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Abstract

We give an algorithm fr the Computation of K-terminal reliability in planar graphs,

whose worst-case complexity is strictly exponential in the square root of the total number of

nodes.
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Am Algerithm for Rblikilitl A lmlpis of Plair Graphs

Daniel Bienstock, GSIA, Carnegie-11llon University

1. Introduction.

The K-terminal reliability problem can be stated as follows: given an undirected graph

G=(Y,E) whose arcs are erased independently with known probabilities, and a subset K of Y,

compute the probability that K remains connected. This problem is known to be P-hard [11,

and, not surprisingly, the best algorithm has complexity that is strictly exponential in IYI [41.

The case of planar G has received attention recently. Even though this restriction of the

general problem is still P- hard, even when IKI 2 [ 101, the complexity of the case K=Y still

unknown. In this paper we present an algorithm for computing K-terminal reliability of planar

graphs, whose complexity is at most strictly exponential in the er r' of IYI, a large

improvement over the general case. Our algorithm uses elements of two closely related

reliability algorithms, those of Rosenthal 1 11 and Fratta and ontanari [ 61, as well as Miller's

version of the planar separator theorem [ 71 and pertinent properties of planar graphs.

This paper is organized as follows: in Section 2 we describe the Rosenthal, Fratta and

Mntanari algorithms; Sections 3 and 4 present relevant characteristics of planar graphs and

Section 5 contains our algorithm.

2. The alaorithms of Rosenthal and Fratta and tontanarl

The algorithm of Rosenthal ( 1977) and Fratta and Montanari ( 1976) share a basic idea

which we call RFM. In this section we describe RFM as it appears in Rosenthal's algorithm,

although we will mention the Fratta and Montanari version later.
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First we need some notation (this notation is different from Rosenthal's).

Let X be an arbitrary wt. A k /W prt/ih of X is an ordinary partition of X where

some of the blocks are labeled with an asterisk. For instance, (134*,25,6*) is a labeled

partition of ( 1,2,3,4,5,6).

Let G be a probabilistic graph, that is a graph whose arcs and nodes are probabilistically

erased. A te of G will be a specification of which arcs and nodes are operative and which are

failed. In the context of this paper, only arcs will fail. An n will be a collection of states.

Let H be a probabilistic graph containing, among its nodes, a subset K and a subset S

(which may intersect). A state s of H will be called a (KS)- bond state if s implies that everu

node of K remai ns conected to at least one node of S. The effect on S of a (K,S)-bond state may

be represented by a labeled partition of S as follows: let x be a labeled partition of S. Then we

i nterpret x as i mpl yi ng that

(i) Every block of x remains connected, but disconnected from the rest of S.

(ii) Every node of K remains connected to exactly one labeled block of x, and every labeled

block of x remains connected to at least one node of K.

The collection of all (K,S)- bend states correspondi ng to a given labeled partition will be called a

(K,S)-bond event (and will be represented by that labeled partition). If x is a labeled partition

of 5, then P(x) will denote the probability of the (K,S)-bond event x. The vector of entries

P(x) (one for each labeled partition x) will be called the vector of (K,S)-bond probabilities of

H. We will drop K and and H from our notation whenever the context will make it

unambiguous.

Armed with the above definitions, we can describe RFM. Let H be a graph whose arcs are

independently erased. Suppose H contains two distinguished subsets of nodes S and K. We want to
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compute the (K,S)-bond probabilities of H.

To reduce this problem to a smaller one, consider a node cut C of H that splits H into

subgraphs H( 1) and H(2), both of which are defined to contain C (any arcs that link nodes of C

are assigned arbitrarily to H( 1) or H(2)).

For i=1,2, let K(i) be the subset of K contained in H(i); and similarly define S(i). Then

(recursively) compute, for i=1,2, the (K(i), S(i) uC)-bond probabilities of H(i) (if one of

the K(i)'s is empty then all of the corresponding bond events will be unlabeled partitions).

These parameters can now be used to compute the (K,S)- bond probabilities of H as follows.

Let x, y be two bond events, respectively of H(1) and H(2). If both x and y occur

si multaneouly, either

( ) Some nodes of K remi n isolated from S, or

(2) A certain (K,S)- bond event of H occurs. We denote this event by x*y.

In general, for each (K,S)-bond event z of H, Ve can write

P(z)=2P()P(y), ( 1 )

where the sum is taken over all bond events x and y such that z=x*y.

Consequently, in order to compute the (K,S)-band probabilities of H, we enumerate all

pairs of bond events x, y of H( 1 ) and H(2) respectively, that have ositive probability, and use

identity ( 1 ). We will refer to this enumeration as the spA/dWf of H( 1 ) and H(2).

The i operator can be computed in time linear in v, the number of nodes of SuC [21.

Therefore, if for i=1,2, there are N(i) positive bond probabilities of H(i), then the splicing

operation will take time O(N( 1 )N(2)).

This concludes our description of RFM. For a more thorough discussion the reader is
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referred to [21. Here we only point out that RFM is, in general, inefficient when applied to

graphs that are very dens or contain very dense subgraphs.

3. Some properties of planar araPhs.

We say that a graph is pwrif it can be drawn on the plane without its edges crossing.

Such a drawing is called a /wta of the graph. Given a layout of a planar graph, the edges of the

graph partition the plane into several regions, called the fE of the graph. With one

exception, all the faces are bounded. The bounded faces are called Inner faces and are bounded by

cycles of the graph (which are called inner fw/'iz/s) whenever the graph is 2-connected.

In that case, the unbounded face, also called the outer face, is also delimited by a cycle, which is

called the outer facial cycle.

An m/_ of a planer graph is a description of the graph via adjacency lists, where

for each node we list its neighbors in (say) clockwise order (note: an embedding may correspond

to more than one layout. However, all such layouts will be equivalent in the sense that they will

have the some facial cycles, and we can go from one layout to another by flipping the graph

inside out' about facial cycles).

A planar graph is Asmi if we cannot add any new edges without destroying planarity.

Given an embedding of an arbitrary planar graph, we can transform the graph into a maximal

planer graph in linear time, by performing depth first search in clockwise order, starti ng from

any node, and nserting new edges into the adjacency lists. In a maximal planear graph, each

facial cycle has exactly three edges.

Consider a cycle of a planar graph. Given an embedding of the graph, the removal of the

cycle partitions the graph into two regions, the srn irier and the stnexict e nr of the
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cycle (the choice of which of the two regions to be called interior is arbitrary, unless a specific

layout is being used). The interior of the cycle is the strict interior, together with the cycle

itself. The exterior of the cycle is similarly defined.

There are several fairly recent algorithmic results which are of particular importance.

The first one concerns the planarity testing problem: given a graph, is it planar? This question

can be decided in time linear in the total number of nodes [71. A related problem is that of

finding an embeddi ng of a planer graph. This task can also be performed in linear time [31.

The most relevant result (to us) concerns planer separator theorems, which we state In

abridged form. Let G be an n-node planer graph. Then, by deleting O(In) nodes of G, we can

partition G into two subgraphs each of which has roughly n/2 nodes (Lipton and Tarjan, 1979

[81). Of special importance is tillers (1984) version of the planar separator theorem [91,

which is once more stated in abridged form: let G be an n- node graph, each of whose facial cycles

has length at most z. Then there exists a i mole cle with at most 4 /(2zn) nodes whose strict

interior contains at most 2/3 n nodes and at least 1/3 n nodes (and consequently, we can say

the same about the strict exterior of the cycle). Such a cycle is called a er*p,%afor and can

be found In linear time. Thus, if G is maximal, in linear time we can find a cycle separator with

at most c/n nodes, where c=4-46.

4. Planar orapDh and bond probebilities

Consider a planar graph bounded by an outer facial cycle with nodes numbered 1,2,...,m

as they appear clockwise in that cycle. Suppose we erase some of the arcs of the graph. This

erasure will induce a partition of the nodes of the outer facial cycle according to their connected
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components. Hovw many partitions of ( 1,2,...,m} can be achieved in this manner? A crude upper

bound is the total number of partitions of an m-element set, a quantity that grows nearly as fast

as m! [51.

However, this s a very weak upper bound. In order to see why, let us consider an

example. Suppose m=6. Then the partition (13,245,6) cannot be achieved by erasing arcs,

since the first and second blocks cross" each other. On the other hand, the partition

(12,36,45) may be achieved.

In order to compute a tighter upper bound on the number of achievable partitions, let us

take a strictly combinatorial approach. Suppose we take a circle containing a set M={ 1,2,...,m)

of selected points, numbered to reflect clockwise ordering. We will say that a partition x of M is

ow-vrng if, as we travel clockwise around the circle, no two blocks of x ever alternate

(i.e., no two blocks of x ever cros'). We will indicate the number of non-crossing partitions

of {( 1,2,...,m by b(m). In the remaining part of this section, we will compute b(m).

Consider point m. Given a non-crossing partition, let k be the highest numbered point in

'the some block as m (k-O if m is in a block by itself). Then points 1,2,...,k are non-crossing

partitioned, and the same holds for points k+ 1,...,m- 1. Setting b(O)=1, we conclude that

m-l
b(m)=Z b(k)b(m-k-l) for m>O. (2)

k-O

Now set g(z)= I b(m)zm. Equation (2) will yield

g(z)=1 +z g2(z).

This equation, tgether with the boundary condition b(O)= 1, give

g(z) = (1-(1-4z) 1 2 )/2z,
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which implies that (see [5] for related problems)

b(m) = 22m - 0(logm)

Consequently, the number of non-crossing partitions is (asymptoticall) a negligible fraction of

the total number of partitions.

Now let us consider a probabilistic planer graph H containing a special subset of nodes K,

and suppose H is bounded by a (simple) outer facial cycle S of m nodes. How mny (K,S)-bond

probabilities can be strictly positive? We just saw the number of possible partitions of S that

can be achieved by deleting arcs of H is at most strictly exponential in m. I1oreover, if a

partition x of S has N blocks, then there are at most 2N . 2m ways of labeling the blocks of x.

We conclude that the number of positive bond probabilities is at most 23m .

5. An algorithm for K-terminal reliabillty comoutation in planar graphs.

There are several algorithms for K-terminal reliability analysis in planar graphs that

achieve a complexity strictly exponential in the square root of the total number of nodes. We

have chosen the specific algorithm given below because it requires the simplest exposition.

We will first consider a more general problem. Let G be an n-node planar graph

contai ni ng a spaecial subset of nodes K. We will assume that we are given an embedding of G. We

want to compute the (KS)-bond probabilities of G, where S is the node set of a (simple) facial

cycle of G, without loss of generality the outer facial cycle of G. Let ISl-m, and set

T(n;m)--wort-ce running time of algorithm PL given below.

Theorem 1

T(n;m) . 2an+6m (3)

for a certain constant a.
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f<r.- The proof will be by induction on n, since man. Let c be the constant that appears in the

cycle separator theorem. Now, relationship (3) holds if both n and m are bounded above by

constants, provided we choose a large enough constant a. Consequently, let us assume that nkn',

where

2n'/3 + c n' + 1 + 31ogn' 3n'/4,

and also that (3) holds for arguments smaller than n'. Let X(N,M)=28aIN +6M. Below we vill

prove that

T(n;m) . max (O(n2) 2 6m+6 c /n +O(n) X(2n/3+c /n ; m + c/n ),

O(n) 23m+6c-n +2X(2n/3 + cn + 1; m + cn +1),

23 c n X(2n/3 ; m)+X(2n/3; c4 n) }+O(n). (4)

We will conclude from (4) that

T(n;m) 26m+c n +3ogn + 2 a (3n/4) + 6m +6 c n+6 + O(n) <

< 2 [a4(3/4) +6c] Jn 6m +7 c 2 a /n +6m

if a is chosen large enough. Pending the proof of (4), the proof of Theorem is concluded. +

Next we describe algorithm PL and prove (4). Let us denote by a MxWk a planar graph

with an outer facial cycle that is simple. Thus the input to PL is an embedding of an n-node

block G containing a special subset of nodes K. G is bounded by an outer facial cycle S with m

nodes.

AplrithI PL

( 1 ) If G is not maximal, make it so b adding new edges which are perfectl unreliable. This

task can be carried out in linear time (as outlined in Section 3). Moreover, all the nodes of G

will remain in the interior of S.
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(2) Find a cycle separator C of G. Let EXT be the subgraph of G contained in the interior of

S but also in the exterior of C. Similarly, let INT be the subgraph of G contained in the interior

of both S end G. There are three possible camse:

(I) IS nrCI > 1.

We can write

EXT=G IU G2 u ... u Gj u P1 u P2 u ... u Ph 

where each G is a block whose outer facial cycle is made up of portions of S and C, and each Pk

is a maximal path contained in both S and C (along which the clockwise direction on C coincides

with the clockwise direction on S). Similarl y, we can write

IHNT Gj+1 u Gj+ 2 u ... uG UPh+ u Ph+2U... uP z -

If an arc of C appears both in a block of EXT and in a block of INT, we replace that arc in one of

the blocks by a perfectlu unreliable arc.

Figure 1 - Case (i).

For 1 i , let S(i) and K(i) be, respectively, the outer facial cycle of, and the subset of

K contained in GI. It is not difficult to see that we can generate the blocks Gi and the respective

sets K(i) and S(i) in linear time (and also, v=O(n)). Next, we (recursively) compute the

(K(l),S(I))-bond probabilities of Gi, for 1 dlvw. Clearly, this task will take time, at moat,

O(n)X( 2n/3 +cJn; m+ cIn),

si nce each block contai ns at most 2n/3 nodes not counting those of C.

Having computed these bond probabilities, we now sDlice (terminology of Section 2) the

blocks G one by one until recovering the graph G. That is, we start with graph H1=G1 and at
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step i we splice Hi with a new Gj to obtain i 1 until after v- 1 steps we have ,-G. It is not

difficult to see that we can order the blocks Gj so that at every step Hi is a block. Since at each

step, the blocks spliced contain at most all of C and S, the complexity of each splicing is at most

O(n) 26m+ 6c4 n,

where we ue the result of Section 4 concerning the number of positive bond probabilities of a

block, and the result in Section 3 describi ng the complexity of a splice operation.

We conclude that the overall complexity of case (i) is at most

O(n2) 26m+6c/ n + O(n) X( 2n/3 can ;m + crn) - Tl(n;m).

(ii) S CI 1.

Let v be the node common to S and C. In this case the interior of C (with the exception of

v) lies in the strict interior of S (see Figure 2(a)). As we travel clockwise around S, let u, w

be the nodes immediately preceding and following v, respectively. Similarly, as we travel

clockwise around C, let x, z immediately precede and follow v. Then we split v into two nodes v'

and v" which are connected by a perfectly reliable arc, with v" Imnediately following v'. The

old neighbors of v becorne neighbors of v' or v" as follows:

(a) For each arc (vs) with a located clockwise between w and z (inclusive) there is an arc

(v",) with the same reliability as (,a).

(b)For each arc (v,t) with t strictly following z there is an arc (v',t) with the same

reliability as (vt).

Now we interpret cycles S and C as going through both v' and v", in that order (see Figure

2(b)).

Figure 2 - Case (ii).
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It is clear that after the splitting of v both EXT and INT are blocks (if EXT and INT share an arc

of C, replace that arc in, say, EXT, by a perfectly unreliable arc). Hence, we have reduced case

(ii) to an instance of case (i) with only two blocks, at the cost ofadding a single additional node

to the problem. Thus, the time required to find the bond probabilities of EXT and INT is at most

2 X( 2n/3 +cn + 1; m + c4n + 1).

Next, we splice EXT and INT. Since T has at most 23m + 3cn +3 positive bond

probabilities and I NT has at most 23m + 3 positive bond probabilities, the splice operation will

take time at most O(n)2 6m + 6cJn (where we include in 0() the work involved in

consolidating v' and v", which is at most proportional to the total number of positive bond

probabilities of G). Thus, the total complexity of case (ii) is at most

O(n) 23m+6 c In +2 X(2n/3 + c ¥n + ; m + c n + 1 ) T2(n;m).

The last case s (111), I5 CI = 0.

In this case C and its interior lie in the strict interior of S. Notice that we cannot analyze EXT

di rectly since C and S are two disjoint facial cycles of this graph.

Nevertheless, we can analyze INT recursively with PL, that is compute the (K',C)-bond

probabilities of INT, where K' is the subset of K contained in the interior of C. These

probabilities can be computed in time X(2n/3 + c n ; c n). Having carried out this task,

let y be a labeled partition of C (i.e., a (K',C)-bond event) with positive probability. Suppose

we contition on y occurring n INT. Then all the nodes in each block of g remain connected (via

INT) and therefore, so far as EXT is concerned, we may contract each such block into a single

node (this observation is implicit in both the Rosenthal and Fratta and Montanari versions of

RFM). Let EXT(g) be the obtained graph. The key observation is that, since partition must be
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non-crossing, the graph EXT(t) is in fact planar (and we can obtain an embedding for EXT(y)

from the one for EXT in linear time). Notice that in graph EXT(y) the cycle C heas been

'contracted, and now we can analyze EXT(y) rcursively.

Figure 3 - Case (1).

Thus, let K"(g) be the subset of K in the strict exterior of C, together with one new node

corresponding to each labeled block of y. We recursively compute the (K"(y),S)-bond

probabilities of EXT(y). This operation will at most take time X(2n/3; m).

Further, each (K"(y),S)-bond event of EXT(y) is a (K,)-bond event of G, since it

corresponds to a labeled partition of S. We simply keep track of the conditioning by multiplying

each bond probability of EXT(u) by the bend probability of y in INT.

The number of graphs EXT(.) that arise is at moat the number of non-crossing partitions

of ICI points. Thus, the overall workload for case (iii) is at most

X(2n/3;c/n ) + 2 3 c nX(2n/3; m) sT 3(n; m).

We have now concluded the case anelysis for step (2) of algorithm PL. We conclude that

T(n;m) max {T(n; m) , T 2 (n; m) ,T 3(n; m) } O(n),

i.e., equation (4). ·

Now let G be a probabilistic n- node planar graph and K a subset of the nodes of G. We wish

to compute the K-terminal reliability of G. Without loss of generality G is maximal; let S be a

facial cycle containing at least one node of K. Once more, withut loss of generality S is the outer

facial cycle.

Using algorithm PL, e compute the (KS)-bond probabilities of G. The K-terminal
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reliability of G will be the sum of bond probabilities corresponding to labeled partitions with

exactly one labeled block (there are at most five such partitions since S has length three and one

of its nodes is in K). Thus the time required to compute the K-terminal reliability of G is at

most

O( 2 n ).

6. Conclusiona

Is our algorithm efficient? It is not difficult to see that any algorithm based on RFM will

have complexity at least strictly exponential in In, in the worst case: mesh graphs are among

those for which all non-crossing partitions can be achieved by erasing arcs, and cuts of size~ n

must be used when anal zi ng such graphs.

We want to stress the fact that the size of K does not play a role in the complexity of our

algorithm. Since the general case is DP-hard, this fact may add some credibility to the

conjecture that the cae IKI=n is also *P- hard.
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Figure 

(a) Original graph
vith S shovn.

(b) Both S and C shown.
INT is the shaded
region.



Figure 2

v VA V*y

S

(a) Original graph
and cut.

S

(b) After expansion of
V.



Figure 3

(a) Original graph
with S and C
shown. Here
Icl =9.

(b) A four-block
partition y
occurs in INT.

EXT(y)

(c) IT s srunk
into 4 nodes
in EXT(y).
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