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ABSTRACT

Given a set of origin-destination points in the plane and a set of

polygonal barriers to travel, this paper develops an efficient algorithm

for finding minimal distance feasible paths between the points, assuming

that all travel occurs according to the rectilinear distance metric. By

geometrical arguments the problem is reduced to a finite network problem.

The nodes are the origin-destination points and the barrier vertices.

The links designate those node pairs that "communicate" in a simple way,

where communication implies the existence of a node-to-node rectilinear

path that is not made longer by the barriers. The weight of each link is

the rectilinear distance between its two corresponding nodes.

Solution of the minimal distance path problem on the network procedes

in two steps. First, for a given origin or root node, a tree is generated

containing a minimal distance path to each node that communicates with the

root node. Second, a modified Dij.kstra-type iteration is utilized, starting

with the nodes of the tree, sequentially adding nodes according to mini-

mum "penalty distance", where the penalty is the extra travel distance

caused by the barriers. The paper concludes with a discussion of the com-

putational complexity of the procedure, followed by a numerical example.
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Vaccaro [1] determined the shortest Euclidean (straight line) distance

between points on a plane with barriers represented by line segments.

He proved that all shortest paths must pass through end points of the

barriers. The algorithm Vaccaro proposed is an exhaustive enumeration

of all possible paths passing through the end points of the barriers.

More recently, Lozano-Perez [2] described the VGRAPH algorithm for

finding the shortest Euclidean distance between two points on a plane.

This algorithm is similar to Vaccaro's algorithm, except that barriers

are represented by convex polygons rather than line segments. The VGRAPH

is defined thusly: the node set N consists of the vertices of the barri-

ers and the origin and destination points; the link set consists of all

branches between the nodes such that a straight line connecting the ith

element of N to the jth does not intersect any barrier. The resulting

graph is called the visibility graph (VGRAPH) of N since connected verti-

ces in the graph can "see" each other. The VGRAPH algorithm was used for

navigating SHAKEY, an early robot vehicle, described in [3]. However,

this algorithm works only for Euclidean distances and convex barriers.

The paper procedes in three parts. In I we prove results necessary

to transform the problem in the x-y plane, with a noncountably infinite

number of paths, to a finite network problem. In II we develop the de-

tails of the algorithm, POLYPATH, and discuss its computational complexity.

In III we present a numerical example. For convenience, Table I contains

a glossary of nonstandard terms and Table II contains most of the symbol

definitions used in the paper.
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The rectilinear distance between two points (xl,y1), (x2,y2) is

Ix1 - x2 1+y 1 - y2 1. This distance is sometimes called right-angle, L1,

or Manhattan distance. This paper develops an algorithm for finding

minimum rectilinear distance paths between given origin-destination points,

in the presence of polygonal barriers to travel. The barriers need have

no special properties, such as convexity.

The problem arises in a number of areas:

1. Urban transportation. Urban vehicles travelling on a street
grid may be considered to be governed by the right angle metric.
Barriers to travel could include cemeteries, parks, railroad
yards, rivers, etc. Effective operation of these systems would
require knowledge of "best paths" around such barriers.
(Ironically, the motivation for this paper originated with
transportation work by these authors in Manhattan, which re-
vealed the inadequacy of the "Manhattan distance metric"
as a measure of travel distance between two points due,
primarily, to New York's Central Park.)

2. Plant and facility layout. Travel on a plant or factory floor
can often be modelled as right-angle. Barriers to travel would
be impassable areas on the floor, such as sub assembly areas,
shops, sections of assembly lines, etc. The algorithm proposed
here not only could reveal optimal paths between points, but
also could be used to examine the plant floor travel-time con-
sequences of alternative floor layouts.

3. Locating power lines. In sections of the midwest of the U.S.
new power lines are only allowed to be located along the east-
west or north-south boundaries between surveyed mile-square or
quarter-mile square sections. The location of such a power
line occurs, then, along a right-angle route. Barriers in this
problem could include towns, highways, parks, or subsections
otherwise not available for power line routing.

Other potential applications include design of printed circuit boards,

certain cutting problems, and finding the path through a maze (perhaps

for a robot).

We are aware of no other work on this problem. The closest work

pertains to the analogous problem using the Euclidean metric. In 1974
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Table I

Glossary of Nonstandard Terms

A polygon impenetrable to travel

Two points communicate if the
minimal travel distance between
them is not increased by the
barriers,

Simply communicating

Root vertex

Two points are simply communica-
ting if they communicate according
to at least one of three specified
criteria.

The vertex in a communicating tree
with which all other points in the
tree communicate.

Rectilinear path A connected sequence of horizontal
and vertical straight-line segments
beginning at an origin point and
terminating at a destination point;
an allowable route of travel between
origin and destination.

Subpath A connected subset of a path.

Staircase path A rectilinear path whose length be-
tween origin and destination is equal
to the rectilinear distance between
them.

Feasible path A rectilinear path intersecting no
barriers.

Path step A horizontal or vertical straight
line segment in a rectilinear path.

Turning step A path step terminating one stair-
case subpath and starting another.

Path vertex The point of termination of one
path step and the beginning of
another (except at origin or destina-
tion, where only one applies).

Predecessor link The link immediately preceding a
node in a specific path.

Barrier

Communicate
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Table II

Table of Symbols
(in approximate order of usage)

Number of origin-destination points

Number of barriers

th
The i origin-destination point

Set of origin-destination points

(={q(i), i = 1,2,...,n Q})

The k clockwise-ordered vertex of

barrier m

Number of vertices of barrier m

V

{x(i), y(i)}

{x(k,m), y(k,m)}

P

L(P)

V(P)

W

n
w

w(i)

Set of barrier vertices (={v(km),

k = 1,2,...,v ; m= 1,2,...,nB})

Coordinates of q(i)

Coordinates of v(k,m)

A rectilinear path in Euclidean

space R2 .

Length of path P

2(s + 1) is the number of steps in a

path P.

Sequence of path vertices in P,

starting at the origin (xo,Yo).

Set of x and y coordinates of path
vertices in a path P

Set of origin-destination points and

barriers vertices (=QUV)

Number of points in the set W

nB
(= nQ + V)

n=l

The i point contained in W

nQ

q(i)

Q

v(k,m)

V
m
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Coordinates of w(i)

lXw(i) - X(i)I + lY(i) - yw(j) 

A (not necessarily optimal) path
from w(i) to w(j)

An optimal (minimal distance) path
from w(i) to w(j)

The positive x probe from w(i) [de-
fined precisely in text] [Also

r (w(i)), ry+(w(i)) r (w(i))].

Vertex seeking tree of w(i) [= a
union of the four probes about w(i)].

Minimal feasible rectilinear travel
distance between (x,y) and(x', y').

Minimal feasible rectilinear travel
distance between w(i) and w(j)

Network (graph) having node set W and
link set L

Link connecting w(i) and w(j)

Matrix of link lengths, where d.. is
the rectilinear length of (i,j).
(dij = +o if link (i,j) does not
exist.)

Set of simply communicating vertex
pairs

A tree containing all nodes communi-
cating with w(i).

Matrix of node orientations (ij =

1,2,..,8).

Set of orientations about node w(j)
that may include staircase paths
through w(j) to w(i).

Set of node-link pairs in which each
node is n-communicating with w(i) and
the corresponding link is that node's
predecessor link

C..
?LJ

P
ij

ij

r+(w(i))

VST(w(i))

, (

t((x,y), ix,y))

t(i,j)

G(W, L)

Z(i,j)

D=(dij)

S

F(w(i))

= (ij)

r(..)

An(w(i))
n

(xw(i), Yw ))
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£(i,j) The penalty distance caused by the
barriers in a minimal distance path
P*

ij

Hl(i Im) The set of m least penalty nodes for

travel to w(i). [The "closed" nodes]

H2(ijm) The set of n - m maximum penalty
nodes for travel to w(i)(= N - H(ilm))
[The "open" nodes]

(i,j Im) Minimum simply communicating distance
from some node w(j) H(ilm) to any
node contained in H(ilm)

y(iim) Set of pairs of nodes and predecessor
links in the tree of m least penalty
nodes for travel to w(i).
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I. Transforming to a Network Problem

Preliminaries

We consider Euclidean 2-space R Within R there are nQ origin-

destination points

Q = {q(i), i = 1,2,..., nQ}

and nB polygonal barriers Bm (m = 1,2,...,n B) with vertices

V = {v(k,m), k = 1,2,...,v ; m = 1,2,..,nB},

where v(k,m) is the kth clockwise-ordered vertex of barrier m and v < is
n

the number of its vertices. The coordinates of q(i) are {x(i), y(i)} and

the coordinates of v(k,m) are {x(k,m), y(k,m)}. B (m = l,...,nB) is an

open set, i.e., the intersection of v open half planes. Hence, the ver-

tices and sides of B are not contained within B
m m

A rectilinear path P in R2 having 2(s + 1) steps is specified by a

sequence of path vertices V(P) = {(x0,YO), (xl,YO), (xl ,Yl), (x2,Y1),

(x2,y2 )...(x s ys
), (Xs+1,y), (Xs+l,Y s+ l)} = [{x},y}], s = 0,1,2,...,

such that

P = {(x,yk) R; x< < xk+1 or k+1 < x < Xk,k =0,1,.,s}

2
U{(xk,y) R: y k- < Y < k or Yk < < Yk-l' k = 1,2,...,s+l}.

That is, a path is a connected set of points proceeding in straight line

sequences horizontally from (xO,y O) to (xl,YO), then vertically to (xl,Y1 ),

then horizontally to (x2,Y1), etc. To allow the first step to be vertical,

simply set x = x . In our development we consider the merged set of points
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W = QUV. A path P from w(i) W to w(j) W is specified by a set of

path vertices orginating at (xO,yO) =(x (i), Yw(i)) and terminating at

(x s+1 Y+1 ) = (X(J), yw(j)). A feasible path from w(i) to w(j) pene-

trates no barriers, hence satisfies the condition P..n[uBm] = = null
'J m=l

set. The rectilinear length (or simply length) of path P is

L(P) = L (P) + L (P), where
x y

s s

L x(P) Ixk+l -Xkf and Ly(P) Z lyk+l - Ykl
k=O k=-O

The minimum rectilinear travel distance between two points (x,y)

and (x', y) is t([x,y], [x', y' ]), obtained by following a shortest

length feasible path between the points.

The problem is as follows: For any given origin q(i) find a minimal

length feasible path and the corresponding travel distance to each possible

destination q(j). Repeated application over i of any solution algorithm

yields minimal length feasible paths between all origin-destination pairs.

Two points w(i) W, w(j) W, having coordinates (xw(i), Yw(i)) and

(x (j), y(j)), are said to communicate if there exists at least one

feasible path Pij between them having length L(Pij) = IXw(j) - xw(i) +

IYW(j) - (i) -cij. That is, two points communicate if the barriers

cause no net increase in travel distance between them. The minimal

feasible travel distance between w(i) and w(j) is abbreviated t(i,j)

[ =t([Xw(i), Yw( i ) ] , [Xw(J), Yw(j)])]

A path P having path vertices V(P) = {(xO,y0), (xl,YO),..,(x s + 1,

Ys+l)} is a staircase path having staircase vertices if
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{xk, {k= 0 ,1..... s+l} and {Yk' k=0,l, ..,s+l} each form monotone sequences,

i.e., if sgn (Xk+l - xk ) = sgn (xk - xk_l) and sgn (Yk+l - Yk) = sgn(y -

Yk-l)' k=1,2,..,s. [sgn(O) is arbitrary].

Lemma 1: Two points having coordinates (xO,yO) and (Xs+1, Y+l
) conmuni--

cate if and only if there exists at least one feasible staircase

path between them.

Proof: (1) Sufficency: If for some path P having path vertices

V(P) = [{xk},{yk}] {Xk} and {yk } form monotone sequences,

then for all k=l,...,s, sgn(xk+1 - xk) = sgn(xk - Xk_l) and

sgn(k+1 - k) = sgn(yk - Yk_l) . Hence L(P) =

S S
1Z Xk+1 - + 1z Yk+l - Yk IXs+l - xO + IY+ 1 - YOI'
k=O k=O

(2) Necessity: Suppose {xk} is a nonmonotone sequence. Let

0 = {xf: xk. - x. > = {.1=Xk: Xk+l - xk _ _> 0, d?2 {Xk: Xk+l - Xk < 0}. Suppose

further that xs+ > x0. Then L (P) =kZk+ l - Xk)

ktCy (Xktl - xk) = c O (xkl xk) - Z - =ks 5 -+ k) k (+l xk) A ( +l - xk)=

(Xs+l ) X 2k2 (xk+l - Xk > Xs+1 - x0, a contradiction.

A similar argument holds for the case x s+1 < XO'

Remark 1: Any path having minimal length joining two communicating points

must be a staircase path.

Remark 2: Any two points, joined by a straight line segment that has no

points in common with any barrier, communicate.
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The second remark can be proved by assuming that the closest barrier to

the line segment contains points no closer than £ > 0 to the segment and

constructing a sequence of path vertices in a staircase manner such that

the staircase is always less than £/2 from the line segment. (See Figure 1).

Note, as a consequence of this remark, all pairs of adjacent vertices of a

barrier communicate.

Vertex-Seeking Tree

We now wish to construct a simple tree about each node which pro-

vides a basis for path formation. First consider a point q(i) Q having

coordinates {x(i), y(i)}. We wish to construct the "positive x probe"

rx+(q(i)) from q(i). To do this, extend a ray from (x(i), y(i)) horizon-

tally in the direction of increasing x. There are three possibilities

(see Figure 2):

1) The ray intersects no barriers, in which case

r (q(i))= {(x,y) R: y = y(i), x > x(i))} i.e., r(q(i)) is the ray.

2) The ray intersects another point w(j) W (either a barrier vertex

or an origin-destination point), in which case r(q(i)) = {(x,y)

£ R2: y = y(i), x(i) < x < x (j)}; i.e., r(q(i)) is the line

segment connecting q(i) and w(j).

3) The ray intersects side k of a barrier m, the point of intersec-

tion being a. The barrier side is thereby partitioned into two

subsides having endpoints (v(k,m), a) and (a, v(k+l,m)). Here

rx+(q(i)) is the union of the line segment from q(i) to a and that
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STAIRCA
I,1 I t Ik I ,

JVI I I 4Ii43 i VYU

ADJACENT VERTICES
OF A BARRIER

Illustration of Staircase Path Between Two Adjacent Vertices of
a Barrier

Figure 1
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subside which lies at an obtuse angle to the segment from q(i)

to a. (In the case of right angle intersection rx+(q(i)) need not

have this second component.)

In a like manner we can construct probes r y+(q(i)), ry_ (q(i)), and

r (q(i)) in the positive y direction, negative y direction, and negative
x-

x direction, respectively. The vertex-seeking tree about the root node

q(i) is

VST (q(i)) rx+(q(i))Urx_(q(i)) Ury+(q(i)) Ury_(q(i)).

By construction of the tree, it is clear that for all (x,y) VST (q(i))

t([x,y], [x(i),. y(i)]) = x - x(i) I + y - y(i)I, i.e., all

points on the tree communicate with q(i).

Now consider a barrier vertex v(k,m) V. A similar vertex-seeking

tree is constructed for v(k,m), with the obvious condition that no point

in the tree can penetrate barrier m. Thus, depending on the orientation

of the barrier about v(k,m), the number of feasible probes about v(k,m)

may be 4, 3, 2, 1, or even 0. (See Figure 3), [In the case of zero feasible

probes, any feasible path to the vertex must contain a countably infinite

number of steps, and the argument supporting Remark 2 must be modified

accordingly.]

Lemma 2: Suppose for two points w(i) W and w(j) W, an x-probe from one

intersects a y-probe from the other at some point b i W. Then

w(i) and w(j) communicate.

Proof: We prove the result for x(i) < xw(j), Yw(i) < y(j) and r (w(i))

n-r (w(j))# . All other cases are proved in the same manner.
Y-



v(k,m)

\ vk,m)

(a) FOUR PROBES POSSIBLE (b) THREE PROBES POSSIBLE

(c) TWO PROBES POSSIBLE (d) ONE PROBE POSSIBLE
I

(e) ZERO PROBES POSSIBLE

Possible Vertex - Seeking Trees from a Barrier Vertex

Figure 3

v(k,m)
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Suppose there exists b W such that b = {xbYb} r+(w(i))

r)ry (w(j)), i.e., b is an intersection point. Then Yb > Yw(i),

for otherwise Yb' by construction of r+(w(i)), would be on a

barrier side not allowing intersection from above. Similarly,

xb < x(j), for otherwise xb would be on a barrier side not

allowing intersection from the left. We also must have Yb < Yw (j )

for all points (x,y) in a negative y probe from w(j) must fall

on or below w(j), i.e., y < y (j). Similarly xb x (i).

By the communicating property of probes.

t(q(i),b) = (xb - xw(i))+ (Yb - Yw(i))

t(b,q(j)) = (xw(j) - xb) + (Yw(i) - Yb)

Invoking the triangle inequality,

t(q(i),q(j))< t(q(i),b) + t(b,q(j))= (x (j) - xw(i))

+ (y (j) - Yw(i)), implying that q(i) and q(j) communicate. a

We have now identified three conditions under which two vertices

w(i) and w(j) communicate:

(1) If w(i) and w(j) are adjacent vertices of a barrier.

(2) If w(i) is the root and w(j) is a terminal point of a vertex-
seeking tree.

(3) If w(i) and w(j) have x and y probes that intersect at a point

other than a vertex w(k).

Each pair of vertices w(i) and w(j) that satisfies at least one of the

three conditions above is called simply communicating.
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Vertex Following Paths

Theorem 1. Suppose two points w(i) £ W, w(j) W communicate, but do not

communicate simply. Then there exists at least one feasible staircase

path P*. between them containing a sequence of simply communicating
ij

vertices {w(i), w(kl),...,w(k*),w(j)}.

Proof: Consider the case x (j) > x (i), yw(j) > Y (i). We demonstrate

the existence of w(k*); the remaining w(k*) are obtained by

induction ( = 2,3,..,n). Since w(i) and w(j) communicate,

there exists at least one feasible staircase path P.. between

them, with path vertices V(Pij) = {(x w(i) = x,yw(i) = y0),

(X1,Y0), (xlYl),-..,(s,y), (xw(j) = s+l,ys ),(Xs+l,Yw(j)

= Ys+l) By the staircase property, Xk+ > Xk Ykl > Yk'

k=0,l,...,s. Invoking communication, L(Pij) = (xw(j) - xw(i))

+ (y (j) - Yw(i)).

We now construct an alternative equal length feasible

staircase path from w(i) to w(j). If x1 > x0, start at xl.

Otherwise start at Y1 and reverse the role of x and y in what

follows. Beginning at x = x, create a new path step [(x,Y0),

(x,yl)] and push it as far to the right as possible up to and

including x2. If x2 is reached without intersecting a barrier,

continue to push rightward with the amalgamated path step

[(x,yo), (x,y2)]. Eventually there must be an amalgamated

path step [(x,y0), (X,yk )] that intersects a barrier vertex or

a barrier side for some x = x xk < x < k+ . If not, then xX1 k 1 1<Xf. I ote 
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could reach x w(j), implying that w(i) and w(j) communicate

simply, a contradiction. Clearly this path push and amalgama-

tion process yields a path having length equal to L(Pij).

Case 1. If the intersection is with a barrier vertex v(k,m) = {x(k,m),

y(k,m)}, we have x(k,m) = xl,and y(k,m) > Yw (i). Since rx+(w(i))

obviously intersects r (v(k,m)), v(k,m) = w(k*), i.e., w(i)

communicates simply with v(k,m).

If the intersection is not with a barrier vertex, it must

be with a barrier side interior point at (x{,y0 ). In this case.

continue the step pushing and amalgamation process, with the

intercepted barrier side being the step's lower end point.

Case 2. We may reach an endpoint or vertex v'(k,m) of the barrier side,

in which case our new path from w(i) to v' (k,m) has reproduced

r (w(i)) and thus v' (k,m) = w(k) ; or

Case 3. We reach a point x1
t at which the amalgamated step intercapts a

barrier vertex v"(k,m); in this case it is clear that r +(w(i))

nr (v"(k,m)) # I, and thus v"(k,m) = w(k).

One continues by induction, generating each w(k ) by repeating the
+l)

above process from w(kg). Eventually w(j) is reached by treating w(j) as

a "barrier vertex" in the above procedure.b

An illustration of the key ideas in the proof is given in Figure 4.

Suppose two points w(i) W, w(j) W do not communicate. Consider a

minimal distance path Pij between w(i) and w(j), i.e., L(Pij) < L(P)ij

for all feasible P..ij The path vertices are V(Pij) = {(x (i) = xOY(i)= YO),
ij - ii ~~~~w 
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(xl,y0) (XlY) ... (Xs ) (X(J) = Ys) (+ ) = Y

Since w(i) and w(j) do not communicate L(P'j) > X (i) - x (j) +

tYw (i) - Yw (j)- Hence there exists at least one point xk {xQ} such

that sgn (xk -Xkl) sgn (k+l - xk) or Yk & {yz} such that sgn

(Yk - Yk-l) sgn (Yk+l - Yk). For any such xk the path sep [(XkYk1)

(XkYk)] is called an x turning step. And for any such Yk the path step

[(xk'Yk)' (Xk+lYk)] is called a y turning step. (Figure 5).

Lemma 3:

Proof:

Theorem 2.

All turning steps in a minimal distance path intersect a

barrier vertex, with the barrier situated in the direction

of the turn.

Suppose [(xk,ykl1), (xk,yk)] is a turning step in a minimal

distance path Pij. Assume further that xk - Xk 1 > 0 and

xk+l - xk < 0. (A similar argument holds for the other case).

Suppose that the path step [(xk,ykl), (xk,yk)] does not

intersect the vertex of a barrier situated to the left

of the path step. Then the step could be pushed to the

left by some distance > 0, reducing the total path length

by 2. Since this is a contradiction, [(xk,yk 1)' (Xk,Yk)]

must intersect a barrier vertex (with the barrier on the

left). The identical argument holds for a y turning step. U

Suppose two points w(i) W, w(j) W do not communicate.

Then there exists at least one minimal distance feasible path

P.. between them containing a sequence of simply communicating
1J

vertices w(i), w(k*), w(k*),...,w(k*), w(j)}.
1 2 n
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Figure 5
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Proof: From Lemma 3 all turning steps in a minimal distance path

Pij contain a barrier vertex. But by the definition of

turning steps, the {xk} and {yk } between two successive

turning steps form monotone sequences, i.e. , staircase sub-

paths. By Theorem 1 for each staircase subpath we can con-

struct at least one feasible alternative staircase subpath

containing a sequence of simply communicating vertices,

beginning at one turning step barrier vertex and ending

at the next one. In this manner we can construct the

desired minimal distance path P ..
l]
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II. The Minimal Distance Algorithm: POLYPATH

Our results demonstrate that any minimal distance path in R can be

replaced by an equi-distance path containing a sequence of simply communi-

cating vertices. Thus the problem of finding a minimal distance recti-

linear path between q(i) and q(j), in the presence of polygonal barriers,

can be reduced to a finite network problem. The network nodes are the

origin-destination points q(i) and the polygon vertices v(k,m). The

arcs are bidirectional, having weights corresponding to the distances be-

tween simply communicating vertices.

The algorithm, called POLYPATH, contains three major steps:

1. Generation of the network.

2. Identification of all vertices communicating with a root vertex.

3. Finding the minimal distance path.

We consider each step next.

Generating the Network

The network for our problem is G(W,L), where W = QUV is the set of

nodes or vertices and L is the set of links. Let S = set of simply communi-

cating vertex pairs. For any {w(i),w(j)} S, the length of the link

Z(i,j) L is dij = Ixw(i) - xw()l + Yw(i) - Yw(j)l. For any {w(i),

w(j)} S, d.. = + - [or, equivalently, link (i,j) does not exist]. The

matrix of link lengths is D = (dij). As above, we let t(i,j) be the length

of a minimal distance path between nodes w(i) and w(j). It is assumed

that the network is connected, i.e., that there exists at least one path

between each pair of vertices.
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Construction of the set S is straightforward. A vertex pair {w(i),

w(j)} is included in S if and only if (1) w(i) and w(j) are adjacent ver-

tices of a barrier; or (2) w(i) and w(j) are contained in the same ver-

tex seeking tree, with either w(i) or w(j) being the root vertex of the tree;

or (3) w(i) and w(j) have x and y probes that intersect at a point other than

a vertex w(k). Generation of the vertex-seeking tree involves only tests for

straight line intersection and, for obtuse angle checks, inequality tests.

Similarly, checks for intersection of x and y probes involve only intersec-

tion tests.

A network minimal distance path between two points is called an optimal

nodal path. It should be clear that traversal of any network link (i,j)

corresponds to x-y travel along any one of a (usually) noncountably in-

finite number of staircase paths between the two simply communicating

nodes w(i) and w(j). Thus, finding a minimal distance path on the network

corresponds to finding a unique sequence of nodes to visit but a nonunique

path in R 

Vertices Communicating with w(i)

In applications, typically many vertices (perhaps the great majority)

communicate, though not simply. Thus it is beneficial to find a procedure

for quickly identifying communicating vertices.

Consider w(i) to be the root vertex. We wish to construct a tree

F(w(i))C G(W,L) containing all nodes communicating with w(i). F(w(i)) is

usually not unique because of the possibility of multiple minimal distance

paths; our construction will produce a tree F(w(i)) having a minimal number

of nodes in the tree path from the root w(i) to any w(j) E F(w(i)).

To generate F(w(i)), we define eight "orientations" or "directions of

travel" from w(i):



-24-

1. East:

2. Northeast:

3. North:

4. Northwest:

5. West:

6. Southwest:

7. South:

8. Southeast:

{(x,y) R :

{(x,y) R2 :

{(x,y) R :

{(x,y) R :

{(x,y) R:

{(x,y) R :

{(x,y) R :

x > xw(i),

x > x (i),
w

x = x (i),
w

x < x (i),
w

X < x (i),

x < x (i),

x = x (i),
w

y = y(i)}

y > Y(i) }

y > W (i)}

y > Yw(i)}

y = YW(i)}

y < YW(i)}

y < YW(i)}

x > x(i), y < y (i)}

We define the node orientation matrix = ( ij), where

.j -. orientation of node w(j) with respect to node

w(i) (ij = 1,2,...,8).

For instance, if Oij = 4, then node w(j) is northwest of node w(i);

however, w(j) and w(i) need not communicate. For computer storage pur-

poses, it is useful to note that ji = (.ij + 3)mod 8+ 1.

For each pair of communicating nodes w(i) and w(j) having orienta-

tion ij we define a permissable direction set F(.i j) such that

F( ij) set of orientations about node w(j) that may in-
clude staircase paths through w(j) to w(i).

For instance, (2) = {1,2,3}, meaning that any vertex w(j) northeast

of a root vertex w(i) may have staircase paths from directions 1,2, or

3 passing through it to the root vertex. The sets r(i j) are given in

Table 3. These ideas are illustrated in Figure 6.
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Permissable Direction Sets

Table III

F(l) = {1, 2, 3, 7, 8}

F(2) = {1, 2, 31

F(3) = {1, 2, 3, 4, 5,1

F(4) = {3, 4, 51

C(5) = {3, 4, 5, 6, 71

F(6) = {5, 6, 71

C(7) = {5, 6, 7, 8, 11

r(8) = {7, 8, 11

We say that w(j) n-communicates with w(i) if the minimal number of

nodes in all optimal nodal paths from w(i) to w(j) is n+l, n=0,l,...,n -1.

w(i) O-communicates with itself. For some node w(j) that n-communicates

with w(i), link (k,j) is a predecessor link for w(j) if (k,j)is on

the algorithm-selected (n+l)-node optimal path from w(i) to w(j). For any such

Z(k,j), w(k) must (n-l) - communicate with w(i) and kj £ F(Sik).

We construct the tree F(w(i)) by iteratively obtaining the sets of

vertices that n-comnunicate with w(i), together with the corresponding

predecessor node for each vertex, for n first equaling 1, then 2,3, etc.

The necessary node-link sets are

A (w(i)) _ {(w(j), (k,j)) G(W,L): w(k) (n-l)-communicates with

w(i), dkj < kj F( ik)} n=1,2,3,..., nw
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As the boundary condition, we say that A0(w(i)) contains only w(i) with

no predecessor link, i.e., A0(w(i)) = (w(i),)] . Clearly,

n
w

F(w(i)) = U A (w(i)).n
n=O

It is noted that some of the A (w(i)) may be empty, and that A (w(i)) =

implies that A +l(w(i)) = The iterative tree generation algorithm

is as follows:

Algorithm A1l: Tree Generation

1. n = 0, Ao(w(i)) = {(w(i)))};An (w(i)) = {(,4)}, n=1,2,..,n .

2. For each w(k) A (w(i)), scan the kth rows of 0 and D to find
n

all links (k,j) such that dkj < - and kj F($ik)

For each such link (k,j), if its terminal node w(j) U A (w(i))
m=O

then

An+l (w (i ) ) + n+l ( w( i ) ) U {w(j),Z(k,j)}.

3. n + n+l

4. If n = n -1 or if A (w(i)) = {(,q)}, STOP.
w n

Else go to step 2.

The fact that the minimal distance path from w(i) to any node on the tree

F(w(i)) contains a minimal number of links may be useful in applications.
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Clearly for any w(j) F(w(i)), t(i,j) = x (i) - x (j) + Yw(i) -

yw(j)l. This computation could also be carried out in the above algorithm

by setting t(i,j) = 0 in step 1 and adding the computation t(i,j) =

t(i,k) + dkj at the end of step 2.

Finding All Minimal Distance Paths

We now develop an iterative procedure for finding the minimal distances

and corresponding minimal distance paths from a root node w(i) to all

other nodes w(j). The procedure is analogous to Dijkstra-type [4] iterations

for finding minimal distance paths on a network, except that we begin with

the tree F(w(i)) and focus on penalty travel distances, not absolute travel

distances. Here, the penalty distance associated with an optimal path

from w(j) to w(i) is

£(i,j) = t(i,j) x (i - w(j) - + ly(i) - Yw (i) .

The penalty (i,j) represents the net increase in travel distance due

to the presence of the barriers. Note that a minimal distance path corre-

sponds to a minimal penalty path. Clearly for two nodes w(i) and w(j)

that communicate, (i,j) = 0.

Suppose we arrange the nodes in order of their penalty distances

s(i,j), using the index a = identification number of the node that has

the n smallest (i,j). If F(w(i)) contains e nodes, then the ordering

of the first e nodes is arbitrary since their penalty terms are all 0.

For any m > e, partition the nodes {w(i)EW} into two sets:
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The "closed" nodes: Hl(ilm) = {w(j) £ W: j [Vl'a2 .. .].

The "open" nodes: H9(ilm) = W - Hl(ilm)

Hl(ijm) is the set of m least penalty nodes for w(i).

Consider all the open nodes that communicate simply with at least one

closed node, i.e., H2 (ilm) = {w(j) £ H 2(ilm): d j < + , n=l1,2,...,m}.
n

For any open node w(j) £ 2 (ilm) define its m-stage estimated penalty dis-

tance for a trip to w(i) to be

(i,j m) - MIN [d . + t(i,cn)] - (xw(i) - (J)l + IY(i) - (j)l)
n

n E[1,...,m]: d
n

< + .

Here (i,j m) is our current "best guess" of the true penalty (i,j m),

given the identity of the m least penalty nodes. The best guess is gener-

ated by attaching each node in H2(ilm) directly through one link to a node

in H(ilm) in a way which minimizes the total penalty.

Theorem 3:

Proof:

For any given m=1,2,...,n , the m + 1S t least penalty node is

one with minimal estimated penalty distance, and its penalty

distance is this estimate. (i.e., (i,a ) = MIN[(i,j[m)] E g

j: w(j)c H(iljn)

and am+l is a node w(j) H2(ilm) that achieves the minimum).

[Ties can be broken arbitrarily].

1. Suppose (i, m+1) > g 0. Then closed node (aml) could be

replaced by an open node w(j) that achieves the
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minimum, resulting in a penalty smaller than E(i +l),

a contradiction.

2. Suppose (i,a +l) < go. Then there exists some open

node w(j") H(ilm) having penalty smaller than the in-

dicated minimum. We need consider only w(j") H(ijm)

since a minimal distance path from any w(j") H2(ijm) -

H2(ilm) must pass through an open node simply communicating

with a closed node in Hl(ilm), incurring a penalty not

less than that of the simply communicating node. But for

any w(j") £ H2(ilm), a decrease in penalty from that node

associated with Eo requires a new multi-link path from

w(j") eventually to some node in Hl(ilm). The penalty

of any such path cannot be less than the penalty of the

penultimate node in the path, which itself is contained

in H(ilm). And this penalty cannot be less than 0,

the indicated minimum. We have reached a contradiction,

and the theorem is proved. t

We now have all the results necessary to find the minimal distance

paths from any root vertex w(i) to all other vertices w(j). Basically,

after identifying all nodes that communicate with w(i), we add one node at

a time to the tree of our least-penalty nodes. This is a Dijkstra type

iteration performed on first differences rather than magnitudes of travel

distances. The tree containing the m least penalty nodes for w(i) is fully

specified by

y(ilm) - set of pairs of nodes and predecessor links in the
tree of m least penalty nodes for w(i)
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We now detail

Algorithm A2: Finding Minimum Penalty Nodes

1. Initialization

For all e w(j) £ F(w(i)), (i,j) = 0, t(i,j) -' Ix (i) - x (j)IW w

+ Y (i) - yw(j)l. Assign each ai. i=1,2,...,e, to a unique ver-

tex having (i,j) = 0.

m = e

Hl(ilm) = {w(i) £ W: i £ {aila2 ..' a }m1'°2

H2(ijm) = W - Hl(im)

m
From Al, (ilm) = U

n=O

2. First Iteration

Compute (i,j m) = MIN [d . +
nJ

n£[1,. . ,m]:

' t(i,a n) - (xw(i) - x(j) l+ Yw(i)

d <+ c
tnj

3. Subsequent Iterations

Set £ = MIN [(i,jlm)]

j: w(j) H2(ilm)

am+l = any vertex jm+l (w(j) H2(ilm)) having (i,j m) = £0.

t(i,a+l ) = £0 + xw(i) - w( m+l)[ + IYw(i)

The predecessor link Q( nam+l) in Y(ilm) is determined by that

a , say an , which yields the minimum £0.n' n 0'

An((i) )

- yw(j) 

- Yw (a+l) [
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y(ijm+l) = Y(ilm)JU{W(t+l), l( n'm+l)}

HL(i tm ) = H(i m) Uw(anl)

H 2(ijm) = H2(ilm)- W(m+l)

m +- m+l

4. New Estimated Penalties

Compute

(i,jIm) = MIN {(i,jm-l),MIN[da . +
n

m:d < + 
amj

If H 2(im)
2

= then exit, else go to Step 3.

Algorithm A2 completes the POLYPATH algorithm, a summary description

of which is given in Table IV.

t(i'a n)-(IX(i-xW(j>I+YW(i)-y,(j~l>I
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Table IV

POLYPATH: Summary Description

1. Network Formulation

Network node set W=QUV.

Construct set S of simply communicating vertex pairs:

{w(i),w(j)} are included in S if

(a) they are adjacent vertices of a barrier

(b) they are contained in the same vertex seeking tree, with one
as a root vertex

(c) they have x and y probes that intersect at a point other
than another vertex.

For each {w(i),w(j)} S, the length of link (i,j) is

d. .ij (i)- x(j + Xw(i) -w( + Yw(i ) );

else d.. = + .

Compute the node orientation matrix = (cij).

2. Find Vertices Communicating with w(i)

Execute Algorithm Al: Tree Generation

3. Find Minimal Distance Paths to Remaining Vertices

Execute Algorithm A2: Finding Minimum Penalty Nodes

Repeat for all i, i=1,2,...,nQ, if entire matrix T = (t(i,j))

is desired.
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Computational Complexity

The computational complexity of the POLYPATH algorithm, once the

network is constructed, is usually less than that of the Dijkstra algorithm.

Recall that in our problem there are nQ origin-destination points,

nB
Z v barrier vertices, and n = n + Z v nodes in the constructed

m=l m w Q m= m

network.

Suppose our problem is to generate the entire (nQ X nQ) minimal

travel distance matrix between all origin-destination pairs (q(i),q(j)).

We do this by executing POLYPATH nQ times, once for each possible origin

point. [This ignores possible exploitation of the symmetry of the matrix.]

Each such execution is done on an n - node network, yielding n minimal
w w

distances and straightforward application of the Dijkstra "node labeling"

procedure would require approximately (5/2) n additions and comparisons [5].
w

But in POLYPATH the tree generation algorithm Al can be executed with

no additions or comparisons, just simple storage manipulations (file

creation), if the D and matrices are appropriately rearranged to allow

easy tracing of trees through permissable directions. This is accomplished

by grouping together all nodes that are direction from q(i), for each

q = 1,2,...,8, and using indirect addressing to retrieve these nodes. Using

this technique, the computer can sequentially create the communicating

tree of nodes (the zero penalty nodes) with "no computational effort".

Suppose a fraction f of nodes in the complete nw - node network

communicate. Then, Dijkstra - type iterations must be performed only on the

(l-f)nw positive penalty nodes. [These iterations are performed only on the

distances, not absolute distances, but the computational work is the same.]

The number of additions and comparisons required for each possible origin
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2
point is thus reduced to approximately (5/2) [(1-f)n j . The computa-

tional complexity associated with generating the entire (nQ x nQ) matrix

5 [lf ]2
(ignoring its symmetry] is thus approximately nQ [(l-f)n ] . If f=0.5,

w

say, POLYPATH reduces the amount of computational work, compared to

Dijkstra, by 75 percent.
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III. Example

We now illustrate our algorithm by a simple example. To minimize

the amount of manual computations, we have chosen a two-barrier, six

origin-destination point problem as shown in Figure 7. This example, how-

ever, does include all of the different situations that can occur with a

vertex-seeking tree; thus we have nodes with 0, 1, 2, 3, or 4 probes and

probes terminating on another origin-destination point, or intersecting

a barrier side or terminating at a barrier vertex. We shall find the

minimum rectilinear distance to all origin-destination points from point

1.

The first step is the generation of the link length (D) and

orientation () matrixes. (Table V). Each entry (i,j) of the matrix

includes the pair dij and ij where dij is the link length from node i

to node j and ij is the orientation of j with respect to i. Any (i,j)

for which d.. = + - is left blank. Although this matrix generation in-
13

volves tedious but simple inspections, it can be done efficiently by a

computer.

Using the D and matrixes, we invoke Algorithm Al to generate the

tree of vertices that communicate with node 1, i.e., F(w(l))in our nota-

tion. It is noted that nodes 7, 8, 14, 15, 16, 1-communicate with 1,

while nodes 3, 5, 9, 11, 2-communicate with 1. There are no n-communica-

ting nodes for n > 3. It is noted that 10 of the original 16 nodes are

included in the tree. (See Figure 8.)

The final step is to apply Algorithm A2 to find the minimum recti-

linear distances to other nodes not on the tree. We use the notation of

Algorithm A2:
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1. Initialization

10 closed nodes: {1, 3, 5, 7, 8, 9, 11, 14, 15. 16}

t(1,1) = 0, t(1,3) = 14, t(1,5) = 13, t(1,7) = 7, t(1,8) = 7,
t(1,9) = 17, t(1,11) = 15; t(1,14) = 3 t(1,15) = 6, t(1, 16)

a 1 = = 3, a3 = 5, a4 = 7, a5 = 8, 6 =9, 7 = 11,

9 = 15, a10 = 16

m = 10

H1(1|10)

H2 (1 l10)

= {w(i) >W:

= {2, 4, 6, 10, 12, 13}

y(110) = {{1,}, {7, [7,1]}, {8, [8,1]}, {14, [14,1]},

{15, [15, 1]}, {16, [16,1]}, {3, [3,7]}, {11, [11,7]},

{5, [5,8]}, {9, [9,8]}}

2. First Iteration

9, 8 = 8 (hence circled above)

= 3

0±8 = 14,

Using Open 2 4 6 10 12 13
Closed Node Node (1, 2 110 ) (1,4 110) (1,6 10) (1,11 (1,210)) (1,13 10)

3 14 16 28

5 12 15

7 14 6 14

8 10 10

9 9 16

11 O
14 Q (

15

16 _ _ __

1

E^(1,2110) = MIN 14, 12,
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Similarly, g(1,4110) = 16. g(1,6110) = 2, g(1,10110) = 14,

F(1,12110) = 4, E(1,13110) = 2.

g = MIN
0 j: w(j)£H2(1110)

{ (1,jl10)} = MIN {8, 16, 2, 14, 4, 2} = 2

a10+1 = all = 6 or 13 (Ties can be broken arbitrarily;

choose all = 6)

t(1,6) = 2 + c16 = 2 + 9 =
16

11

3. Using closed node 6, g(1,jl11) = (1,jl10) for j = 2, 10, 12, 13

£(1,4111) = 14

CO = MIN {C(l,jll) = MIN {8, 14, 14, 4, 2} = 2
j: w(j)£H2 (1111)

l1+1 =12
= 13

t(1,13) = 2 + c1(13 ) = 2 + 13 = 15

4. Using closed node 13, (i,jj12) = (1,jlll) for j = 2, 10, 12

£(1,4112) = 12

s0 = MIN
j: w(j)£H2(1112)

{C(l,j112)} = MIN {8, 12, 14, 4} = 4

a12+1 = 13 = 12

t(1,12) = 9 + 4 = 13

5. Using closed node 12, (l,jl13) = (1,jl12) for j = 2, 4, 10

0 = MIN {(1,j13)} = MIN {8, 12, 14} = 8
j: w(j)EH2(1113)

a13+1 = 14 = 2

t(1,2) = 14 + 8 = 22
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6. Using closed node 2, (l,jl14) = (l,j 13) for j = 4, 10

= MIN s(l,j|14) = MIN {12, 14 = 12

j: w(j)cH2(ll14)

O14+1 = 5+1 = 4

t(1,4) = 10 + 12 = 22

7. Using closed node 4, (1,10115) = (1,10114) = 14

0 = 14, 15+1 = 16 = 10

t(l,10) = 8 + 14 = 22

H2(116) =

At this point, all nodes are closed. We have found the minimum

rectilinear distance to all origin-destination points from point 1 and

the example is concluded.
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