final Flow Schedule
0 T/6 T/2 5T/6 T

a
b
c
d

Figure 1: An example of how flow is rounded on a subtree and the discussion in the proof of
Theorem 3.1. This subtree has the interval [5T/6, T/6) passed to it from higher in the tree. The
rounded flow (top set of intervals) covers the whole interval [0, T) at least once, and the key interval
[5T/6, T/6) exactly one more time.

w is a node with predecessor u, and v is the right sibling of node w, then we set a(u, v) = b(u, w).

Assuming that the stationary flow comes from a basic feasible solution to a static flow problem

with integer data, then x(u, v) x T is integral, and hence the rounded intervals have integer length.

For example, consider the flow in Figure 1. At every unit of time, fractional flow of value 1/3 is

entering node v and flows of 2/3, 1/2, and 1/6 are leaving node v. Suppose we have previously

rounded the flow in the incoming arc up to the nearest integer in the interval [5T/6, T/6). Then

we round the outgoing flows as follows: Fractional flow of 2/3 is rounded to one from t = 5T/6 to

t = T and from t = 0 to t = T/2, and is rounded down to 0 for the remaining interval [T/2, 5T/6).

Fractional flow of 1/2 is rounded up to one in the interval [T/2, T), and is rounded down to zero in

the remaining interval [0, T/2). Fractional flow of 1/6 is rounded up to one in the interval [0, T/6).

Since the sum of the fractional flows leaving v is one more than the amount of fractional flow

entering v, there must be an additional unit of integral flow entering v at every time step. This

additional unit of flow entering v is used to balance the rounded flows now leaving v.

Each arc (u, v) gets rounded up x(u, v) of the time and rounded down 1 - x(u, v) of the time, thus

leading to a net balance of flow out of node u. Also, the upper and lower bounds on flows are

automatically satisfied. So the key issue is whether there is balance in each time unit.

Theorem 3.1 The rounding algorithm transforms a basic, feasible stationary transshipment into

a feasible integral transshipment over time in O(n) time.

Proof: Let v be a non-terminal node of F with r children {ul,..., ur} and with pred(v) = w. At

every unit of time, the stationary flow f satisfies the following: the fractional part of flow into v
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equals the fractional part of the sum of flows leaving v. More precisely,
r

x(v,uj) xT=x(w,v) x T + T, c Z+
i=l

This means that the amount of integral flow arriving at node v before the rounding is T more

than the sum of integral flows leaving node v. Thus at any moment of time, we can round up the

flow on at least n, of the fractional edges leaving node v and supply the flow on these edges with

the extra integer flow arriving at v. In fact, for our rounding scheme to maintain flow conservation

without using node storage, our solution needs to round up the flow up on nc arcs leaving v at

all times, and on an additional arc leaving v for the interval of time that we rounded up the flow

on the arc entering v. This is exactly what our rounding scheme accomplishes. Starting at the

moment of time when we round up the flow on the arc entering v, we schedule rounded up flow

contiguously, tracing the [0, T) interval rE times and the [a(w, v), b(w, v)) interval r + 1 times by

starting at a(w, v), scheduling unit flow of total value Erl T x (v, ui) and ending at b(w, v). (Note

that a(w, v) + Zr l T x x(v, ui) = b(w, v) mod T.)

If v is a source or sink, then v is a leaf (or the root) of F, by construction, and the only rounding

we do is on one arc entering (or leaving) v. In this case, the rounding amounts to rounding the

rate of increase of supply at v, and we needn't worry about balance at every time step.

The rounding procedure spends a constant amount of time considering each arc in each fractional

tree. Hence the total time to perform the rounding is bounded by the number of nodes in the

graph. i

4 Incoming and outgoing traffic

While the solving a transshipment problem with fixed supplies and demands is useful for clearing a

network after a communication breakdown, everyday usage more often involves continuous streams

of traffic. In this section, we show that the algorithms presented in this paper, like the algorithm

in [5, 12], allow for constant streams of flow into or out of any node in the network.

The algorithm described in the preceding sections first finds a fractional flow that is constant over

time, and then rounds the flow. To find the fractional flow, we sum up capacities per unit time over

the length of our time horizon. We treat these constant rate external flows in the same manner,

multiplying the value of the rate of incoming flow by T, and treating these as additional supplies

and demands. Any solution to the resulting transshipment over time problem will have constant

rates of flow from these sources and sinks, of additional value equal to the rate of external flow to

these nodes. Since we assume all rates of flow are integral, this only contributes integral flows to

the resulting flow over time, and hence is not affected by the rounding.
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