OPERATIONS RESEARCH CENTER

working paper

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

An Algorithm for Reliability Analysis

of Planar Graphs
by

Daniel Bienstock
OR 141-85
September 1985

The research reported in this paper was partially carried out at MIT and was funded in part by grant NSF-ECS-8316224.

Abstract

We give an algorithm for the computation of K -terminal reliability in planar graphs, whose worst-case complexity is strictly exponentiai in the square root of the total number of nodes.

An Algorithan for Reliability Amalysis of Plamar Graphs
Daniel Bienstock, GSIA, Carnegie-Mellon University

1. Introduction.

The K-terminal reliability problem can be stated as follows: given an undirected graph $G=(Y, E)$ whose arcs are erssed independently with known probabilities, and t subset K of Y, compute the probability that K remeins connected. This problem is known to be $\approx P$-hard [1], and, not surprisingly, the best algorithm hes complexity that is strictly exponential in |Y| [4].

The case of planar G has received attention recently. Even though this restriction of the general problem is still *P-hard, even when $|K|=2[10]$, the complexity of the case $K=\psi$ still unknown. In this peper we present an algorithm for computing K-terminal reliability of planar graphs, whose complexity is at most strictly exponential in the square raot of $|Y|$ a large improvement over the general case. Our algorithm uses elements of two closely related reliability algorithms, those of Rosenthal [11] and Fratta and Montanari [6], as vell as Miller's version of the planar separator theorem [7] and pertinent properties of planar graphs.

This paper is organized as follows: in Section 2 we describe the Rosenthal, Fratta and Montanari algorithms; Sections 3 and 4 present relevant characteristics of planar graphs and Section 5 contsins our algorithm.

2. The aloorithms of Rosenthal and Fratta and Montanari

The algorithms of Rosenthal (1977) and Fratta and Montanari (1976) share a basic idea Which we call RFM. In this section we describe RFM as it appears in Rosenthal's algorithm, although we will mention the Fratte and Montanari version later.

First we need some notation (this notation is different from Rosenthal's).
Let X be an arbitrary set. A labelad pertition of X is an ordinary partition of X where some of the blocks are labeled with an asterisk. For instance, ($134^{*}, 25,6^{*}$) is a labeled partition of $\{1,2,3,4,5,6\}$.

Let G be a probabilistic graph, that is a graph whose arcs and nodes are probabilistically erased. A state of G will be a specification of which arcs and nodes are operative and which are failed. In the context of this paper, only arcs will fail. An ewerm will be a collection of states.

Let H be a probabilistic graph containing, among its nodes, a subset K and a subset S (which may intersect). A state s of H will be called a (K, S)-bond state if simplies that every node of K remains connected to at least one node of S. The effect on S of a (K,S)-bond state may be represented by a labeled partition of S as follows: let x be a labeled pertition of S . Then we interpret x as implying that
(i) Every block of x remains connected, but disconnected from the rest of S.
(ii) Every node of K remains connected to exsectly one labeled block of x, and every labeied block of x remains connected to at leest one node of K.

The collection of all (K, S) -bond states corresponting to a given labeled partition will be called a (K, S)-bond event (and vill be represented by that labeled partition). If X is a labeled partition of S, then $P(x)$ will denote the probebility of the (K, S)-bond event x. The vector of entries $P(x)$ (one for each labeled partition x) will be called the vector of ($K, s)$-bond probabilities of H. We will drop K and 9 and H from our notation whenever the context will make it unambiguous.

Armed with the above definitions, we can describe RFM. Let H be a graph whose arcs are independently erosed. Suppose H contains two distinguished subsets of nodes S and K. We want to
compute the (K, S)-band probabilities of H .
To reduce this problem to a smaller one, consider a node cut C of H thet splits H into subgraphs $H(1)$ and $H(2)$, both of which are defined to contain C (any arcs that link nodes of C are assigned arbitrarily to $H(1)$ or $H(2)$).

For $i=1,2$, let $K(i)$ be the subset of K contained in $H(i)$; and similarly define $S(i)$. Then (recursively) compute, for $i=1,2$, the $(K(i), S(i) \cup C)$-bond probabilities of $H(i)$ (if one of the K (i)'s is empty then all of the corresponding bond events will be unlabeled partitions). These parameters can now be used to compute the (K, S)-bond probabilities of H as follows.

Let x, y be two bond events, respectively of $H(1)$ and $H(2)$. If both x and y occur simultaneously, either
(1) Some nodes of K remain isolated from S, or
(2) A certain (K,5)-bond event of H occurs. We denote this event by $x * y$.

In general, for each (K, S)-bond event z of H, we can write

$$
\begin{equation*}
P(z)=\Sigma P(x) P(y), \tag{1}
\end{equation*}
$$

where the sum is taken over all bond events x and y such that $z=x * y$.
Consequently, in order to compute the (K, S)-bond probabilities of H, we enumerate all pairs of bond events x, y of $H(1)$ and $H(2)$ respectively, that have positive probability, and use identity (1). We vill refer to this enumeration as the splicing of $\mathrm{H}(1)$ and $\mathrm{H}(2)$.

The * operator can be computed in time lineer in ψ, the number of nodes of SLC [2]. Therefore, if for $i=1,2$, there are $N(i)$ positive bond probsbilities of $H(i)$, then the splicing operation vill take time $0(\forall N(1) N(2))$.

This concludes our description of RFM. For a more thorough discussion the reader is
referred to [2]. Here we only point out that RFM is, in general, inefficient when applied to graphs that are very dense or contrin very dense subgraphs.

3. Some properties of planar graphs.

We say that a graph is planerif it can be drawn on the plane vithout its edges crossing. Such a drawing is called a leyout of the graph. Given a layout of a planar graph, the edges of the groph partition the plane into several regions, called the of the graph. With one exception, all the faces are bounded. The bounded faces are called inner faces and are bounded by cycles of the graph (which are called inner facial cycles) whenever the graph is 2-connected. In that case, the unbounded face, also called the outer face, is also delimited by a cycle, which is colled the outer faciol cycle.

An embedtion of a planar graph is a description of the graph via adjacency lists, where for each node we list its neighbors in (say) clockwise order (note: an embedding may correspond to more than one layout. However, all such layouts will be equivalent in the sense that they will have the same facial cycles, and we can go from one layout to another by flipping the graph "inside out" about facial cycles).

A planar graph is maximal if we cannot add any new edges without destroying planarity. Given an embedting of an arbitrary planar graph, we can transform the graph into a maximal planar graph in linear time, by performing depth first search in clockvise order, starting from any node, and inserting new edges into the adjacency lists. In a maximal planar graph, each facial cycle has exactly three edpes.

Consider a cycle of a planar graph. Given an embedding of the graph, the removal of the cycle partitions the graph into two regions, the strict interior and the strict exterior of the
cycle (the choice of which of the two regions to be called interior is arbitrary, unless a specific layout is being used). The interior of the cycle is the strict interior, together with the cycle itself. The exterior of the cycle is similarly defined.

There are several fatriy recent algorithmic results which are of particular importance. The first one concerns the planarity testing problem: given a graph, is it planar? This question can be decided in time linear in the total number of nodes [7]. A related problem is that of finting an embedting of a planar graph. This task can also be performed in linear time [3].

The most relevant result (to us) concerns planar separator theorems, which we state in abridged form. Let G be an n-node planar graph. Then, by deleting $O(\sqrt{n})$ nodes of G, we can partition G into two subgraphs each of which has roughly $n / 2$ nodes (Lipton and Tarjan, 1979 [8]). Of special importance is Miller's (1984) version of the planer seperator theorem [9], Which is once more stated in abridged form: let G be an n-node graph, each of whase facial cycles has length at most 2 . Then there exists a simple cucle with at most $4 \sqrt{ }(2 z n)$ nodes whose strict interior contains at most $2 / 3 n$ nodes and at least $1 / 3 n$ nodes (and consequently, we can say the same about the strict exterior of the cycie). Such a cycle is called a cycte separator and can be found in linear time. Thus, if G is maximal, in linear time we can find a cucle separator with at most $c \sqrt{n}$ nodes, where $c=4 \sqrt{6}$.

4. Planar graphs and band probabilities

Consider a planar graph bounded by an outer facial cycle with nodes numbered $1,2, \ldots, \mathrm{~m}$ as they appear clockwise in that cycle. Suppose we erase some of the arcs of the graph. This erasure will induce a partition of the nodes of the outer facial cycle according to their connected
components. How many partitions of $\{1,2, \ldots, m\}$ can be achieved in this manner? A crude upper bound is the total number of partitions of an m-element set, a quantity that grows nearly as fast © m ! [5].

However, this is a very weak upper bound. In order to see why, let us consider an example. Suppose $m=6$. Then the partition $(13,245,6)$ cannot be achieved by erasing arcs, since the first and secand blocks "cross" each other. On the other hand, the partition $(12,36,45)$ may be achieved.

In order to compute a tighter upper bound on the number of achievable partitions, let us take a strictly combinatorial approsch. Suppose we take a circle containing a set $M=\{1,2, \ldots, m\}$ of selected points, numbered to reflect clockwise ordering. We will say that a partition x of M is non-crasing if, we trovel clockwise around the circle, no two blocks of x ever alternote (i.e., no two blocks of x ever "cross"). We will inticate the number of non-crossing partitions of $\{1,2, \ldots, m\}$ by $b(m)$. In the remaining part of this section, we vill compute $b(m)$.

Consider point m. Given a non-crossing partition, let k be the highest numbered point in the same block as m ($k=0$ if m is in a block by itself). Then points $1,2, \ldots, k$ are non-crossing partitioned, and the same holds for points $k+1, \ldots, m-1$. Setting $b(0)=1$, we conclude that

$$
b(m)=\sum_{k=0}^{m-1} b(k) b(m-k-1) \text { for } m>0
$$

How set $g(2)=\sum b(m) z^{m}$. Equation (2) will yield

$$
g(z)=1+z g^{2}(z) .
$$

This equation, together with the boundary condition $\mathrm{b}(0)=1$, give

$$
g(z)=\left(1-(1-4 z)^{1 / 2}\right) / 2 z,
$$

Which implies that (see [5] for related problems)

$$
b(m)=2^{2 m-0(\log m)}
$$

Consequently, the number of non-crossing partitions is (asymptotically) a negligible frection of the total number of partitions.

How let us consider a probabilistic planar graph H containing a spacial subset of nodes K, and suppose H is bounded by a (simple) outer facial cycie S of m nodess. How many (K, S)-bond probabilities can be strictly positive? We just sow the number of possible partitions of S that can be schieved by deleting arcs of H is at most strictly exponential in m . Moreover, if a partition X of S has N blocks, then there are at most $2^{N} \leq 2^{m}$ wass of labeling the blocks of x. We conclude that the number of positive bond probabilities is at most $2^{3 \mathrm{~m}}$.
5. An algorithm for K-terminal reliabilitycomputation in planar graphs.

There are several algorithms for K-terminal reliability analysis in planar graphs that achieve a complexity strictly exponential in the square root of the total number of nodes. We hove chosen the specific algorithm given below because it requires the simplest exposition.

We yill first consider a more general problem. Let G be an n-node planar graph containing a special subset of nodes K. We vill assume that we are given an embedting of G. We want to compute the (K, S)-bond probabilities of G, where S is the node set of a (simple) facial cycle of G, vithout loss of generality the outer facial cycle of G. Let $|S|=m$, and set $T(n ; m)=w o r s t-c a s e ~ r u n n i n g ~ t i m e ~ o f ~ a l g o r i t h m ~ P L ~ g i v e n ~ b e l o w . ~$.

Theorem 1

$$
\begin{equation*}
T(n ; m) \leq 2^{a v} n+6 m, \tag{3}
\end{equation*}
$$

for a certoin conatent a.

Froof: The proof vill be by induction on n, since msn. Let c be the constant that appears in the cycle separator thearem. Now, relationship (3) holds if both n and m are bounded above by constants, provided we choose a large enough constant a. Consequently, let us assume thet n2n', where

$$
2 n^{\prime} / 3+c \sqrt{ } n^{\prime}+1+3 \log n^{\prime}<3 n^{\prime} / 4
$$

and also that (3) holds for arguments smaller than n^{\prime}. Let $X(N, M)=2^{9} \sqrt{ } N+6 M$. Below we will prove that

$$
\begin{align*}
& T(n ; m) \leq \max \left\{0\left(n^{2}\right) 2^{6 m+6 c \sqrt{n}}+0(n) x(2 n / 3+c \sqrt{ } n ; m+c \sqrt{ }),\right. \\
& 0(n) 2^{3 m+6 c \sqrt{n}+2 x(2 n / 3+c \sqrt{n}+1 ; m+c \sqrt{n}+1)} \\
&\left.2^{3 c \sqrt{n}} \times(2 n / 3 ; m)+x(2 n / 3 ; c \sqrt{n})\right\}+0(n) \tag{4}
\end{align*}
$$

We will conclude from (4) that

$$
\begin{aligned}
T(n ; m) & <2^{6 m+c \sqrt{n}+3 \log n}+2^{8} \sqrt{(3 n / 4)}+6 m+6 c \sqrt{n+6}+0(n)< \\
& <2^{[8 \sqrt{(3 / 4)}+6 c] \sqrt{n}+6 m+7}<2^{8 \sqrt{n}+6 m}
\end{aligned}
$$

if a is chosen large enough. Pending the proof of (4), the proof of Theorem 1 is concluded.
Hext we describe algorithm PL and prove (4). Let us denote by a Dlack a planar graph with an outer facial cycle that is simple. Thus the input to PL is an embedting of an n-node block G contsining a special subset of nodes K. G is bounded by an outer facial cycle S with m nodes.

Algeritha PL

(1) If G is not maximal, make it so by adding new edges which are perfectly unreliable. This task can be carried out in linear time (as outlined in Section 3). Moreover, all the nodes of \mathbf{G} vill remain in the interior of S.
(2) Find a cycle separator C of G . Let EXT be the subgraph of G contained in the interior of S but also in the exterior of C. Similarly, let INT be the subgraph of G contained in the interior of both S and G. There are three possible cases:
(i) $|S \cap C|>1$.

We can write

$$
\text { EXT }=G_{1} \cup G_{2} \cup \ldots \cup G_{j} \cup P_{1} \cup P_{2} \cup \ldots \cup P_{h} .
$$

where each G_{j} is a block whose outer facial cycle is mede up of portions of S and C, and each P_{k} is a maximal path conteined in both S and C (along which the clockwise direction on C coincides with the clockwise direction on S). Similarly, we can write

$$
\text { INT }=G_{j+1} \cup G_{j+2} \cup \ldots \cup G_{v} \cup P_{h+1} \cup P_{h+2} \cup \ldots \cup P_{z}
$$

If an arc of C appears both in a block of EXT and in a block of INT, we replace that arc in one of the blocks by a perfectly unreliable arc.

Figure 1 - Case (i).

For $1 \leq i \leq w$, let $S(i)$ and $K(i)$ be, respectively, the outer facial cycle of, and the subset of K contained in G. It is not difficult to see that we can generate the blocks G_{i} and the respective sets $K(i)$ and $S(i)$ in linear time (and also, $\forall=0(n)$). Hext, we (recursively) compute the ($K(i), S(i)$-bond probabilities of G_{j}, for $1 \leq i \leq w$. Clearly, this task will take time, at most,

$$
0(n) \times(2 n / 3+c \sqrt{n} ; m+c \sqrt{n}),
$$

since each block contains at most $2 \mathrm{n} / 3$ nodes not counting those of C .
Having computed these bond probabilities, we now solice (terminology of Section 2) the blocks G_{i} one by one until recovering the graph G. That is, we start with graph $H_{1}=G_{1}$ and at
step i we splice H_{i} with a new G_{j} to obtain H_{i+1}, until after $\forall-1$ steps we hove $H_{w}=G$. It is not difficult to see that we can order the blocks G_{j} so that at every step H_{j} is a block. Since at each step, the blocks spliced contain at most all of C and S , the complexity of each splicing is at most $0(n) 2^{6 m+6 c \sqrt{n}}$, Where we use the result of Section 4 concerming the number of positive bond probebilities of a block, and the result in section 3 describing the complexity of a splice operation.

We conclude that the overall complexity of case (i) is at most
$0\left(n^{2}\right) 2^{6 m+6 c \sqrt{n}}+0(n) X(2 n / 3+c \sqrt{n} ; m+c \sqrt{n}) \equiv T_{1}(n ; m)$.
(ii) $|S \cap C|=1$.

Let \vee be the node common to S and C . In this case the interior of C (with the exception of v) lies in the strict interior of S (see Figure 2(a)). As we travel clockwise around S, let u, \forall be the nodes immedistely preceding and folloving ψ, respectively. Similarly, as we travel clockwise around C, let $x, 2$ immediately precede and follow v. Then we split v into two nodes y^{\prime} and $\psi^{\prime \prime}$ which are connected by a perfectly reliable arc, with $\psi^{\prime \prime}$ immediately following ψ^{\prime}. The old neighbors of y become neighbors of $v^{\prime \prime}$ or $\psi^{\prime \prime}$ as follows:
(a) For each arc (v, s) with s located clockwise between v and z (inclusive) there is an arc $(v ", s)$ with the same reliability os (v, s).
(b) For ach arc (y, t) with t strictly following z there is an arc $\left(v^{\prime}, t\right)$ with the same reliability as ($\mathbf{\gamma}, \mathrm{t}$).

How we interpret cycles S and C as going through both v^{\prime} and $v^{\prime \prime}$, in that order (see Figure 2(b)).

Figure 2 - Case (ii).

It is clear that after the splitting of v both EXT and INT are blocks (if EXT and INT share an arc of C, replace that arc in, say, EXT, by a perfectly unreliable arc). Hence, we hove reduced case (ii) to an instance of case (i) vith only two blocks, at the cost of adding a single adtitional node to the problem. Thus, the time required to find the bond probabilities of EXT and INT is at most

$$
2 x(2 n / 3+c \sqrt{n}+1 ; m+c \sqrt{n}+1)
$$

Hext, we splice EXT and INT. Since EXT has at most $2^{3 m}+3 c \sqrt{n}+3$ positive bond probabilities and INT has at most $2^{3 \mathrm{~m}}+3$ positive bond probabilities, the splice operation will take time at most $0(n) 2^{6 m}+6 c \sqrt{n}$ (where we include in 0() the work imvolved in consolidating y^{\prime} and $y^{\prime \prime}$, which is at most proportional to the total number of positive bond probabilities of G). Thus, the total complexity of case (ii) is at most

The last case is (iii), $|\mathrm{S} \cap \mathrm{C}|=0$.
In this case C and its interior lie in the strict interior of S . Notice that we cannot analyze EXT directly since C and S are two disjoint facial cycles of this graph.

Nevertheless, we can analyee INT recursively vith PL, that is compute the ($\mathrm{K}^{\prime}, \mathrm{C}$)-bond probabilities of INT, where K^{\prime} is the subset of K contained in the interior of C. These probsbilities can be computed in time $x(2 n / 3+c \sqrt{n} ; c \sqrt{ } n)$. Having carried out this task, let y be a labeled partition of C (i.e., $\left(K^{\prime}, C\right)$-bond event) with pasitive probability. Suppose We contition on y occurring in INT. Then all the nodes in each block of y remain connected (via INT) and therefore, so far as EXT is concerned, we may contract each such block into a single node (this observation is implicit in both the Rosenthal and Fratta and Montanari versions of RFM). Let EXT (y) be the obtained graph. The key observation is thet, since partition y must be
non-crossing, the graph EXT(y) is in fact planar (and we can obtain an embedting for EXT(y) from the one for EXT in linear time). Notice that in graph EXT(y) the cycle C has been "controcted", and now we con anolyze EXT (y) recursively.

Figure 3 - Cose (iii).
Thus, let $K^{\prime \prime}(y)$ be the subset of K in the strict exterior of C, together with one new node corresponding to each labeled block of y. We recursively compute the ($\left.K^{\prime \prime}(y), S\right)$-bond probobilities of EXT (y). This operation will at most take time $X(2 n / 3 ; m)$.

Further, each ($\left.K^{\prime \prime}(y), 5\right)$-bond event of EXT (y) is a (K, s)-bond event of G, since it corresponds to a labeled partition of S. We simply keep track of the conditioning by multiplying each bond probability of EXT(y) by the band probability of y in INT.

The number of graphs EXT(.) that arise is at most the number of non-crossing partitions of |C| points. Thus, the overall workloed for case (iii) is at most
$x(2 n / 3 ; c \gamma n)+2^{3} c \sqrt{\prime} x(2 n / 3 ; m) \equiv T_{3}(n ; m)$.

We have now concluded the case anolysis for step (2) of algorithm PL. We conclude that $T(n ; m) \leq \max \left\{T_{1}(n ; m), T_{2}(n ; m), T_{3}(n ; m)\right\}+0(n)$,
i.e., equation (4).

How let G be a probabilistic n-node planer graph and K a subset of the nodes of G. We wish to compute the K-terminal reliability of G. Without loss of generality G is maximal; let S be a facial cycle containing at lesst one node of K. Once more, without loss of generality S is the outer fociol cycle.

Using algorithm PL, we compute the (K, S)-bond probabilities of G. The K-terminal
reliability of G vill be the sum of bond probabilities corresponding to labeled partitions with exactly one labeled block (there are at most five such partitions since S has length three and one of its nodes is in K). Thus the time required to compute the K-terminal reliability of G is at most

$$
0\left(2^{a \sqrt{n}}\right)
$$

6. Conclusions

Is our algorithm efficient? It is not difficult to see that any algorithm based on RFM will have complexity at least strictly exponential in $\sqrt{ } \mathrm{n}$, in the worst case: mesh graphs are among those for which all non-crossing partitions can be achieved by erasing arcs, and cuts of size $\sqrt{ } \mathrm{n}$ must be used when anolyzing such grapho.

We want to stress the fact that the size of K does not play a role in the complexity of our algorithm. Since the general case is *P-hard, this fact may add some credibility to the conjecture that the case $|K|=n$ is slso *P-hard.

Figure 1

Figure 2

(a) Original graph
and cut.

(b) After expension of V.

Figure 3

(a) Original graph rith S and C shoun. Here $|C|=9$.

(b) A four-block partition y occurs in INT.

(c) INT is shrunk into 4 nodes in EXT(y).

References

[1] M.O. Ball, The Complexity of Network Reliability Computations, Networks 10 (1980) 153-165.
[2] D. Bienstock, Some Lattice-Theoretic Tools for Network Reliability Analysis, Working paper OR-138-85, MIT Operations Research Center (1985).
[3] K.S. Booth and G.S. Lueker, Testing the Consecutive Ones Property, Interval Graphs, and Graph Planarity using PQ-Tree Algorithms, U. Comput. Syst. Sci. 13 (1976) 335-379.
[4] J.A. Buzacott, A Recursive Algorithm for Finding Reliability Measures Related to the Connection of Nodes in a Graph, Networks 10 (1980) 311-327.
[5] L. Comtet, Advanced Combinatorics, D. Reidel Publishing Co., Doidrecht, Holland (1974).
[6] L. Fratta and U. Montanari, Decomposition Techniques for Evaluating Network Reliability, IBM report RC5923 (1976).
[7] J.E. Hopcroft and R.E. Tarjan, Efficient Planarity Testing. U. Assoc. Comput. Mach. 21 (1974) 549-568.
[8] R.J. Lipton and R.E. Tarjan, A Separator Theorem for Planar Graphs, SIAM J. Appl. Math. 36 (1979) 177-189.
[9] 6. Miller, Finding Small Simple Cycle Separators for 2-Connected Planar Graphs, Proc. of $16^{\text {th }}$ ACM Symp. on Theory of Computing, (1984) 376-382.
[10] J.S. Provan, The Complexity of Reliability Computation in Planar and Acyclic Graphs, in preparation.
[11] A. Rosenthal, Computing the Reliability of Complex Networks, SIAM J. Appl. Math. 32 (1977) 384-393.

