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Abstract

This paper presents a Markov process model and an approximate decom-
position technique for a discrete material transfer line with limited buffer
capacity. A fraction of the parts processed at some station in the line may
be scrapped or reworked to meet product quality requirements. Feeding back
the reworked parts leads to cycles in the flow of material. Processing times
are deterministic and identical for all machines and are taken as the time
unit. Machine specific times to failure and to repair are geometrically dis-
tributed. The model is analyzed through a decomposition into two-machine
systems. We develop new decomposition equations for machines perform-
ing split and merge operations. Production rates and inventory levels are
computed and compared to simulation results. The results indicate that the
method produces useful results for a variety of systems.
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1 Introduction

1.1 The Problem

Many stochastic models of production lines assume a purely linear flow of
material through a serial arrangement of machines interconnected by buffers
of limited capacity. The analysis of these models shows the impact of random
processing times and/or machine failures on system performance measures
such as production rates and inventory levels. It is often assumed that parts
processed at a machine are all perfect and therefore the throughput of all
machines in this linear arrangement is the same. However, in reality parts
may not always be of perfect quality. Defective parts may have to be reworked
and sent back into the main line or they may have to be scrapped. In both
cases, the flow of material is no longer purely linear, the throughput of the
machines is no longer identical, and the rework and scrapping processes may
have a major impact on the total system performance. We develop a simple
model of a transfer line extended by rework and scrapping machines to study
the impact of both product quality and the processing of defective parts on
the system behavior. This model allows for loops in the flow of material as
depicted in Figure 1.

Figure 1: System with a Loop in the Flow of Material

In Figure 1, the squares indicate unreliable machines M; and the circles
represent buffers B;, of limited capacity C;, between adjacent machines
M; and M,. In this system, bad parts may be detected at Machine Mj5.
At Machines M, and Mg, all bad parts receive some treatment such that
previous processing steps can be repeated. These parts are fed back into the
line at Machine M;. The approximation technique developed in this paper
makes it possible to determine production rate and inventory level estimates
for systems like the one in Figure 1. It is fast and reliable and can be used to
quickly narrow down the range of possible solutions when designing a transfer
line. Slower but more detailed simulation models can then be used for the
fine-tuning of the remaining candidate solutions to the design problem.
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1.2 The Model

To analyze production lines with scrapping and rework, we extend an existing
model of a transfer line [Gershwin, 1987, Gershwin, 1994] by allowing for two
additional phenomena concerning the flow of material. These two phenomena
are split and merge operations. The previously existing model as well as the
numerical technique to determine performance measures assumed a purely
linear flow of material. This situation is depicted in Figure 2.

Figure 2: Production Line with Linear Flow of Material

The system produces discrete parts. Processing times are assumed to
be deterministic and identical for all machines and are taken as the time
unit. A machine processes a part during a time unit if it is not starved
(at least one input buffer is non-empty), not blocked (none of its output
buffers is full), and it does not fail. We assume geometrically distributed
operation dependent failures (ODFs) at the machines, i.e. a machine M;
which is is neither starved nor blocked and could thus process a part fails
at the beginning of a period with probability p;. If it is either starved or
blocked, it cannot fail. Machine M; is repaired at the beginning of a period
with probability r; if it was down during the previous period, i.e. times to
repair are also geometrically distributed.

We also assume blocking after service (BAS): Machine M; is blocked if
it has processed a part and finds its output buffer full. In this case, the
processed part remains at the workspace of Machine M; until a space in
the downstream buffer becomes available. We further assume that machine
states change (due to failures and repairs) at the beginning of periods whereas
buffer levels change (due to completion of processing) at the end of periods.
Travel times within buffers are zero. A more detailed and formal description
of the model is given in [Gershwin, 1994, pages 71-74].

An example of the first new phenomenon which we model is the split
operation depicted in Figure 3. In this system, there is one machine, M,,
which has multiple alternative immediate successors. After processing a part,
Machine M, sends this part to one of its immediate successors. Thus, if at
time ¢ a part is sent from Machine M; to M3, then nothing is sent to M, and
Ms. We use this concept of split operations to model a probabilistic routing
of parts due to random quality properties such as being “good” or “bad”.

8



Figure 3: System with a Split Operation

We assume that the routing decision is made after the part has been
processed. The processing step at the split machine may therefore represent
a quality inspection. Thus, if Machine M, does not process a part because
it is down, starved, or blocked, no routing decision is made. We model
the routing decision as the flip of a multi-sided coin. That is, the choice
of the succeeding machine for any part is random and independent of the
state of the surrounding machines and buffers and the choices for previous
parts. (This may be a simplification since in reality, machine failures and the
production of bad parts may be correlated.) Formally, if D(z) is the set of
buffers immediately downstream of Machine M;, a part processed by Machine
M; is sent to M, with probability d; 4 where 3°(; yepiy iy = 1. The directed
arcs in Figure 3 between Machine M, and its immediately succeeding buffers
are broken to indicate that they represent alternative routings. We will use
these alternative routings to model phenomena such as scrapping or rework
of bad parts.

The split in the flow of material after Machine M, in Figure 3 should
not be confused with a disassembly operation. In a disassembly operation,
there is no choice between different downstream buffers as each downstream
buffer receives one part whenever an operation has been performed by the
disassembly machine. The split operation in this paper, however, is due to a
random choice between alternative routings and only one of the alternative
downstream buffers receives the part. Note that the routing depends solely
on the random quality properties of the respective part: If we have produced
a good part and the downstream buffer holding good parts is full while the
buffer holding bad parts is not full, the good part remains at the workspace
of its current machine. This machine is now blocked until a buffer space for
good parts becomes available.



Figure 4: System with a Merge Operation

The second phenomena which we introduce into the analysis of production
lines is the merge operation shown in Figure 4. Here, Machine M3 has two
immediate predecessors, M; and M,. Whenever Machine M3 performs an
operation, it takes a part out of either Buffer B3 or B;3. Machine Mj is
starved if both buffers are empty.

We assume that from the point of view of Machine M3, parts coming from
M, and M, are identical. This allows us to model the re-entrance of reworked
parts as in Figure 1. We have to specify how a merging machine selects
between its two input buffers. For the sake of simplicity, we assume that a
merging machine uses a priority ranking. In Figure 4, the priority one buffer
B 3 will always be chosen unless it is empty. It is only in this case that a part
is taken from the priority two buffer By 3. In the graphical representation
in Figure 4, the priority one buffer B, 3 is depicted with a closed connection
to its downstream machine whereas the connection between the priority two
buffer B; 3 and the downstream machine is open.

Note that Machine M, does not perform an assembly operation as there
is a choice between two input buffers which hold the same part type (from
the perspective of Machine M,). In an assembly operation, a part is taken
from each input buffer as different part types are matched in the assembly
process.

If we allow for machines where the flow of material splits or merges, we
can model systems like the one shown in Figure 1. In Figure 1, Buffer Bg,
containing the reworked parts has priority over Buffer B; ». Giving the higher
priority to reworked parts leads to a lower total inventory and decreases the
probability of deadlock situations.

We finally state the assumptions that each splitting machine has exactly
one immediate predecessor, that each merging machine has exactly one suc-
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cessor, that all input machines without preceding machines are never starved,
that all output machines without succeeding machines are never blocked, and
that there is at least one input and one output machine in the system. If
each machine has no more than one predecessor and successor, the transfer
line model in [Gershwin, 1987] results.

1.3 Related Research

Several researchers have studied unreliable transfer lines and/or assembly/-
disassembly (A/D) systems with limited buffer capacity. A recent and com-
prehensive survey is given by [Dallery and Gershwin, 1992]. Their review in-
cludes the literature on reliable two-machine transfer lines, on transfer lines
without buffers as well as longer lines with more than two machines and A/D
systems. Farlier reviews are [Koenigsberg, 1959], [Buxey et al., 1973] and
[Buzacott and Hanifin, 1978|.

Transfer lines and A /D systems are often modeled as Markov processes to
allow for an analytic solution or an accurate approximation. Many of these
approximations are based on a decomposition of the complete system into
a set of single server queues [Hillier and Boling, 1967] or two-machine trans-
fer lines [Gershwin, 1987, Sevast’yanov, 1962, Zimmern, 1956] which can be
evaluated analytically. The main advantage of analytical approaches as op-
posed to simulation is that the analytical techniques are much faster. This
is crucial if a larger number of different systems has to be evaluated in order
to find a configuration which is optimal with respect to some objective.

When analyzing the related work with respect to two-machine models and
decomposition approaches, we can distinguish ( [Dallery and Gershwin, 1992])

e Markov processes with discrete state and discrete time,
e Markov processes with discrete state and continuous time, and

e Markov processes with mixed state and continuous time.

In the first two cases, the state is discrete since discrete parts are produced
and machines can be either operational (up) or under repair (down). Time
is divided into discrete periods in the first case or treated as continuous in
the second. The third group of Markov processes assumes that continuous
material is produced in continuous time (which leads to a continuous buffer
level), but machine states are discrete.

11



Type of Analysis of Approximate Decomposition

Process Two-Machine Models Approaches
Discrete [Artamonov, 1977] [Dallery et al., 1988]
State/ [Buzacott, 1967] [Gershwin, 1987]
Discrete [Buzacott and Hanifin, 1978] [Gershwin, 1991]
Time [Gershwin and Schick, 1983] [Helber, 1997]

[Helber, 1995]
[Okamura and Yamashina, 1977]
[Yeralan and Muth, 1987]

Discrete [Buzacott, 1972] [Choong and Gershwin, 1987]
State/ [Gershwin and Berman, 1981] [Gershwin, 1989]

Continuous [Sastry and Awate, 1988] [Helber, 1997]

Time

Continuous [Gershwin, 1994] [Burman, 1995]

State/ [Gershwin and Schick, 1980] [Dallery and Xie, 1989]
Continuous [Sevast’yanov, 1962] [Di Mascolo et al., 1991]
Time [Wijngaard, 1979]

[Zimmern, 1956]

Table 1: Two-Machine Models and Approximation Approaches

Table 1 gives an overview of two-machine models and decomposition
approaches for the case of unreliable machines and limited buffer capac-
ity. Current textbooks covering these and similar techniques in detail are
[Altiok, 1996, Buzacott and Shanthikumar, 1993, Papadopoulus et al., 1993]
as well as [Gershwin, 1994] which gives a thorough introduction into how to
derive these models. In this paper, a two-machine transfer line decomposition
of the discrete state-discrete time type will be developed.

The few papers which address scrapping of bad parts in the context of
performance analysis of production lines differ with respect to the assump-
tions about scrapping of bad parts. [Okamura and Yamashina, 1977] assume
in a two-machine model that whenever a stage breaks down, its current part
is scrapped. [Shanthikumar and Tien, 1983] develop a two-machine model
where parts are scrapped with some probability when their current ma-
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chine fails. [Jafari and Shanthikumar, 1987] extend this two-machine model
to longer transfer lines and present an approximation technique to deter-
mine production rates and buffer levels. The scrapped parts leave the line
immediately and can never be reworked. Some papers consider scrapping
and/or rework for two- and multistage [Yu and Bricker, 1993] systems with
unlimited buffer capacity.

In a postdoctoral thesis, [Schmidbauer, 1995] introduces a decomposition
of a transfer line with stochastic demand into a set of two-buffer, one-machine
subsystems with a stochastic demand indicator behind the second machine
(see also [Schmidbauer and Rosch, 1994]). Introducing this demand indica-
tor allows to determine service levels. He also considers a random routing
due to a split operation, but he only models the case of two instead of n
output buffers and he does not analyze merge operations.

[Biirger, 1997] develops a decomposition approach for reliable and unreli-
able linear transfer lines which allow for scrapping of parts at each machine.
Scrapped parts leave the system and cannot be reworked.

[Gopalan and Kannan, 1994] present a two-machine zero-buffer model in
which bad parts can be reworked or scrapped. Rework takes place at the
machine where the bad part is produced and starts immediately.

[Pourbabai, 1990] describes a model with more than two machines and
non-zero buffers, but assumes that if a blockage occurs, the blocked work-
pieces are permanently lost.

We are not aware of papers which explicitly consider a random routing of
parts and loops in the flow of material due to rejects, rework, or scrapping
of bad parts in the presence of limited buffers and unreliable machines.

The work most closely related to the research reported below is the trans-
fer line model in [Gershwin, 1987] and a Ph.D. thesis on flow line analysis
[Burman, 1995]. Burman shows how to reformulate decomposition equations
in a way that leads to a dramatically improved convergence behavior.

The remainder of the paper is organized as follows: In Section 2, we derive
decomposition equations for machines which perform split and merge oper-
ations. Section 3 describes an iterative algorithm based on these equations
and on results by [Dallery et al., 1988] and [Burman, 1995]. Production rate
and buffer level estimates obtained by this algorithm are compared to results
from a simulation model in a large-scale numerical study in Section 4. We
show a wide range of systems where the method works well and some few
cases where it should not or cannot be used. Section 5 contains concluding
remarks and suggestions for future research.

13



2 Derivation of Decomposition Equations

2.1 Principle of the Decomposition Technique

The state space of the Markov process model developed in Section 1 is so
large that we cannot compute its steady-state probabilities. The reason is
that there can be an extremely large number of combinations of different
machine states and buffer levels if there are more than two machines and one
buffer.

The state space for a two-machine, one-buffer system with N buffer
spaces, however, is relatively small: Each of the two machines in a two-
machine system can be either up or down, i.e. there are 2 -2 = 4 different
machine states. The buffer can be empty or hold up to N parts, that is
there are N + 1 buffer levels and the total size of the state space is there-
fore 4(N + 1). Some of these states may be transient, i.e. their steady-state
probability is zero. An example is the situation that no workpiece is at the
second machine or in the buffer and that both machines are down: In the
case of operation dependent failures, the second machine can only fail while
it is processing a workpiece, and therefore this is a transient state.

The computational effort to solve a two-machine model of the type given
above is negligible. Solving the model in the context of performance evalu-
ation means to determine all steady state probabilities and compute perfor-
mance measures such as production rate and inventory levels.

To determine performance measures for the system modeled in Section 1,
we decompose it into a set of two-machine transfer lines of the same type,
i.e. with unreliable machines and limited buffer capacity. The reason for
this approach is that the virtual two-machine systems arising in the decom-
position can be solved easily. The decomposition to be derived below is a
generalization of the one given in [Gershwin, 1987].

For each buffer B;; between two machines M; and M;, we introduce a
virtual upstream machine M,(7,7) which represents to “an observer in the
buffer of the original line” [Dallery and Gershwin, 1992] the flow of material
into this buffer. A virtual downstream machine My(j,7) represents the flow
out of this buffer in the original line. The split system depicted in the upper
part of Figure 5, for example, is decomposed in three two-machine systems
corresponding to the buffers in the original system as shown in the lower part
of Figure 5.

We have to determine the failure and repair probabilities p,(j,1), r.(7,7),

14
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Figure 5: Example of a Decomposition

pa(J,1), and r4(7,¢) of these virtual machines for each line L(j,i). Given these
parameters, we can efficiently compute the steady-state probabilities of all
the virtual two-machine lines using the procedure by Gershwin and Schick
reported in [Gershwin and Schick, 1980, Gershwin, 1994]. Performance mea-
sures of the underlying model can then be derived from the steady-state
probabilities of these two-machine models.

The goal of the derivation in the remainder of Section 2 is therefore to
determine the failure and repair probabilities for the virtual machines in the
decomposition. This leads to a system of equations that has to be solved
simultaneously as the perspectives of different observers in different buffers
of the original system are interrelated. To solve these equations, a version of
the iterative DDX-algorithm ([Dallery et al., 1988]) is used.

Several of the decomposition equations are approximations. For this rea-
son, the performance measures determined by the decomposition are also
approximations and their accuracy has to be checked against a simulation
model.
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2.2 Some Notation

Let «;(t) denote the state of the real machine M; where {e;(¢) = 1} is the
event that Machine M; is up and {a;(¢t) = 0} the event that Machine M;
is down in period t. Similarly, o, [(¢,m),t] and aq4[(¢,m),t] denote the state
of the virtual up- and downstream machines in the two-machine line L(z,m)
related to Buffer B, ,,.

The conditional probability that a part moves from Machine M; to Buffer
Bi  at time ¢, given that at time ¢ the part is processed by Machine M;, is
d;m. Let prob[{f;(t) = m}| denote the unconditional probability that a part
is processed by Machine M; at time ¢ and then it goes to Buffer B, ,,. Since
Machine M; is occasionally starved, blocked or down, prob[{3:(t) = m}] #
dim-

The physical buffer between Machines M; and M,, can hold up to C;,,
parts. The extended storage N(z,m) related to Line L(z,m) in the decompo-
sition includes the workspaces at the virtual machines M, (i, m) and My(7, m),
i.e. N(z,m) = Cim + 2. A part is assumed to be stored in the work area of
an upstream machine if it has been processed and cannot be removed due to
a full buffer immediately downstream, that is, when the upstream machine
is blocked.

Let p[(¢, m); nay,oq] denote the steady-state probability of finding the vir-
tual upstream machine M, (7, m) in Line L(z,m) in state «,,, the downstream
machine My(7,m) in state ag and the bufler at level n.

2.3 Conservation of Flow

The conservation of flow (COF) property for systems with split and merge
operations differs from those for transfer lines and A/D networks. In A/D
systems, the rate of flow of material through each buffer is the same. In a split
or merge system, however, the flow to each machine M; over all immediate
upstream buffers U(z) equals the flow from each machine over all immediate
downstream buffers D(¢). Define E; as the production rate of Machine M;
in the real system and £;; as the production rate through Buffer B;;.
The conservation of flow equation for the real system

B= Y Bi= Y B v (1)

(4,0)€U(3) (i,q)€D(%)

states that the flow into a machine equals the flow out of the machine. The
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decomposition must be performed in a way that a similar condition is met
by the production rates in all the virtual two-machine lines.

Define E(j,¢) and E(1,q) as the production rate in the decomposed two-
machine lines L(j,7) and L(z, g), respectively. The decomposition must sat-
isfy the following conservation of flow equation

Y. BGi)= Y E(,q), Vi (2)
(3,1)eU (i) (4:9)€D(3)
which couples the solutions for the different two-machine models.
E(1) is the total production rate related to Machine M; in the two-machine
lines L(i,q) or L(j,¢), i.e.

EG)= > E(.g= > E@i) Vi (3)
(i:0)€D(i) (3)€U (i)
The following condition must hold in addition if we assume that a part
which has been processed by Machine M; is routed to Machine M,, with a
routing probability d; ., irrespective of buffer levels or machine states:

4 = E(i,m)
" Cigens Bl 9)

It says that the ratio of the flow rates through the different output buffers
of Machine M; is determined by the routing probabilities. This is because the
routing decision is made after the part has been processed. If the selected
buffer, for example for good parts, is full, the part just processed remains
at the workspace of the machine which is now blocked until a space in the
buffer becomes available. The COF equation for the transfer line model in
[Gershwin, 1987] is a special case of (2) where each machine has no more
than one input buffer and output buffer, respectively.

The COF equation serves a stopping criterion in the iterative algorithm
that is based on the decomposition. The decomposition must lead to a set of
failure and repair parameters for the virtual machines such that production
rates in the two-machine lines satisfy the conservation of flow equations for
all the machines to a prespecified accuracy.

(i,m) € D(i),Vi (4)

2.4 Flow Rate-Idle Time Relationship

In this section, a set of equations is derived that can be used to determine
the failure probabilities p,(j,%) and p4(7,7) of the virtual machines M,(y,1)
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and My(7,7) in each line L(j,7) of the decomposition. (An additional set of
equations is needed to compute the repair probabilities.) The equations are
needed in a form that depend on parameters of real and/or virtual machines
and performance measures of two-machine lines as these are the only available
quantities in a two-machine decomposition.

The flow rate through a machine is determined by the failures and repairs
of the machine and by the probability that a machine is starved or blocked
due to events that happen up- or downstream in the system. The flow rate-
idle time equation relates the production rate of a machine to these two
factors.

The effect of failures of Machine M; can be analyzed under the assumption
that M; operates in isolation. In isolation, a Machine M; is always either up
and working (and waiting for the next failure), or it is down (and waiting for
the next repair).

The mean time to failure MTT'F; of a Machine M; which is never starved
nor blocked is the inverse of the failure probability, i.e.

1
MTTF; = —, (5)
Di

and a similar equation holds for the mean time to repair MTT R; with

1
MTTR; = —. (6)

L
Define ¢; as the isolated production rate of the real machine M; if it is
never starved nor blocked [Gershwin, 1994, p. 75], i.e. the fraction of time
Machine M; is up. Since a machine operating in isolation can only be up or
down, the following holds:

_ MTTEF; o

~ MTTF;+ MTTR;  ri+p; ")
Machine M; can only fail if it is neither starved nor blocked. All input

buffers must be empty for Machine M; to be starved whereas one full output

buffer is sufficient to block it. The flow rate-idle time (FRIT) relationship is
therefore

€

{n(l,7) > 0, some ({,7) € U(1)} and

Ei=eiprob| 10 q) < N(iyq), V(i q) € D()) ®)
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where n(l,7) denotes the buffer level in Buffer B; ;. It says that the production
rate E; is the probability that Machine M; is up and neither blocked nor
starved.

We assume that the probability of a machine being blocked and starved
simultaneously is negligible. This is a common assumption in the analysis of
linear transfer lines which helps to approximate the probability that M; is
neither starved nor blocked. A similar assumption appears to be reasonable
in the analysis of split and merge systems.

The reason is that, compared to a purely linear transfer line, having two
instead of one input buffer makes starvation of Machine M; ceteris paribus
less likely. Similarly, having several output buffers makes blocking less likely.
Thus, for a machine with multiple predecessors or successors, the probability
of it being starved and blocked simultaneously is smaller than for a machine
in a linear transfer line.

If a machine has multiple output buffers due to a split operation, only one
of these buffers can be full at any time. However, the two input buffers of a
merge machine can be empty simultaneously. The probability of having an
empty priority two buffer depends on the level of the corresponding priority
one buffer: The priority two buffer is more likely to be empty if the priority
one buffer is empty as well. As an approximation, however, we assume that
input buffer levels are independent to find

E@) w~ ei[(l—( 11 prob[{n(l,i)zO}])

L)eU(7)

i,q)€D(4)

(1 ”, > prob[{n(i,q) = N(Z}q)}ﬂ- (9)

Given that the probability of a machine being blocked and starved simul-
taneously is negligible, we can further approximate:

E(i) =~ e [ 1 — JI prob[{n(l,:)=0}]

(L,H)eU (@)
— Y prob[{n(i,q) = N(i,q)} (10)
(i.0)eD()

Define e4(¢,q) = r4(2,¢)/(ru(7,¢) + pu(i,q)) as the isolated production
rate of the virtual upstream machine in the two-machine line L(7,q) and
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eq(l,7) = rq(l,7)/(pa(l,7) + r4(l,¢)) as the isolated production rate of the
virtual downstream machine in Line L(l,7). The two-machine flow rate-idle
time equations [Gershwin, 1994, p. 81-82] can be expressed as

NG o =1 EG)
prob[{n(i,q) = N(i,q)}] =1 enliq) (11)
and
AP - ()
prob[{n(l,7) = 0}] =1 eall1) (12)
yielding
. E(l,1) E(1,q)
E(i)=¢ |1 — 1— ) - A I 3
v {1 (l,z‘gf(z‘)( ed(l”)) (i,q)ze;)(i)( eu(lﬂ)ﬂ 1)

This leads to two sets of equations used to determine the parameters of
the two-machine lines:

ro(i,m) + pu(i,m) 1

ru(7,m) ey, m) =K (14)
T'd(j,i) +pd(]7l) _ 1 _ oy
WG G (%)

where

E(2 E(lz E(i,
o Jel + Iaeve (1 — ;di(f,%) + 2(i.q)eD(i)g#m (L — Z((T,%) (16)
! E(i,m)
EG E(i,q)
K, = [JJ + Xagenml — oag) — 1 ] 1 an
E(7,1)

E(l)
ev il — ed(l,i))

This is a useful result as it relates, for example for Line L(z,m) in (14),
failure and repair probabilities r,(¢,m) and p,(7,m) to the given isolated effi-
ciency e; of Machine M;, to the isolated efficiencies e4(1,¢) and e,(i, ¢) of other
virtual machines, and to production rates E(l,7) and E(:,q) in other two-
machine models of the decomposition. Whenever the parameters r,(¢,m) and
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pu(i,m) for the upstream machine M, (¢,m) of Line L(i, m) are updated, all
these other quantities are given or can be easily computed.

Note that the term K; in (16) related to Line L(i,m) contains parame-
ters and performance measures of adjacent two-machine systems other than
L(z,m). Separating these parameters from p,(¢,m) and r,(z,m) in (14) will
later allow us to solve the complete set of decomposition equations simul-
taneously in a way proposed in [Burman, 1995] which leads to an improved
convergence behavior of the algorithm. The same holds for K3 and the down-
stream parameters py(7,7) and r4(7,7). The FRIT equation for the transfer
line model in [Gershwin, 1987, Gershwin, 1994] is again a special case of (14)
and (15).

2.5 Resumption of Flow Equations I: Split Operations

A second set of equations is required to determine the repair probabilities
ro(7,m) and rq(z,m) for each line L(z,m) in the decomposition. Since the
flow resumes after each of these repairs, the equations are frequently called
resumption of flow equations [Gershwin, 1994]. They are required in a form
similar to the flow rate-idle time equations, i.e. one that requires quantities
that are either given system parameters or that can be computed from other
two-machine models in the decomposition.

These resumption of flow equations reflect the perspective of an observer
in a buffer. His perspective depends on whether he is up- or downstream
of a split or merge system. For this reason, two different sets of resumption
of flow equations have to be derived. However, the approach is the same in
all cases and the results show a common structure. In this subsection, split
operations are analyzed. Merge operations are studied in the next subsection.

The resumption of flow equations for a purely linear transfer line as de-
picted in Figure 2 are given in [Gershwin, 1987, Gershwin, 1994]. The first
new component which we model in Figure 6 consists of a machine M; which
has exactly one upstream machine denoted as M, and multiple downstream
machines.

Each part processed at Machine M; in Figure 6 is randomly routed to
one of Machine M;’s downstream machines. To produce a part at time ¢
and send it to Machine M,, with (¢, m) € D(i), several conditions must hold
simultaneously. First, Machine M; must be up at time ¢. Second, it must
not be starved, i.e. the level n[(j,7),t — 1] of its one and only upstream
buffer B;; must be positive. Third, it must not be blocked. Since we assume
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Figure 6: Split System and its Decomposition

blocking after service this means that there must not be an already processed
part waiting at the workspace of Machine M; for its selected output buffer
to become non-full. In the two-machine model used for the decomposition,
the workspaces at the two machines are included in the extended buffer size:
N(i,m) = Cim + 2. Thus, if Machine M; is blocked due to an already
processed part which is waiting for a space in Buffer B; ., we have n(i,m) =
N(i,m) for Line L(z,m). For this reason, Machine M; is not blocked if we
have n|(z,q),t — 1] < N(i,q),V(:,q9) € D(i). Finally, the part produced at
time ¢t must be sent to Machine M,, instead of being sent to one of the other
machines M, with (z,¢) € D(¢),q # m.

2.5.1 Upstream Machine

To an observer in Buffer B; ., the virtual upstream machine M,(z,m) is up
at time ¢ when a part enters Buffer B;,, at time ¢t or when Buffer B, ,, is full
and M,(7,m) is blocked (since a blocked machine cannot fail). For this to
happen, Machine M; must be up, it must not be starved or blocked due to a
full buffer B, ;,q # m, and the processed part must be sent to Machine M,,.
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Define {a,[(z,m),t] = 1} as the event that the virtual upstream machine
M, (i,m) is up at time ¢:

{a[(i,m),t] =1} iff {ei(t) =1} and (18)
{nl(4,7),t — 1] > 0} and
{nl(i,9),t — 1] < N(1,9), V(i,q) € D(i),q # m} and

{Bi(t) = m}.
The first condition on the right hand side of (18) says that Machine M;

must be up. Since we assume in our model that a split machine has exactly
one input buffer denoted as B;;, the second condition demands that this input
buffer is not empty. The third condition says that Machine M; must not be
blocked due to a part which is waiting for a space in Buffer B;, (¢ # m),
i.e. one of the other buffers downstream of Machine M;. (If Machine M;
is blocked due to a part which is waiting for a space in Buffer B, ,,, then
Machine M, (z,m) as seen from an observer in Buffer B; ., is up as it is trying
to deliver a part.) Finally, the part produced at time ¢ must be randomly
routed to Machine M,,. This is denoted as the event {3;(t) = m}.
Machine M, (¢, m) is down if it is not up, i.e:

{a[(i,m),t] =0} iff {eu(t) =0} or
fnl( i), — 1] = 0} or
{nl(t,9),t = 1] = N(i,9),
for some (¢,q) € D(i),q # m} or
{Bi(t) = ¢, for some (7,q) € D(i),q # m} (19)

In (19), the different events which can force Machine M, (7, m) down are
approximately mutually disjoint: If Machine M; is either starved or blocked
it can neither fail nor send a part to a M, with (¢,q) € D(i),q # m. If a
part is sent to Machine M,, M, cannot be down. Finally, we have already
assumed in the derivation of the flow rate-idle time equation on Page 19
that the probability of a machine being blocked and starved simultaneously
is very small and can be neglected in an approximation.

The repair probability r,(z,m) of the virtual upstream machine M, (i, m)
is the probability of seeing a part being sent into Buffer B;,, at time ¢ + 1
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given that no part was sent into Buffer B; ,, at time ¢ and that Machine M;
was not blocked due to a part for Buffer B, ,, i.e. n[(¢,m),t — 1] < N(i,m).
This can be written as

ru(i;m) = prob[{eu[(i,m),t+ 1] = 1} | {aul(i,m),?] = 0} and
{n[(i,m),t = 1] < N(i,m)}] (20)

= prob [{au[(i,m),t + 1] =1} {{ai(t) =0} or

{rl(5,9),t = 1] =0} or
{nl(i,q),t — 1] = N(i,q), for some (i,q) € D(i),q # m} or
{Bi(t) = q, for some (i,q) € D(i),q # m}} and

{n[(z,m),t =1] < N(z,m)}} (21)

if we use the definition of an upstream machine being down (19). Since
the different events which force Machine M, (i, m) down are approximately
mutually disjoint, we can break equation (21) down by decomposing the
conditioning event to find:

ro(i,m) =~ A(,,m)W(i,m)+ B(i,m)X(i,m)

+ Y [c@-,q(z',m)y;,q(i,mprDi,q(i,m)z,-,q(i,m) (22)
(i,9)€D(i),q#m

where we define

A(i,m) = prob[{au[(i,m),t—l- 1] =1}
{as(t) = 0} and {n[(i,m),t — 1] < N(i,m)}] (23)

W(i,m) = prob[{ei(t) =0} and {n[(i,m),t ~ 1] < N(i,m)} |
{au[(i,m),1] = 0} and {n[(i,m),t— 1] < N(i,m)}] ~ (24)
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B(i,m)

X(i,m)

Civ‘)(i7 m)

Y;,q(ia m)

Di’q (27 m)

Zi,q(ia m)

prob | {au[(i,m), 4 1] = 1} |
{nl(G1),t — 1] = 0} and {n[(i,m),t = 1] < N(i,m)}] (25

prob [{n[(j,i),t — 1] =0} and {n[(¢,m),t — 1] < N(i,m)} |
{ul(i,m), 1] = 0} and {n[(i,m),t ~1] < N(i,m)}|  (26)

prob [{au[(i,m),t + 1] =1} | (27)
{nl(i,q),t — 1] = N(i,q)} and {n[(i,m),t — 1] < N(i,m)}]

prob [{n[(i,q),t — 1] = N(i, )} and (28)
{nl(é,m),t —1] < N(i,m)} |
{ou[(i,m), 1] = 0} and {n[(i,m),t = 1] < N(i,m)}]  (29)

prob[{au[(i,m),t—l— 1] =1}
{B:(t) = ¢} and {n[(i,m),t — 1] < N(i,m)}] (30)

prob[{8:(t) = ¢} and {n[(3,m),t — 1] < N(i,m)} |
{au[(i,m), 1] = 0} and {n[(i,m),t — 1] < N(i,m)}|  (31)

We now determine the conditional probabilities. Probabilities A(7, m) and
W (i, m) deal with a possible failure of Machine M; itself. In (23), A(¢,m) is
the probability that flow resumes into Buffer B;,, at time ¢ 4+ 1 given that
Machine M; was down at time t. For this to happen, Machine M; must be
repaired (with probability r;) and the part which is then produced must be
sent into Buffer B, ., (with probability d; ), i.e.

A(z,m) = T,’di’m (32)

In (24), W (2, m) is the probability that a failure of the virtual machine
M, (¢,m) is due to a failure of Machine M;. It can be expressed in terms
of the conditional probabilities of all the other events which may lead to a

failure of Machine M, (i, m)
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Wiim)=1=X(m)— 3 (Yiglism)+ Ziglism))  (33)
(i:9)€D(3),9#m
since all these conditional probabilities add up to 1.
Probabilities B(i,m) and X(z,m) account for starvation of Machine M;.
In (25), B(¢,m) is the probability that flow resumes into Buffer B;,, at
time ¢t 4+ 1, given that Machine M; was starved at time ¢. The reason for
an empty upstream buffer is an upstream machine failure. Therefore, the
virtual upstream machine M,(j,¢) must be repaired and Buffer B;,, must be
selected, so

B(l7m) = 'f‘u(]‘,i)d,“m (34)

In (26), X(7,m) is the probability that Machine M; is starved given that
Machine M,(z,m) is down. Since event {n[(j,¢),t — 1] = 0} implies event
{au[(?,m),t] = 0}, we can write

X(i,m) = prob|{n[(j,i),t — 1] = 0} and {n[(i,m),t — 1] < N(i,m)}
and {ey[(4,m), ] = 0} |
{au(i,m), 1] = 0} and {n[(i,m),t —1] < N(i,m)}]  (35)

Using the definition of conditional probability, this can be written as a
quotient, i.e.

: _ {nl(G,9),t = 1] = 0} and {n[(i,m),t — 1] < N(i,m)} | .
X(i,m) = prob[ and]{au[( m). 1] = 0} ) ]

prob|{au[(i,m),1] = 0} and {n[(i,m),t — 1] < N(i,m)}] (36)

Since we assume that the probability of Machine M; being starved and
blocked simultaneously is negligible, the event {n[(j,:),t — 1] = 0} implies
{n[(z,m),t — 1] < N(i,m)}. It furthermore implies that Machine M, (3, 1)
is down as the only reason for Machine M; to be starved is a failure of
M., (7,2). For this reason, the numerator in (36) is approximately p[(7,1); 001]
where p[(J,¢); nay,aq] denotes the probability of finding the virtual upstream
machine M,(j,%) in Line L(j,%) in state v, the downstream machine M(7,1)
in state ag and the buffer at level n.
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As there must be exactly one repair for each failure, the following equa-
tion [Gershwin, 1994, p. 81-82] for the two-machine model by Gershwin and
Schick holds exactly as in the transfer line decomposition [Gershwin, 1987]

ru(i,m) prob[{eu[(i,m),#] = 0} and {n[(i,m),t — 1] < N(i,m)}]
= pu(i,m) prob[{au[(i,m),t] =1} and {n[(i,m),t = 1] < N(z,m)}]
= pu(1,m)E(i,m) (37)

where E(i,m) is the production rate of Line L(z,m) in the decomposition.
The denominator in (36) can hence be written as:

prob [{au[(i,m),t] =0} and {n[(z,m),t —1] < N(z,m)}}

_ pu(t,m)E(1,m)
ry(7,m)

(38)

Using these expressions for the numerator and denominator of (35), we

find:

Pl(J,2); 001]r, (i, m)

X@m) = pali,m)E(i, m)

(39)

In (28), C;4(z,m) is the probability that flow resumes into Buffer B; ,
after a blockage of Machine M; due to a failure of Machine My(z, ¢). It is the
repair probability of My(i,q) times the probability of sending the part then
processed at Machine M; to M,,:

Ci,q(i, m) = Td(i, q)di,m (40)

In (29 ), Y; ,(¢,m) is the probability that Machine M; is blocked due to a
full buffer B;,, given that M,(z,m) is down. The expression for Y; (i, m) is
derived like the one for X(¢,m) to find:

) N(i,q)10]m.(s,

e (i) B0 NG )10, )
’ pu(z,m)E(i,m)

We now derive an expression for Z; ,(i,m), the probability that a failure

of Machine M, (¢, m) is due to sending a part from Machine M; to My, q¢ # m.

(41)
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Since event {8;(t) = ¢} implies events {e,[(z,m),t] = 0} and {n[(:,m),¢ —
1] < N(i,m)}, we can write

{Bi(t) = q} and {n[(z,m),t — 1] < N(i,m)}
Z; 4(1,m) = prob and {a,[(7,m),t] = 0}] (42)
{au[(i,m), 1] = 0} and {n[(i,m),t — 1] < N(z,m)}

Using the definition of conditional probability and equation (37), this can
be written as

{8i(t) = g} and {n[(s,m), ¢ = 1] < N(z,m)} |
Zig(t,m) = prob[ and {auc[l( m), ] = 0} ] :

prob[{au[(z,m), t] =0} and {n[(z,m),t — 1] < N(z,m)}]
= prob[{8i(t) = ¢}]

ro(Z,m)

pu(i,m)E(i,m)

(43)

To determine prob[{3;(t) = q}], we first analyze in Table 2 the impli-
cations of sending a part from Machine M; to M, at time ¢, i.e. the event
{Bi(t) = q}: If at time ¢ a part is processed by Machine M; and sent to M,,
the virtual upstream machine M, (¢, g) seen by an observer in the correspond-
ing buffer B; 4 is up. Since Machine M; is not blocked at time ¢, this implies
that the buffer level n[(z,q),¢ — 1] is in the interval [0, N(7,q) — 1]. However,
there is no implication concerning the state of the virtual downstream ma-
chine My(,q). These implications are summarized in the first row of Table

2.

Line Buffer Level Machine State

L(i,q) | 0<n[(5,9),t =1 < N(i,q) — 1 | au[(d,9),t] =1,
ad[( q9),t € {0 1}

L(i,k), | 0 <n[(3,k),t = 1] < N(i,k) = 1 | ew[(3,k),t] =

k #q, (7, )t]€{01}

k#m

L(7,4) |1 <n[(5,i),t—1] < N(j,7) au[(7,1),t] € {0,1},
ad[(], ) t] =1

Table 2: Implications of Event {5;(t) = ¢}
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If the part processed at Machine M; at time ¢ is sent to Machine M, with
g # m, then no part is sent into any other buffer B;; downstream of M;.
For this reason, the virtual upstream machine M, (¢, k) corresponding to any
line L(i,k) is down. The buffer corresponding to Line L(i, k) cannot be full
since Machine M; is not blocked. However, nothing is implied with respect
to Machine My(7, k). It can be up or down. See the second row of Table 2.

The last set of implications we have to study are those on the single
upstream line L(j,¢). If Machine M; is processing a part, then the virtual
downstream machine My(j,7) corresponding to Line L(7,¢) is up and not
starved, i.e. the buffer level n[(j,¢),t — 1] is in the interval [1, N(7,7)]. How-
ever, nothing is implied with respect to the state of Machine M,(7,1).

We use the implications listed in Table 2 to write:

[ {0 <n[(i,q),t — 1] < N(i,q) — 1} and
{au[(zaq)7 ]— 1} ang {ad[(i7q)7t] € {O’ 1}}
{{o < nl(i,k),t —1] < N(i,k) — 1} and
prob[{3i(t) = ¢}] = prob |  {a.[(i,k),t] = 0} and {a4((,k),t] € {0,1}},

V(i k) € D),k # m, k # q}}

and

{1 <n[(5,9),t = 1] < N(j,1)} and
| {ewl(s,9),] € {0,1}} and {au[(5,7),¢] = 1}

We approximate the probability on the right hand side of this equation
by treating the events for Line L(i,q), Lines L(i,k),k # m,k # g, and Line
L(j,%) as if they were independent:

prob[{Bi(t) = g}]
~ prob | 105 nlli,),t 1] < N(i,q) — 1} and } ,
L {au[(z,q), ]— 1} and {ad[(i7Q)7t] € {0’ 1}}
[ {{0 < nl(i,k),t — 1] < N(i,k) — 1} and
prob {a,[(7,k),t] = 0} and {e[(7,k),t] € {0,1}},
V(i, k) € D(i), k # m, k # q}}
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{O‘U[(jvi)vt] € {071}} and {ad[(j7i>at] = 1}

These three probabilities can be obtained from the solutions of the two-
machine lines L(¢,q), L(7, k), and L(j,7). We have to add over the probabil-
ities of the respective states in each of the two-machine lines. In the case of
Line L(z, ¢) which receives the part, these are all states where the upstream
machine is up and not blocked. We find

prob (44)

probl {0 <n[(¢,q),t —1] < N(i,q) — 1} and }

{au((,9), 1] = 1} and {a4((4, ), ¢] € {0,1}}
N(i,g)-1
[ Z_: p[(z, ¢); nll] + p[(i,q);nl()]} (45)

for Line L(7, ¢). As an approximation, we treat Lines L(i,k),k # m,k # ¢, as
if they were independent and add over all states where the upstream machine
is down and not blocked:

{{o < nf(i,k),t—1] < N(i,k) — 1} and
prob {a,[(3,k),t] = 0} and {ag](,k),t] € {0,1}},
V(i k) € D(i), k # m, k # q}}

~ wop | 10 0l k), 2 = 1] < N(i, k) — 1} and
1] prob l {ew[(2,k),t] = 0} and {ay[(s,k),t] € {0,1}}

(1,k)ED(2)
kE#m
k#q
N(i,k)-1
= H Z k);n00] + p[(s, k); n01]] (46)

(i,k)ED (4
k#m
k#q
For the single Line L(j,:) immediately upstream of Machine M;, we add
over all states where the downstream machine is up and the buffer not empty,
le.
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prob [ {1 <n[(5,9),t = 1] < N(5,7)} and ]
{e(,9), 8] € {0,1}} and {au[(5,i),t] = 1}

N(j)
[Z p[(7,4); n11] + p[(j,7); nOl]] (47)

and therefore

prob[{fi(t) = q}]

-N(in)_l

~ > P[(i>(1)§nll]-I-p[(i,q);nl()]} )

i n=0

N(ik)—1
II 3 bl k);700] + p[(i, k); n01]| -
(:,k)ED(3) n=0
L k;:éq
N(4,%)

Z pl(J,7); n11] + p[(4,%); nOl]] (48)

which eventually leads to

Ziq(i,m)
N(ir)
~ | > pli,q);n1l] +pl(i, q);n10]| -
n=0
N(i,k)-1
[T S plG,k);n00] + pl(i, k); n01] | -
(i,k)€D()  n=0
K
L k#q
[N (5,%)
Z p((4,2); n11] + p[(5,7); n0O1] | -

ru(z m)
pu(t,m)E(z,m)

(49)
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ap = {0<n[(7,9),t—1] < N(i,q) — 2} and
{ew[(7, 9), 1] = 1} and {ad[(7, 9), 1] € {0,1}}

a; = {n[(z,q),t—1] = N(i,q) — 1} and
{en[(z, ), 1] = 1} and {au(i, q),¢] = 1}

as = {nl(i,q),t— 1] = N(z,q) —1} and
{eu[(1,9), 1] = 1} and {au[(z,9), 1] = 0}

b = {0<n[(i,k),t —1] = N(i,k) — 1} and
{aul(i, k),t] = 0} and {ad[(z, k), 1] € {0,1}},
(4, k) € D(3i),k #m,k # q

a = {2<n(5,1),t—1] < N(j,1)} and

{@ul(iyi),8] € {0,1}} and {a[(j ), 4] = 1}
& = {nl(j,i)t—1] =1} and

{aul(s,9), 1] = 1} and {ed((5,2),¢] = 1}
ez = {n[(y,7),t —1] =1} and

{aul(5,2),8] = 0} and {e4(5,2),¢] = 1}

e = {au[(ivm)vt+1] :1}
fo= Anlle;m),t =1 < N(i,m)}

Table 3: Definition of Auxiliary Events

Z; 4(1,m) is now expressed in terms of quantities of the two-machine mod-
els in the decomposition that are related to Machine M; and that are available
in the course of the decomposition.

We now have to find an expression for the conditional probability D; ,(, m)

D;4(i,m) = probl[{ay[(i,m),t+1] =1} |
{Bi(t) = q} and {n[(i,m),t = 1] < N(i,m)}| ~ (50)
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of processing a part at Machine M; at time ¢t 4 1 and sending it to M,,, given
that at time ¢ a part was sent to Machine M,, ¢ # m. The implications of the
conditioning event {3;(¢) = ¢} are given in Table 2 on Page 28. To reduce the
notational effort when decomposing the conditioning event, auxiliary events
ay,as, as,b, cy,ce, and c3 are defined in Table 3.

The mutually exclusive and collectively exhaustive events a,, ay, and a3
describe the possible states of Line L(3, ¢) that are implied by event {8;(t) =
q}. In a similar manner, the auxiliary event b describes the possible states
of Lines L(7,k) and ¢;, ¢z, and c3 those of Line L(j,7). Given the definition
of the auxiliary variables, we find

prob[{Bi(t) = q}] = prob[{a; or a; or a3} and b and {¢; or ¢; or ¢3}] (51)

and therefore

Ty

Dy (t,m) = prob[ e ‘{al or az or az} and b and {¢; or ¢; or ¢3} and f]

= prob [e|albclf or ajbey f or aybesf or
asbey f or azbey f or asbes f or
azbey f or azbey f or a3bc3f]

Each of the events ax b f with k,1 € {1,2,3} implies event {8;(¢) = ¢}
and each of the events ax, k € {1,2,3} implies event f, i.e. {n[(i,m),t —
1] < N(z,m)}. As an approximation, we assume that the events related to
different lines are independent. In this case, D;,(i,m) can be decomposed

to find

D (t,m) = [prob[ e | arbey | prob[ ay ] prob[ b] prob[e; | +
prob[ e | aybey | prob[ a; | prob[ b] prob[ ¢, | +

[

[

prob[ e | a; bes ] prob[ aq | prob[ b] prob[ ¢ | +

prob[ e | azbe; | prob[ ay | prob[ b] prob[ ¢ | +
[

prob[ e | azbcy ] prob[ ag | prob[ b] prob| ¢, | +

[ ]

prob[ e | azbcs ] prob[ as | prob[ b] prob[ c; | +

prob| e | azbe; | prob[ as | prob[ b] prob[ ¢; | +
[ ]

prob[ e | azbcy | prob| as | prob[ b] prob| ¢, | +
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prob[ e | azbcz | prob[ as | prob[ b ] prob][ ¢; ]] :
1
prob[{Bi(t) = q}]

The conditional probabilities in (52) can be determined using the infor-
mation in Table 3 on Page 32. The first conditional probability, prob[ e |
ay bey ], is the probability that Machine M, (¢,m) is up at time t 4 1, given
that the buffer level in Line L(z, ¢) which receives the part at time ¢, is below
N(i,q) — 1 at time t — 1 (event ay), that none of the buffers in any of the
lines L(i, k) is full (event b), and that n[(j,7),t — 1] > 1 holds for the input
buffer level (event ¢;).

The following has to happen in order for Machine M,(z,m) to be up at
time ¢ 4 1:

(52)

o Machine M; in the real system must not fail, with probability (1 — p;).

e The part must be sent to Machine M,,, with probability d; ,,.

Given the buffer levels in Lines L(7,¢q), L(z,k), and L(7,:), Machine M;
cannot be blocked or starved at time ¢ + 1. Since routing decisions and
machine failures are assumed to be independent, we find

proble | arber | = (1 — pi) dim. (53)

In the second conditional probability in (52), prob[ e | a;bc; |, event ¢,
says that Buffer B;; which looses a part at time ¢ is almost empty at time
t — 1, i.e. n[(4,7),t — 1] = 1, and that Machine M,(7,7) is up at time ¢.
In this situation, an additional condition must be met in order for Machine
M, (i,m) to be up at time ¢ + 1:

e Machine M,(j,¢) must not fail (because otherwise Machine M; would

be starved), with probability (1 — p,(7,1)).

The second conditional probability is therefore

probl e |arbey ] = (1 —pi)digm (1 = pu(4,7)). (54)

In the third conditional probability in (52), prob| e | a1bcs |, event c3
says that Buffer B;; is almost empty at time ¢ —1, and that Machine M, (j,¢)
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is down at time ¢. If M,(7,17) is down at time ¢, it has to be repaired in order
for M, (i,m) to be up at time t 4 1, with probability r,(J,7), so

proble |arber | = (1 — p;) dijm mu(3,7))- (55)

The derivation for the six remaining conditional probabilities is com-
pletely analogous and we find:

prob[ e | azbe; | =
prob[ e |azbey ] =
prob[ e |azbez] =
prob[ e | azbe |
prob[ e |asbey ] =
prob[ e | asbes ]

The special structure of these nine conditional probabilities allows to
factor (52). This yields

D, 4(1,m)
= (1-p)dim
| prob[ a1 ]+ (1 = pa(i, q)) prob[ az ] + ra(i, g)) prob[ az ]| -
prob[ b ] -
[ probl et ]+ (1= pu(j,i)) prob[ &2 ] + ru (4, )) prob[ cs || -

1
prob[{8i(t) = ¢}]

Using the information in Table 3 on Page 32, the unconditional probabil-
ities can be expressed as

(56)

N(i,g)-2
problar] = 3 (pl(i,q);n11] + p[(i, q); n10)])

n=0

pI‘Ob[ag] = p[(iaQ)5N(i7Q)_1a11]
prOb[a3] = p[(i7Q);N(i>Q)_1a10]
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N{i,k)-1

prob[b] = [(k)l'[() }: ( k); n00] + p[(z, k); nOl])]
N(5,8)
>~ (pl(,4);n11) + pl(5,4); n01])

n=2

problc; ] = p[(j,4);111]
prOb[c3] = p[( b )7101]

prob[ ¢; |

This leads to the following result

(1,m) ~ (1 —p;)d; PG, q)
Pralismm) > (=) TG0 = &)
where we define
N(i,q)—2
Flig) = | 3 (pll6sm1)+ plla) 0]
+ (1= puli PG ) NGy @) = 1,11]
+rali, 0ol ) NG @) — 1,10])
N(i,k)—1

9 )H( Z (p[(i,k);nOO]+p[(i,k);n01])]
W
P> (p[(j,z');nu] + pl(5,1); n01])
+muomuwumﬂ (55)

. Flig .
The fraction orobiia =] ™ (57) has a value betW(?en 0 and 1, as a
comparison of (58) and (48) reveals. The probability D; ,(z,m) that Machine

M; receives a part from Machine M; at time ¢ + 1, given that at time ¢ a part
was routed to Machine M,, is therefore smaller than (1 — p;)di ., as we have
to take the possibility of blockage and starvation into account.
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Now all components of the resumption of flow equation for the virtual
upstream machine M, (z,m) are expressed in terms of parameters and per-
formance measures of the real system or the two-machine lines in the decom-
position, i.e. of quantities that are available in the course of the iterative
solution of the decomposition equations. The equation can be written as

ra(i,m) = [ri+lx”3;:Ez::Z;] dim (59)

where we define

Ky = |(ulg,i) = r)pll ) 001) (60)
+ > (rai) = ra)p(i,9); N(i, )10]

(i,9)€D(4),q#m

n Z (1 — p:)F(i,q) — r; prob[{Bi(t) = q}]] E(%m)

(i:9)€D(3),q#m

and d;,, is the fraction of parts sent from Machine M; to M,,. The term
F(i,q) is given in (58) and prob[{f;(t) = ¢}] in (48). The factor K3 in
(60) contains parameters of two-machine lines other than Line L(¢,m). This
is again a generalization of the corresponding equation for the transfer line
model in [Gershwin, 1987].

2.5.2 Downstream Machine

In this section, the resumption of flow probability r4(7,7) for Line L(j,¢)
upstream of Machine M; in Figure 6 on Page 22 is derived.

To an observer in Buffer B;;, the virtual downstream machine My(7,7) is
up at time ¢ when a part leaves the buffer at time ¢ or when Buffer B;; is
empty and Machine M,(7,17) is starved (since a starved machine cannot fail).

Define {ay4[(7,7),t] = 1} as the event of the virtual downstream machine
M,(7,7) being up at time t. Machine My(j,%) is up if Machine M; is up and
not blocked, i.e.

{adl(.i),f]1 = 1} iff {os(t) = 1} and
{nl(i,q),t — 1] < N(i,q), ¥(i,q) € D(i)} (61)
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Machine M,(j,¢) is down if it is not up, i.e:

{aal(7,7),t] = 0} iff {ey(t) =0} or (62)
{n[(%,¢),t — 1] = N(i,q), for some (7,q) € D(4)}

Note that this definition also describes the perspective of an observer
upstream of a disassembly machine ([Gershwin, 1991]). In both cases, i.e.
split as well as disassembly operations, Machine M; must be up and not
blocked in order for My(j,%) to be up and one full downstream buffer B;, is

sufficient to block Machine M;.
The resumption of flow probability r4(7,7) is defined as

ra(ji) = prob [{au[(4,i),t +1] =1} | (63)
{a[(5,7), 4] = 0} and {n[(j,7),t — 1] > 0}]

and can again be evaluated by decomposing the conditioning event

ra(j,1) = AG 00X )+ 30 Big(d)Yia(d,9) (64)
()€D()

where we define

A(j,i) = prob [{eul(j,i),t+1] =1} | (65)
{u(t) = 0} and {n[(j,),t — 1] > 0}
X(j,i) = prob [{ai(t) = 0} and {n[(j,i),t — 1] > 0} | (66)
{aa[(7,1),1] = 0} and {n[(j,7),t — 1] > 0}]
Biy(j,i) = prob [{ag[(j,i),t+1] =1} | (67)

{nl(i,9),t — 1] = N(i,9)} and {n[(j,7),t — 1] > 0}]

Yig(4,i) = prob [{n[(i,q),t—1] = N(i,q)} and {n[(j,i),t — 1] > 0} |
{adl(4,7), 4] = 0} and {n[(j,4),t — 1] > 0}
(68)

We find that A(7,7) in (65) is the repair probability of Machine M;, i.e.
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A(g,1) =i (69)

and B; 4(J,%) in (67) is the repair probability of the blocking machine My(z, q),
le.

Bi,q(ja Z) - rd(i7 Q) (70)
After a derivation similar to that leading to (41), we find

pl(7, 9); N (2, ¢)10]r4(j, 1)

Y;‘,q(jvi) = pd(jvi)E(j7i)

(71)
and

XG0 =1— 3 Yi,(,i) (72)

(z',q) ED(i)

We can therefore write the resumption of flow equation in a general form
using an auxiliary parameter [ as

) = K T'd(j,i)
B = R G T
with
F =1 (74)
1
Ky = (ra(i,q) — r)pl(7, 9); N (i, ¢)10] = (75)
(z‘,q)Xe;J(i) ! m YVEG)

This general form involving the auxiliary parameter F' allows to formulate
the resumption of flow equation for merge systems (to be derived below) in a
very similar way. As in (60), we have in (75) a factor (K4) containing param-
eters of two-machine lines other than Line L(j,7). This is exactly the same
equation as for a disassembly machine in [Gershwin, 1991, Gershwin, 1994].
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2.6 Resumption of Flow Equations II: Merge Opera-
tions

The second type of subsystem depicted in Figure 7 for which we derive re-
sumption of flow equations consists of Machine M; which has two immediately
preceding machines denoted as Machines M;, and M;,, and one immediately
succeeding machine denoted as Machine M,.

MyGr)  BGai)  Mg(sd)

| O] L)

M G,q) B(i.g) My(i,q)
| PO~ wa

MyG2.)  B(ad)  My(ad)
O L)

Figure 7: Merge System and its Decomposition

Buffer B;, ; has priority one and B;, ; has priority two. From the perspec-
tive of Machine M;, both Machine M;, and Machine M;, produce the same
type of parts. Thus, Machine M; is starved if both of its upstream buffers
are empty.

Note that this differs from the situation in an assembly system in two
ways: Iirst, in an assembly system, different types of parts are arriving from
the different machines upstream of the assembly machine. In a merge system,
however, the parts arriving from different upstream machines are identical.
Second, an assembly machine is starved if at least one upstream buffer is
empty as all the different components have to be assembled together. In a
merge system, a machine is starved if all upstream buffers are empty. If one
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of them is non-empty, the machine can serve this buffer and is therefore not
starved.

There are three types of two-machine lines that arise in the decomposition
of the system depicted in Figure 7. The perspective of an observer in Buffer
B, , is analyzed first.

2.6.1 Upstream Machine

In this section, the repair probability of the virtual machine M,(¢, ¢) as seen
by an observer downstream of Machine M; is determined. To an observer
in the buffer corresponding to Line L(t,q) in Figure 7, the virtual machine
M,(1,q) is up if Machine M, is up and not starved, i.e.

{au[(i,q),t] =1} T {ei(t) =1} and
[}, = 1] > 0, for some j € i, ja}. (76)

Machine M, (7, ¢) is down if it is not up, i.e

{a[(7,9),t] =0} iff {a;(t) =0} or
{n[(4,i),t —1] = 0,5 € {j1, 52} }- (77)

The different events which can force Machine M, (¢, q) down are mutually
disjoint since Machine M; cannot fail if it is starved.

We derive the resumption of flow equation in the usual way using the
definition of virtual machine states:

ru(i,q) = prob [{aul(i,q),t+1] =1} (78)
{ul(3, q), 1] = 0} and {n[(i,¢),t — 1] < N(i,q)}]
= prob [{ou[(i,q),t +1] =1}| (79)

[
{{ai(t) =0} or
{nl(j,i),t = 1] = 0,¥j € {j1,j2}} } and
{nl(i,q),t~ 1] < N(i, 9)}]
Since the different events which force Machine M,(z, ¢) down are mutually

disjoint, we can break equation (79) down by decomposing the conditioning
event to find
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T‘u(i,q) = A(i7Q)X(ivq) + B(laQ)Y(Z’ q) (80)

where we define

Ali,q) = prob [{ou(i, @)t +1] = 1}] (81)
{oa(t) = 0} and {n[(i,q),t — 1] < N(i,q)}]

X(iq) = prob [{os(t) = 0} and {n[(i,q),t~ 1] < N(i,@)}|  (82)
{oul(i,q), 1] = 0} and {n[(i,g),t — 1] < N(i, q)}]

B(i,q) = prob [{au(i,q),t+1] = 1}| (83)

{n[(jai)at - 1] - O,\V/] S {j1,j2}} and
{nl(5,),t = 1) < N(i, )}]

Y(i,q) = prob [{n[(j,i),t — 1] = 0,¥j € {ji,jo}} and (84)
{nl(i,q),t = 1] < N(i,q)}]
{owl(i,q), 1) = 0} and {n[(i,q), — 1] < N(i,q)}]

In (81), A(4,q) is the probability that Machine M; is repaired, ie.,

A(i,q) = i, (85)

whereas B(i,q) in (83) is the probability that at least one virtual upstream
machine is repaired. It is expressed in terms of the probability that none of
the upstream machines is repaired, i.e.,

B)=1- T[ (1-r(ii)) (36)
Vie{iiz}
since repairs are independent as they do not depend on buffer levels or the
states of other machines.

The probability that Machine M; is starved given that Machine M,(z,q)
is down is
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Y (1,9)

= prob [{n[(j,i),t — 1] =0,¥j € {j1,52}} and (87)
{n[(i,9),t— 1] < N(i,9)}] -
prob[{au[(i,),#] = 0} and {n[(i,q),t — 1] < N(i,9)}]

We approximate the numerator by assuming independence:

N 0 ru(i, q)
Y(Z7Q) ~ vjeg,h}p[(]’ )1 001]pu(i,q)E(i,q) (88)

The probability X(z,q) that a failure of Machine M,(7,¢q) is due to a
failure of Machine M; itself is expressed in terms of the probability of the
single other reason why Machine M,(7,q) can be down:

X(ivq) = 1- Y(qu)

= 1- 001 —eBa)
- weg,h}p[(j’ )’001]pu(i,Q)E(i,q) (89)

We can hence express the resumption of flow equation for Machine M, (7, q)
using the routing probability d;, =1 as

N [ K ru(7, q) _
T’u.(Z?q) - [ [ + IXSpu(l,q)]d q (90)
1 (91)
1
1 - (1 —ru(g,9)) — 7 [(7,7); 001] ——=(92
< vjeg,jz} ’ >v]'e£11,j2}p ! E(Z,Q)( )

Using the routing probability d;, = 1 in (90) leads to a form of the
resumption of flow equation which is identical to those for an upstream ma-
chine related to a split machine (see (59) on Page 37). If there is just one
line L(j,7) with (7,7) € U(7), equation (90) reduces to the corresponding
equation of the purely linear transfer line in [Gershwin, 1987].
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2.6.2 Downstream Machine

Priority One line: To an observer in the priority one buffer Bj, ; of Line
L(j1,%) in Figure 7 on Page 40, the virtual downstream machine My(j;,1)
is down if Machine M; is either down or blocked. Since we assume that a
machine with two upstream buffers has exactly one downstream buffer, there
is exactly one virtual downstream machine My(t, ¢) which can block Machine
M;.

However, as there are two input buffers, Machine M; can fail even if the
priority one buffer is empty (and the priority two buffer is not empty). Thus,
to an observer in Buffer Bj, ;, the failures of Machine M; do not appear to
be completely operation dependent. Repairs, however, are independent of
buffer levels and the repair behavior of Machine Mjy(71,¢) is hence exactly as
in a transfer line for which the resumption of flow equation

LAY = o ra(J1,1)
rd(jl,Z)) B 1F * [&4pd(j17i) (93)
with
F =1 (94)
Ky = (Td(iv Q) - ri)p[(ia Q); N(iv q)v 10]E—(]11_2) (95)

is given in [Gershwin, 1987]. The resumption of flow equation (93) has the
same structure as (73) on Page 39.

Priority Two line: To an observer in the priority two buffer B, ;, there is
an additional reason to see Machine My(j2,¢) down: The buffer of the priority
one line L(j1,7) may be non-empty. In this case, the next part processed at
Machine M; will always be taken from the priority one buffer and the virtual
machine My(j2, 1) is down since nothing can be taken from the buffer of Line
L(jz,¢). Thus, three conditions must hold for Machine My(j2,7) to be up:
Machine M; must be up, it must not be blocked by its virtual downstream
machine My(¢,q), and its priority one upstream buffer B; ; must be empty.
Formally,
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{aal(52,9),t] =1} iff {ai(t) =1} and
{n[(i,9),t — 1] < N(1,¢)} and
{n[(j1,9),t — 1] = 0}.

Machine My(j2,7) is down if it is not up:

{adl(j2,1),t] = 0} iff {ay(¢) =0} or
{nl(1,q),t = 1] = N(z,q)} or
{nl(51,2),¢ = 1] > 0}. (96)

The different reasons for Machine Mg(72,¢) to be down as given in (96)
are not disjoint. Table 4 gives the six mutually exclusive and collectively
exhaustive reasons for Machine M;(72,7) to be down at time ¢. In three out
of the six cases, it is not possible that Machine My(j2,7) is up at time ¢ + 1.

In Case 1, M; is down and not blocked while the priority one buffer is
empty. Since M; might be repaired, it is possible that the virtual machine
My(j2,¢) which is seen by an observer in the priority two buffer is up at time
t+1.

Case 2 is a situation where My(j2,7) is down for two reasons: M; is down
and the priority one buffer B; ; is non-empty. Even if Machine M; were
repaired at time ¢ + 1, the priority one buffer would still be non-empty as
nothing was removed at time ¢. For this reason it is not possible that Machine
My(j2,%) is up at time ¢t + 1.

Case | Machine M;  Buffer B;, Buffer B;, ; My(j2,1) up
at timet  at timet — 1 at time ¢t — 1 at timet+ 17
1 down not full empty possible
2 down not full not empty impossible
3 up full empty possible
4 up full not empty impossible
5 up not full n[(j1,2),t —1] =1 possible
6 up not full n[(j1,¢),t —1] > 1| impossible

Table 4: Disjoint Reasons for Machine My(jz2,7) to be Down
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Machine M; is blocked at time ¢ in Case 3 and the priority one buffer is
empty. Since the blocking machine My(i,q) might be repaired, it is possible
that Machine My(j2,1) is up at time ¢ + 1.

In Case 4, however, Machine M; is blocked and the priority one buffer is
non-empty. Even if Machine M(7, q) were repaired at time t + 1, Machine
M (j2,7) would still be down due to the non-empty priority one buffer in the
previous period.

The priority one buffer is almost empty in Case 5, i.e. n[(j1,%),t—1] =1,
and Machine M; can operate as it is up and not blocked. Since the virtual
upstream machine related to the priority one buffer might be down or fail, it
is possible that the priority one buffer is empty at time ¢+ 1. If this happens,
My(72,%) is up at time ¢ + 1.

In Case 6, there is more than one part in the priority one buffer B; ; at
time ¢t and therefore Bj ; cannot be empty at time ¢ + 1. For this reason,
My(j2,¢) cannot be up at time ¢ 4 1.

The resumption of flow probability r4(j2,%) describing repairs of Machine
My(j2,1) is defined as

ra(ja,i) = prob[{aul(ja,i),t +1] =1} |
{adl(j2,7), 1) = 0} and {n[(ja,i),t — 1] >0} (97)

and is evaluated by decomposing the conditioning event. However, in the
decomposition we omit Cases 2, 4, and 6 in Table 4 since in these cases a
transition to Machine My(72,¢) up at time ¢ + 1 is not possible:

ra(g2,1) = A(J2, 1) X (J2,4) + B(52,9)Y (42, 8) + C(2,9) 2 (32, %) (98)

where we define

A(ja,i) = prob [{au[(ja,1),t +1] = 1}
{a;(t) = 0} and {n[(j1,2),t — 1] = 0} and
{n[(j2,3),t = 1] > 0}]

X(j2,i) = prob [{ai(t) = 0} and {n[(ji,7),t — 1] = 0} and (100)

{n[(52,4),t — 1] > 0}
{aa(72,7),2] = 0} and {n[(ja, i), — 1] > 0}]

(99)
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B(jsyi) = prob [{eul(ja,i),t +1] =1} (101)
{nl(é,q),t — 1] = N(i, )} and {n[(j1,2),t — 1] = 0}
and {n[(j2,7),t — 1] > 0}]

Y(j,i) = prob [{n[(i,q),t—1] = N(i,q)} and (102)
{nl(j1,),t = 1] = 0} and {n[(ji2,),¢ — 1] > 0}
{l(j2,7),8] = 0} and {n[(2,),t ~ 1] > 0}]

C(jari) = prob [{aal(jai),t+1] = 1}] (103)
{ai(t) = 1} and {n[(i,q),t — 1] < N(i,q)} and
{n[(G1,),t — 1] = 1} and {n[(j2, 1), — 1] > 0}]

prob [{e(t) = 1} and {n[(i,q),t — 1] < N(i,q)} and (104)
{n[(j1,i)t — 1] = 1} and {n[(j2,),t — 1] > O}
{ul(j2,1),1] = 0} and {n[(j2,1), 1] > 0}

Probabilities A(j2,4) in (99) and X(j2,4) in (100) are related to Case 1 in

Table 4. Assuming that repairs of Machines M; and M,(ji,¢) are indepen-

dent, we find that A(j,7) is the repair probability of Machine M; times the
probability that Machine M, (71,%) is not repaired, i.e.

Il

Z(j%i)

A(j2, 1) = 1i(1 —ru(51,7)) (105)
since the reason for the buffer of the priority one Line L(j1,¢) to be empty at
time ¢ is a failure of Machine M, (j1,7). Note that this is a term of a new kind
which reflects the priorities assigned to the two buffers upstream of a merge
machine: One machine (M;) has to be repaired while a another machine
(M,(j1,7)) must not be repaired: If Machine M,(j1,7) were repaired, the
priority one buffer would become non-empty and Machine Mgy(jz,7) would
stay down, but now for a different reason.

A similar reasoning applies for the probability B(j2,7) in (101) which is
related to Case 3 in Table 4. The virtual downstream machine My(7, ¢) must
be repaired and Machine M, (J1,7) must not be repaired in order for the flow
to resume out of the priority two buffer:

B(j2, i) = ra(i, q)(1 — ru(41,7)) (106)
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In (102), Y(j2,1) is the probability that the buffer of Line L(i,q) is full
and the buffer of Line L(j1,7) empty given that Machine My(jq,1) is down.
Assuming independence for buffer levels in Lines L(jy,%) and L(, ¢), we find,
after a derivation similar to that leading to (41),

rd(j2ai)
d(jZai)lE(j27i).

We next analyze the the probability Z(j2,7) in (104) which is related
to Case 5 in Table 4. Since the event {n[(j1,2),t — 1] = 1} implies that

Machine My(j2,%) is down at time ¢, we can use the definition of conditional
probability and write

Y (52,2) = pl(51,7); 001]p[(3, ¢); N (7, Q)10]p (107)

Z(jsi) = prob [{ai(t) — 1} and {n[(i,q), — 1] < N(i,q)} and
ol i)yt = 1) = 1} and {nl(ja, i)yt — 1] > 0}
prob [{ad[(jg,z'),t] = 0} and {n[(j2,7),¢ — 1] > 0}]
Z(j2,1) = prob[{ Case 5 }]:
prob [{ad[(jg,i),t] — 0} and {n[(ja,1),t ~ 1] > 0}]

rd(j27i)
prob[{ Case 5 }] B, )palind)’ (108)

It is not necessary to derive the probability of Case 5 explicitly since this
quantity can be canceled out in the term C(j;,)Z(j2,1) of the resumption
of flow equation (98) after the derivation of C'(j,1).

To derive an expression for the conditional probability C(j2,7) in (103),
we list in Table 5 the implications of Case (Table 4 on Page 45), i.e. of having
one part in the buffer of the priority one Line L(j1,¢) while Machine M; is up
and not blocked. These implications are used to decompose the conditional
probability C'(jz2,7) in (103).

The first entry in Table 5 is related to Line L(z,q). In Case 5, Machine
M; is up, not starved and not blocked. This implies that the buffer level
n[(¢,q),t — 1] is in the interval [0, N(7,q) — 1] and that Machine M, (s, q) is
up. However, nothing is implied with respect to Machine My(z, ¢). It can be
up or down.
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The second entry in Table 5 describes the situation in Line L(71,1). Case
5 states explicitly the buffer level n[(j1,7),t — 1] = 1. Since Machine M; is
up and not blocked, Machine My(ji,¢) is also up. Nothing is implied with
respect to Machine M,(j1,1).

Line Buffer Level Machine State

L(i,q) | 0<n[(3,q),t =1 < N(i,q) = 1 | au[(3,q),t] = 1,
ad[(i’Q)vt] € {0? 1}

L(j1,%) | n[(j1,2),t —1] =1 ay[(71,1), 1] € {0,1},

aal(71,4), 1] =1

Table 5: Implications of Case 5

To reduce the notational effort when decomposing the conditioning event
of C(j2,1), the auxiliary events aq,as, a3 as well as b; and b, are defined in

Table 6.

(451

4%)

as

b

by

= {0<n(5,9),t—1] < N(i,q) — 2} and
{ou(i,9),¢] = 1} and {au[(7, ), 1] € {0,1}}

= {nl(4,9),t—1] = N(i,q) — 1} and
{aul(1,9),t] = 1} and {ad[(z,9), 1] = 1}

= {nl(i,q),t —1] = N(i,q) — 1} and
{ewl(z,9),t] = 1} and {au((é,q),t] = 0}

= {n[(j1,%),t — 1] =1} and

{ou(51,1),1] = 1} and {au[(1,7),t] = 1}
= {n[(j1,7),t — 1] =1} and

{ew[(41,7), ] = 0} and {aq[(51, ), 1] = 1}

= {aal(s2,9),t+ 1] =1}

d = {n[(j2,1),t — 1] > 0}

Table 6: Definition of Auxiliary Events
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The mutually exclusive and collectively exhaustive events a1, a3, and a3
describe the possible states of Line L(7,q) implied by Case 5. In a similar
manner, the auxiliary events by and b, describe those of Line L(71,1).

Given the definition of the auxiliary variables, we find

prob[{ Case 5 }| = prob[{a; or a; or a3} and {b; or by}] (109)

and therefore

C(Jayi) = prob[ ¢ l{al or ay or az} and {b; or by} and d]

= prob [Clalb1d or a;byd or
aybyd or agbyd or
azb;d or aszbyd or}

Each of the events a;b;d with k£ € {1,2,3}, | € {1,2} implies Case 5
and this implies that the priority two buffer is not empty, i.e. event d. The
last implication is due to the assumption of operation dependent failures. As
an approximation, we assume that the events related to different lines are
independent. In this case C(jz,7) can be decomposed to find

C(ja,1) = [prob[ ¢ | a1 by | prob[ a; | prob[ b; | +
prob[ ¢ | ay by ] prob[ a, | prob[ by | +
prob[ ¢ | a2 b; ] prob[ ay | prob[ by | +
prob[ ¢ | az by | prob[ ay | prob[ by | +
prob[ ¢ | azb; | prob[ as ] prob[ b; | +
prob[ ¢ | ag by | prob[ as ] prob[ b, ]] :

1

prob[{ Case 5 }]

(110)

The conditional probabilities in (110) can be determined using the infor-
mation in Table 6. The first conditional probability, prob[ ¢ | a; b; ], is the
probability that Machine My(jq,7) is up at time ¢ + 1, given that the buffer
level in Line L(z,q) which receives the part at time ¢, is below N(i,q) — 1
at time ¢t — 1 (event a;), that the priority one buffer is almost empty, i.e.
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n[(7i),t — 1] = 1, and that the Machine M,(j1,7) is up at time ¢ (event b).
The priority one buffer looses a part at time ¢ which is processed by Machine
M;. Tf Machine M,(j1,7) fails at time ¢, the buffer becomes empty which is
necessary for Machine My(j2,1) to be up at time ¢ + 1.

Thus, the following has to happen in order for Machine My(j2,¢) to be
up at time ¢ + 1:

e Machine M; in the real system must not fail, with probability (1 —ps).

e The virtual upstream machine M,(j;,7) related to the priority one
buffer must fail, with probability p,(71,7).

Given the buffer level in Line L(7,q), Machine M; cannot be blocked at
time t 4+ 1. Since failures of M; and M,(ja,1) are assumed to be independent,

we find

problc [ ayby | = (1 = pi) pu(s1,9)- (111)

In the second conditional probability in (110), prob[ ¢ | a1 b, ], event
by says that Buffer B;; which looses a part at time ¢ is almost empty, i.e.
n[(4,1),t — 1] = 1, and that Machine M,(j1,7) is down at time ¢. In this
situation, the following has to happen in order for Machine My(j2,17) to be
up at time ¢t + 1:

e Machine M; in the real system must not fail, with probability (1 — p;).

e Machine M, (j1,¢) must not be repaired (because otherwise Buffer B;, ;
would become non-empty), with probability (1 — r,(j1,7)).

The second conditional probability is therefore

prob[c [ a1y ] = (1 —p;) (1 — ru(51,7))- (112)

In the third conditional probability in (110), prob[ ¢ | a3 by |, Buffer B;,
is almost full and Machine My(i,q) is up (event ay). Furthermore, buffer
Bj, ; is almost empty and Machine M, (j;,17) is also up.

The following has to happen in order for Machine My(js,1) to be up at
time ¢ + 1:

e Machine M; in the real system must not fail, with probability (1 — p;).
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o The virtual downstream machine My(z, ¢) must not fail to avoid block-
age of M;, with probability (1 — pu(z, ¢)).

e The virtual upstream machine M,(71,¢) must fail for the priority one
buffer Bj, ; to become empty, with probability p.(ji,%).

We find

prob[ ¢ [azby ] = (1 —pi) (1 = pa(i, q)) pulin, 2)- (113)
The derivation for the three remaining conditional probabilities is com-
pletely analogous and we find:

prob[c [azby] = (1 —pi) (1 —pal(i,q)) (1 —ru(jn,?)) (114)
prob[c |azbi ] = (1 —pi)ra(i,q) puldn,?) (115)
prob[c |azby] = (1 —pi)ra(t,q) (1 —ru(51,7)) (116)

The special structure of these six conditional probabilities allows to factor

(110). This yields

[ rob[ ay ]+ (1 — pa(i, q)) prob[ az ] + ra(i, q)) prob[ as ]| -

[Pu(i1,1) prob by ] + (1 = ru(1,4)) prob[ b, ]] -
1
prob[{ Case 5 }]’

Using the information in Table 6, the unconditional probabilities can be
expressed as

(117)

N(i1Q)_2

problar] = > (pl(i,9);n11] + pl(i, q); n10])

n=0

prOb[a2] = p[(v )N(Z Q) 1711]
problas] = p(i,q); N(,q) — 1,10]
prob[ b1 ] = pl(j1,1); 111]
prob[ b2 ] = p[(j1,%);101]
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and we find

C(j2,1) = (1—pi)-
N(ig)—2
S (bt + bl ool
+ (1 — pa(%, q)p[(%,9); N(i,q) — 1, 11]
4 ralis @)plli, ) NGy g) — 1, 101)} -

[Pu(51,1)P1(j1,); 011]

+ (1= rulin, )Pl £);001]] -
1

prob[{ Case 5 }| (118)
Multiplying C(js,%) and Z(j2,1) as required in (98) yields
C(42,1)Z(j2ri) = (1—pi)-
N(iq)—2
3 (bl st + bl im0l
+ (1 = pa(z, @)p((4, 9); N(1,9) — 1, 11]
ralis)pli. o) Vi) 1,10])| -
[Pu(i1, 8)pl(31,3); 011]
+ (1= 741, ))pl(1, 1); 001]] -
rd(j2>i)
EGa,i)palins 1) 1)

i.e. the probability of Case can be canceled out.

The last probability we have to determine is X(j2,¢) in (100), i.e. the
conditional probability that Machine M; is down and Buffer B;, ; is empty
given that Machine My(jz,¢) is down. In Table 4 on Page 45, the situation
that Machine M; is down and the buffer of the priority one line is empty
is referred to as Case 1. Since Table 4 contains all the disjoint reasons for
Machine My(j2,¢) to be down, we can write
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prob|{ Case 1}|{aa[(j2,1), ] = 0} and {n[(j,4),t — 1] > 0}]
= 1 — prob [{ Case 2 or 3or 4 or 5or 6}
{al(j2,1), 1] = 0} and {n{(j2, 1), ¢ = 1] > 0}
_ prob[ {Case 2 or 5 or 6} or { Case 3 or 4}] (121)
problag[(7z2,1),t] = 0 and n[(j2,7),t — 1] > 0]
prob[ {Case 2 or 5 or 6}] + prob [{ Case 3 or 4}]
problag[(j2,1),t] = 0 and n[(j2,7),t — 1] > 0]
since all cases imply that Machine My(jq,¢) is down. We see from Table 4
that the probability of the {Case 2 or 5 or 6} is the probability of having
a non-empty buffer in the priority one line L(j;,7) and a non-full buffer in

Line L(7,q). As an approximation, we assume again that these buffer levels
are independent, or

(120)

(122)

prob [{ Case 2 or 5or 6 } |
~ (1-pl(q); N, ¢)10))(1 = p[(41,2); 001]) (123)
and we also find that

prob [ {Case 3 or 4 } | = p[(4,q); N(¢,4)10] (124)

since in Cases 3 and 4, Machine M; must be up (as a blocked machine cannot
fail). We hence conclude that

X(jz,i) = prob| {Case 1} | agl(jz,i),1] = 0 and n[(ja,i), ¢ — 1] > 0]

= 1= |1~ plli, @) N(i, ) 10)(1 = PG, )3 001])

+p[(4,9); N(, q)lO]] pd(j:ig;’& ik (125)

The resumption of flow equation can thus be expressed as

rd(.j% 2)

de,i = TiF-l-I( —
(72,%) “palia,d)

(126)
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where we define

Fo= (1 —=ru1,2)) (127)
(¢,9) Fpl(4,9); N(2,¢)10]p[(J1,2); 001] +

( —pz)
9)-2
5 Bl im0+ plG,inn

(1 — pali, @)pLGis ) Niyq) — 1, 11]

1
+rali, )Pl 0); N(iy )~ 1,10]]
[Pus )1 1111+ (1 = 7l )L, ) 101
=i |(1 = plli,0)s N(i, 10))(1 = pl(ja, );001)

+p[(i,q);N(i,q)10]”—§i— (128)

(72,7)]
Note that the term Ky in (128) does not contain parameters of Line

L(j2,%). Now all resumption of flow equations for split and merge systems
have been determined.

2.7 Boundary Equations

In the definition of the model, we assume that machines without preceding
machines do not perform split operations. Thus, such an input machine M;
with U(7) = {} has exactly one downstream buffer denoted as B;;. The
observer in this buffer sees the original behavior of this input machine, so

pu(3,0) = pi, Vi with U(2) = {} (129)

ro(3,0) = 1, Vi with U(3) = {} (130)
i.e. the parameters of Machine M,(7,() are those of M; if Machine M; is an
input machine.

We further assume that machines without succeeding machines do not
perform merge operations. Thus, such an output machine M; with D(l) = {}
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has exactly one upstream buffer denoted as B;;. The observer in this buffer
sees the original behavior of the output machine, so

pa(2,0) = pi, Vi with D(I) = {} (131)
rq(2,0) = pi, Vi with D(l) = {} (132)

i.e. the parameters of Machine My(z,!) are those of M; if Machine M; is
an output machine. Thus, the parameters of virtual machines which cor-
respond to input or output machines in the real system are determined by
the boundary conditions. The decomposition equations are required to de-
termine the parameters for the other virtual machines not corresponding to
input or output machines.

If a system has B buffers, there are B two-machine lines in the decom-
position and 4B failure and repair probabilities of virtual machines have to
be determined. This requires 4B equations which are given by the boundary
equations in this subsection, the flow rate-idle time equations (14), (15), and
the resumption of flow equations (59), (73), (90), (93), and (126).
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2.8 Reformulation of Decomposition Equations

The decomposition equations (14), (15),

ru(t,m) + pu(i,m) 1

= =K

(1, m) eu(i,m) H

Td(j,i) +pd(]77’) _ 1 _ [{2
ra(J,?) ea(7,7)

as well as (59), (73), (90), (93), and (126)

ru({,m)] g
pu(t,m)
.. T'd(jai)
ra(7,2) = rmf'+ K —
13:1) *pa(, 1)

ro(t,m) = [ri-l—Kg

can be solved for the parameters of Lines L(z,m) and L(7,1), respectively, to
find:

I(g -+ ’l"i([{l - ].)

Tu(la m) = di,m 1(1 1 (133)
pu(l, m) = di,m (1{3 + Ti(I(l — 1)) (134)
Ky riP(Ky - 1)
ra(,1) = X o1 (135)
pa(ii) = Ko+riF(Ky—1) (136)

This type of reformulation has been proposed in [Burman, 1995], in a
Ph.D. thesis on the analysis of flow lines.
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3 The Algorithm

3.1 Purpose, Background, and Basic Structure of the
Algorithm

The purpose of the algorithm is to determine production rates and inventory
levels for the model of a transfer line with split and merge operations. Since
the real system is decomposed into a set of virtual two-machine lines, these
quantities are approximated from the analysis of the virtual two-machine
lines. The failure and repair probabilities for the virtual machines in these
two-machine lines must satisfy the decomposition equations derived in the
previous section. The basic idea of the algorithm is to solve the decomposition
equations in an iterative way and to hope that the algorithm converges to a
set of parameters for the two-machine lines that meets all the decomposition
equations to some degree of accuracy. The performance measures of the
two-machine lines are an approximation of those seen by an observer in the
respective part of the real system.

The algorithm is based on the DDX-algorithm ([Dallery et al., 1988]) for
linear transfer lines. It uses a reformulation of the decomposition sim-
ilar to those proposed in [Burman, 1995] and evaluates the two-machine
lines in a sequence similar to those proposed in [Gershwin, 1991] for assem-
bly/disassembly systems.

The basic structure of the algorithm is as follows:

1. Determine an evaluation sequence for the pseudo-machines in the two-
machine lines (Section 3.2).

2. Initialize the parameters of the two-machine models for each line (Sec-
tion 3.3).

3. For each virtual upstream machine M,(¢, q) (Section 3.4.1):

(a) Update failure and repair probabilities p,(,¢) and r,(z, ¢).

(b) Compute new steady-state probabilities and performance mea-
sures for the two-machine line of the virtual upstream machine.

4. For each virtual downstream machine M;(j,%) (Section 3.4.2):

(a) Update failure and repair probabilities pq(j,7) and rq(7,7).
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(b) Compute new steady-state probabilities and performance mea-
sures for the two-machine line of the virtual downstream machine.

5. Go to Step 3 if the production rates of the two-machine lines do not
satisfy the conservation of flow equation and an upper limit on the
number of iterations is not exceeded.

6. Stop.

In the remainder of this section, the details of the algorithm are discussed.

3.2 Determination of the Evaluation Sequence

The evaluation sequence consists of two parts. The first part denoted as Sy
describes the order in which virtual upstream machines in Phase 3 of the
algorithm are updated. The second part denoted as Sp describes the order
for virtual downstream machines in Phase 4.

Consider the structure in Figure 8 where an index /Ip,  is assigned to each
buffer B;,. The indices are depicted above the respective buffers. In systems
with loops, there does not appear to be an obvious way how to assign these
indices. As a general rule, we tried to follow the flow of material, i.e. to
assign lower indices to buffers at earlier production stages.

Figure 8: Structure with Indices Assigned to Buffers

We first construct Sy by starting with the pseudo-machines which are
immediately upstream of priority two buffers. Priority two buffers are consid-
ered according to ascending indices. In the next step, the remaining pseudo-
machine upstream of priority one or single buffers are added, again according
to ascending indices.
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In the structure in Figure 8, there is one priority two buffer: Bys. Machine
M, (4,5) is therefore placed at the head of Sequence Sy. All other virtual
upstream machines are related to priority one or single input buffers. They
are appended to the sequence according to ascending indices, starting with
Machine M,(1,2) related Buffer By, which has the lowest index Ip,, = 1.
Using this simple rule for the given assignment of buffer indices, we find the
following upstream sequence:

Sy = {Mu(4> 5)7 Mu(1> 2)a Mu(27 3)= Mu(2’ 4)’ Mu(37 5)7 Mu(5’ 6)}

That is, we first determine new parameters for Machine M,(4,5), then
for M,(1,2), and so on. (Note that the parameters for Machine M,(1,2) are
actually determined by the boundary conditions as M; is an input machine.)

To construct the downstream sequence which is processed in the re-
versed order, we replace upstream pseudo-machines by downstream pseudo-
machines:

Sp = {Ma(4,5), My(1,2), M4(2,3), My(2,4), Ma(3,5), Mg(5,6)}

We hence start with Machine My(5,6) and go backwards through the
sequence until we finally update the parameters for Machine M,(4, 5).

Due to this sequence, the parameters of downstream machines related
to priority two buffers (in this case, M4(4,5)) are always updated after the
parameters of the downstream machine of the corresponding priority one
buffer (in the example M;(3,5)). Numerical test which are not reported
her indicate that this helps to achieve a reasonable convergence reliability
especially for very small merge systems.

3.3 Initialization

The failure and repair parameters of the two-machine lines are initialized
with the respective values of the corresponding machines in the real system.
For each line L(z,m), set

pu(i,m) = pi, (137)
ru(i,m) = 1, (138)
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pa(i,m) = pm, (139)
ra(i,m) = r,. (140)

The two-machine model by Gershwin and Schick used in the decompo-
sition includes the workspace at the two machines in the extended buffer
space. For this reason, set

N(i,m) = Cim+2 (141)

where C; ,,, is the number of physical buffer spaces between Machines M; and
M, and N(i,m) is the extended buffer size. Solve all the two-machine lines
to determine initial steady state probabilities p[(z, m)na,y] and production
rates F(1,m) (see also [Gershwin, 1994, p. 76-93]).

3.4 Iterative Solution of the Decomposition Equations

The iterative procedure is used to update the parameters of virtual machines
that do not correspond to input or output machines. The parameters of those
virtual machines that correspond to input or output machines are given by
the boundary equations (129)-(132) and stay at their initial values.

3.4.1 Upstream Phase

Consider sequentially all machines M, (z,m) in Sequence Sy except for input
machines, i.e. machines without preceding machines. For each machine

M,(i,m), determine E(7) from (142) and E(i,m) from (143):

E(i) = Z()E(J}i) (142)
(A)EVG
E(i,m) = dinE(i) (143)

Equation (143) reflects the random routing of the parts leaving Machine
M;

Determine K, from (16):

%ﬂ * Muyeve — %((ll_%) + 2 0)en(i)aem(l — E(ia) )

K, = eulig)
! E(i,m)
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If Machine M; performs split operations, determine K3 from (60)

Ko = [(ru(G.9) =Rl 001
+ > (ra(i;q) = ri)plli; 9); N3, 9)10]

(ii‘I)eD(i)W?ém

Y (= p)FG0) i probl{A() = o] -

(iYQ)ED(i)ﬂ#m (Z7 m)
where F(i,q) is given in (58) and prob[{S;(t) = ¢}] in (48).

If Machine M; performs merge operations, determine K3 from (92):

K= (1= 1 0-nti=n) T el

J€{d1.42} J€{71.42}

If Machine M; performs neither split nor merge operations, either equa-
tion for K3 can be used. Determine preliminary values for upstream param-

eters r%(z,m) from (133) and pZ(i,m) from (134):

Ks + ri(K; — 1)
K, -1
pZ(z,m) = di,m ([&’3 + Ti(f(l — 1))

TZ(i, m) = di,m

Especially during early iterations, we sometimes observed estimates p (i, m)
and r*(1, m) which are either negative or larger than 1. Since these are mean-
ingless values for probabilities, we imposed a set of hard constraints on the
parameter updates to be described below. We encountered a few cases where
the algorithm appeared to oscillate. To avoid this behavior whenever the al-
gorithm did not converge within 100 iterations, we exponentially smoothed
all parameters updates in iteration & in the following way

pa(i,m) = epi(i,m)+ (1 —¢) pﬁ"l(i,m) (144)
X (i,m) = eri(i,m)+ (1 —¢) rﬁ_l(i,m) (145)
where pF=1(i,m) and rf=!(i,m) denote the parameters from the previous
iteration.
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During early iterations, even smoothed parameters guesses p:*(¢z,m) were
occasionally larger than 1 or smaller than p;, the failure probability of Ma-
chine M;. Since the virtual machine M, (7, m) cannot possibly fail less often
than Machine M; in the real system, p, (i, m) cannot be smaller than p;.

We also occasionally observed smoothed parameters guesses r.*(z,m)
larger than 1 or smaller than 0. In order to update parameters within the
possible range of values only, we used the following updating scheme:

pr(i,m) if pi < pir(i,m) < 1
pa(i,m) = § pi+0.5(p7 (i, m) — pi) if pi(i,m) <p; (146)

Pt (5, m) + 0.5 (1 = pyt(i,m)) i pii(i,m) > 1

(e, m) if 0<ri*(e,m) <1
rfi,m) = < 0.57571(i,m) if r2*(i,m) <0 (147)

rE=l(3,m) 4+ 0.5 (1 — rE=1(3,m)) if r2*(s,m) > 1

If p2*(i,m) is smaller than 1 and larger than p;, we use p=*(i,m) in (146)
to update pf(i,m). However, if p2*(i,m) is below p; or above 1, we reduce or
increase the previous parameters value within these bounds. The procedure
for the repair parameters (147) is similar.

When the virtual failure and repair probabilities p%(i,m) and r¥(i,m) for
Machine M, (i, m) in Line L(z, m) have been determined, the new steady-state
probabilities p[(¢, m)naya4] and the production rate E(:,m) are computed
using the approach by Gerhwin and Schick in [Gershwin, 1994, p. 76-93].

3.4.2 Downstream Phase

Consider all machines My(7,¢) in the downstream part Sp of the evalua-
tion sequence except for output machines, 1.e. machines without succeeding
machines. For each machine My(j,1), determine E(¢) from (148).

E(i) = M{ > E(z‘,q)} (148)

(i,9)eD(i)

During early iterations of the algorithm, the sum of the production rates
E(7,q) may be higher than the isolated efficiency e; of Machine M; or even
higher than 1, the isolated production rate of a perfectly reliable machine.
However, the flow out of Machine M; in the real system, 37 yep(y Eiq,
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cannot possibly be higher than the isolated production rate e; of Machine M;.
Furthermore, a production rate higher than 1 is meaningless in the context
of the underlying model. We therefore impose in (148) an upper limit e; on
the approximated throughput E(¢) of Machine M;. To determine F(j,7), we
have to consider three different cases:

e Case A: Machine M; does not perform merge operations.

e Case B: Machine M; does perform merge operations and we are con-
sidering the production rate E(ji,1) related to the priority one buffer.

e Case C: Machine M; does perform merge operations and we are con-
sidering the production rate E(j3,7) related to the priority two buffer.

In Case A, we set E(j,i1) = F(t), as in proposed [Dallery et al., 1988]
(see also [Gershwin, 1994, p. 152]) for the simple transfer line. In Cases B
and C, we have to enforce that E(7;1,¢) and E(jz,1) for the priority one and
priority two buffers add up to E(7) as determined in (148). We found that
the following procedure leads to a reasonable convergence behavior: During
the first five iterations, update

ok E(j1,8)! )
E(]laz) - E(jl,i)k—l n E(jg,i)k_l E( ) (149)
E(j277:)k—1

E(j1,1)* + E(ja, 1)1

where superscripts £ and £ — 1 denote the respective iteration. During the
first few iterations, the sum of E(j;,1)*~! and E(js,7)*~! may be larger than
E(7), or even larger than 1. In order to propagate positive new values for
E(j1,1)* and E(js,7)F which add up to E(i)*, we use the updating schemes
in (149) and (150).

After five iterations, we usually find E(j;,7)*~! < E(:)* and E(j,,7)F! <
E(i)*. We therefore switch to the following updating scheme:

B(ja, i)t E(i)* (150)

Il

E(jlai)k = E(i)k_E(j%i)k_l (151)
E(j2,i)* = E@)* - E(j1,1)* (152)

Using E(7) and E(j,1), determine K3 from (17):
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Etz) E(i,q)
K, = [ T Xigene (! ~ L) — 1+1] .
2 — i P
iiev eyl — _J_li(ll’i)) E(j,1)

In Cases A and B, set F' = 1. If Machine M; does in Case A not perform
a merge operation, it either performs a split operation or it sends material
to exactly one succeeding machine. In both cases, determine K4 from (75):

Ky = (T'd(i, )_ri) [(Z, ))N(lv )10] -
(i,q)ze%u) R TUEG)

If in Case B, Machine M; performs a merge operation and we are consid-
ering the priority one buffer, determine Ky from (95):

1
(Jl) )
In Case C, set F' = (1 — ry(j1,7)) and determine Ky from (128):

Ki = (ra(i,q) = r:)pl(i,q); N(i, q), 10]

Ki = [mU#ﬁFPKLQNAWlQﬂmPKh,)Oml+

(1 —pi)-

N(i,q)—2

[ 2:0 p[(%,¢);n10] + p[(¢, q); nl1]
+(1 = pa(i, 9)P[(7, q) ( q)—1,11]
+ra(i,9)pl(7, ¢); N(i,q) — 1,10]

[mm@mmn1m+u—mmm>mh>mﬂ
~niF|(1 = p{(i, ) NG, )10)(1 ~ pl(Ga, i);001)

+muﬂxN@ﬂanEG}m

Compute preliminary values for downstream parameters r(7,¢) from (135)
and pj(7,¢) from (136):
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o Ky +riF(Ky — 1
i) = =l

pald,1) = Kyi+riF(Ky;—1)

As for the upstream machines, compute smoothed updates r3*(7,7) from

(154) and p3*(j,7) from (153).

P50 = epa(di) + (1 =€) pq " (5,1) (153)
ri(,1) = erg(q i) + (1= e)ri™' (4,9) (154)

Finally, impose the hard constraints in (155) and (156) to determine the
updated failure and repair probabilities for Machine My(7,¢) in iteration k:

Pi(4,1) if pi <py(5,9) <1
pi(j,1) = { pi +0.5(p5 7" (5,1) — pi) if pi*(4,%) < ps (155)

Pt (i) + 0.5 (1 — py M (5,1) if pr(s,e) > 1

5% (5,4) if 0.<ri(4,i) <1
ri(j,1) = { 0.57571(5,17) if 73%(5,1) <0 (156)

rg  (5,8) + 0.5 (1 —rh71(4,4)) i (i) > 1

When the virtual failure and repair probabilities pf(j,7) and r%(j,4) for
Machine My(7,¢) in Line L(J,7) have been computed, the new steady-state
probabilities p[(7,?)nay,aq] and the production rate E(j,4) are determined.

Termination. Stop the procedure if the conservation of flow (2) equa-
tions for all machines are met to a sufficient degree of accuracy for a number
of successive iterations.

A proof of convergence for this type of algorithm is not available, but nu-
merical experiments to be reported below show a high convergence reliability
for a wide range of system parameters.

3.5 General Comments on Implementation and Algo-
rithm Behavior

We always start the algorithm with a smoothing parameter of ¢ = 1.0, i.e.
without exponential smoothing. In the very few cases where the algorithm
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does not converge within 100 iterations, we reduce € to 0.5 for an additional
100 iterations and finally to 0.25 for a last 100 iterations before we abort the
evaluation. In almost all cases, reducing € to 0.5 or 0.25 is not necessary. Fur-
thermore, we encountered cases where the estimated performance measures
appeared to be a function of the smoothing parameter. For this reason, we
suggest not to use the exponential smoothing unless it is necessary to achieve
convergence.

In our numerical study to be described below, we terminated the algo-
rithm when the conservation of flow equation (2) was met within 0.01 % for
ten successive iterations. In most cases, these ten iterations lead to an even
higher accuracy than 0.01 %. Our numerical results show a few cases where
the algorithm failed to converge.
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4 Numerical Results

4.1 Introduction
4.1.1 Overview

In order to evaluate both the behavior of manufacturing systems with split
and merge operations and the performance of our decomposition method,
we performed a numerical study based on artificial problems of different size
and structure. In this study, we compared the results of our decomposition
approach to results from a discrete-event simulation. The simulation was
programmed in C. For each structure, i.e. each arrangement of machines and
buffers, we studied a set of 100 randomly generated problems. The purpose
of this first part of the study was to evaluate the algorithm with respect to
convergence reliability and accuracy over a wide range of machine and buffer
parameters. For each of the random problems, we ran a simulation of 20
independent runs over 31,000 time units where the first 1,000 time units of
each run were omitted as a warm-up period.
In the second part of the study, we varied in a systematic way

e the probabilities of failures and repairs,
e the size of the buffers, and

e the routing probabilities

in order to discover systematic effects. Here, the focus was primarily on the
manufacturing system behavior. We started with smaller pure split or merge
systems and later considered larger structures with loops where both split and
merge operations were performed. Due to the systematic variation especially
of buffer sizes, some of the systems were rather similar and therefore hard to
compare by simulation results. In order to get production rate estimates with
tight 95 % confidence intervals, we increased the simulation time by running
20 independent runs over 110,000 time units. For each run, we omitted the
first 10,000 time units as a warm-up period.

4.1.2 Generating Random Problems

To generate the random problems, we used parts of a procedure proposed in
[Burman, 1995, p. 92-94] in the context of flow line analysis. In what follows,
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let RAN denote a pseudo random number generated by a call to the rnd()
function in Visual Basic. This random number generator returns a number
uniformly distributed between 0 and 1. FEach reference to RAN}, in the
formulas below represents a different value of this variable which is obtained
by a separate call A of rnd(). Following Burman’s approach [Burman, 1995,
p- 93], we first generated a single random number

z =1+ (9RAN,) (157)

for a given structure by a single call to the random number generator. In the
next step, a set of different random numbers

y; = —(1 + RAN,,;), (158)

one for each machine M;, was generated. We then computed repair proba-
bilities

r; = z¥% (159)

for each machine M;. Due to this approach, the repair probabilities are
between 0.01 and 1. They are similar in their order of magnitude for all
machines in a structure. Given these repair probabilities, an average repair
takes between 1 and 100 periods. This covers a wide range of possible repair
times.

The failure probabilities p; are generated in a way that results in isolated
efficiencies between 50 % and 99 %:

i = r; % 107 (0-66RANs i +0.66RANs,i+0.66RANG, i) (160)

The isolated efficiency cannot be higher than 100 %. An isolated efficiency
below 50 % says that a machine is down more often than it is up. We do not
consider this to be a very realistic assumption.

In general, this results in systems that are roughly balanced with respect
to the isolated efficiencies e; = —i— of the machines. This is desirable to
avoided random cases with slow bottleneck machines that are usually easy to
analyze but not very realistic. However, due to split and merge operations,
the bottleneck issue gets more complicated than it was in Burman’s study of
purely linear flow lines. In two of the cases to be described below, additional
adjustments were necessary to generate random cases that were not extremely
unbalanced.
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The physical buffer sizes C;; in a well-designed system are more or less
proportional to the number of parts produced during the average repair time
of the machines immediately up- or downstream of the buffer. If the buffer
sizes are much smaller, an average failure propagates quickly through the
system as machines are blocked and starved before the broken machine is
repaired.

The numerical solution technique used for the two-machine model in the
decomposition is based on the assumption that there are at least two physical
buffer spaces C;; between any two machines.

To this minimal buffer size C;; = 2 we randomly added up to three
times the amount of space required for the parts produced during a failure
of average duration at the adjacent machines:

11

r; Tj

Cm‘ =2+ MAX[ ]3RAN6’J"¢' (161)

Since the two-machine model by Gershwin and Schick includes the work-
spaces at the machines in the calculation of the available storage, we have an
extended buffer size N(7,j) = C;; + 2 of at least 4 in the two-machine lines
used in the decomposition.

4.2 Pure Split Structures
4.2.1 Structure S1

We first studied Structure S1 depicted in Figure 9 for 100 random cases using
the approach described above. The numbers above the buffers are the buffer
indices used to determine the evaluation sequence. The routing probability
dy 3 was set to 0.9. We asked for the production rate in the branch between
Machines M, and M.

The 100 random cases were evaluated both by simulation and by our
approximation technique and sorted according to ascending simulated pro-
duction rates. Figure 10 shows the simulated production rates for the 100
random cases. We do not display the approximated production rate esti-
mates in Figure 10 as they are very close to the simulation results. Instead,
we display in Figure 11 the percentage error (PRa, — PRs;)/ P Rs; for each
case. The algorithm converged in all 100 cases and the average over the
absolute values of the relative errors was 0.81 %. The probably somewhat
less important buffer levels estimates are typically less accurate as we discuss
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Figure 9: Structure S1

Class S1C1: C;; =2,VY(¢,7); pp = 0.01,r; = 0.1,V

Case de3 | Iter. BL % PRg; PR, %
S1C1S1 10.95) 13 6.809 .7375 £ .0024 .7532 2.1
S1C1S2 | 0.9 13 7.452 7014 + .0027 .7165 2.2
S1C1S3 | 0.7 13 8.172 .5505 4+ .0016 .5620 2.1
S1C154 | 0.5 13 8.271 .3951 4+ .0012 .4023 1.8
S1C1S5 | 0.3 12 8.163 .2357 £ .0011 .2409 2.2
S1C1S6 | 0.1 12 7.553 .0779 £ .0006 .0796 2.2
S1C1S7 | 0.05 | 12 6.838 .0388 £+ .0003 .0396 2.1

Table 7: Results for Class SIC1 (Small Buffers)

in more detail below. Usually, the algorithm terminated after less then 20
iterations.

In the second part of the study for Structure S1, we analyzed 44 different
sets of parameters. These 44 problems were arranged in 8 different problem
classes. The performance measure was again the production rate in the
branch between Machines M; and Mj3 in Figure 9. In the first problem class,
referred to as S1C1, we used the parameters in the upper part of Table 7.
The results for different values of the routing probability dj 3 are given in the
lower part of Table 7.

In this problem class, the routing probability d» 3 changed from 0.95 to
0.05. The last row in Table 7 reports the relative difference between the
approximated and the simulated production rate for the branch between
Machines My and M;. (It is not necessary to report results for more than
one branch of the network since the ratio of the respective production rates
in different branches is determined by the routing probabilities d;, in the
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S$1: Random Cases

90.00%

80.00%

70.00% -

60.00% 1

50.00%

40.00% -

Production Rate [%]

30.00%

20.00%

10.00% -

0.00%

0 20 40 60 80 100
Case

Figure 10: Structure S1 - Simulated Production Rates for Random Problems

S1: Random Cases
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Figure 11: Structure S1 - Percentage Errors for Random Problems
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Class S1C2: C;; = 8,V(z,7); pi = 0.01,r; = 0.1,V2

Case | dp3 | Iter. BL % PRg; PR, %
SIC2S1 [0.95| 13  2.926 .7790 + .0022 .7878 1.1
S1C2S2 | 0.9 | 13  2.944 .7441 + .0024 .7502 0.8
S1C2S3 | 0.7 | 13  2.860 .5851 +.0013 .5903 0.9
S1C254 | 0.5 | 13 2.939 .4201 + .0012 .4232 0.7
S1C2S5 | 0.3 | 12 2.874 .2499 + .0010 .2530 1.2
S1C2S6 | 0.1 | 12  2.884 .0820 + .0004 .0834 1.6
S1C2S7 | 0.05 | 12 2912 .0410 +.0004 .0415 1.1

Table 8: Results for Class S1C2 (Larger Buffers)

underlying model. For this reason, the accuracy of the production rate ap-
proximation is identical for all branches of pure split structures.) We stopped
the iterative approximation when the conservation of flow condition (2) was
met to a relative accuracy of 0.0001 for each machine in the system for 10
consecutive iterations. That is, the approximation needed three iterations
for Case S1C1S1 in Table 7 to meet the conservation of flow equation at an
accuracy of 0.01 % and then stayed within this level of accuracy for the next
10 iterations. (In most of the cases this led to an even higher accuracy with
respect to the conservation of flow equation.)

The fourth row is a measure of the accuracy of the buffer level estimate.
We determined for each buffer b the difference between the average buffer
level from the decomposition approach 7T 4,,(b) and the the average buffer
level from the simulation g, (b). The absolute value of this difference is
related to the extended buffer size N(b). The average over these relative
quantities is computed as follows

Z W app(b) — Tisim (b)) (162)
N(b)
where B is the number of buffers in the system.

The fifth row gives the average simulated production rate and the half-
width of the respective 95 % confidence interval.

The results in Table 7 show that the buffer level estimate is less accurate
than the production rate estimate, that the production rate estimate itself
is very accurate and that the algorithm converges quickly for this problem
class.
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Class S1C3: C;; =2,V(1,7); pi = 0.01,2 = 1,2,4;r; = 0.1,Vi;da 3 = 0.9

Case ps | Iter. BL % PRs; PRy, %
S1C3S1 | 0.01 | 13 7.493 .7027 £+ .0016 .7165 2.0
S1C352 |1 0.04 | 13  6.285 .5874 4+ .0023 .6100 3.8
S1C3S3 |1 0.07 | 12 10.011 .5038 £ .0016 .5251 4.2
S1C354 | 0.1 13 12.140 .4415 4+ .0015 .4586 3.9
S1C3S5 | 0.2 13 15.018 .3134 4+ .0018 .3191 1.8

Table 9: Results for Class S1C3 (Small Buffers)

Class S1C4: C;; =8,Y(1,7); ps =0.01,0 = 1,2,4;7r; = 0.1,Ve5d23 = 0.9

Case ps | Iter. BL % PRs; PR, %
S1C4S1 | 0.01 | 13  2.916 .7404 + .0019 .7502 1.3
S1C4S2 | 0.04 | 14 2359 .6473 £ .0027 .6613 2.2
S1C4S3 | 0.07 | 13  4.536 .5534 £+ .0014 .5679 2.6
S1C4S4 | 0.1 13 5.601 .4817 &+ .0017 .4907 1.9
S1C4S5 | 0.2 14 6.364 .3293 £ .0019 .3318 0.7

Table 10: Results for Class S1C4 (Larger Buffers)

In Class S1C2 we studied the impact of increasing all physical buffer sizes
C;,; between machines from 2 to 8 and again varied the routing probabilities.
The results in Table 8 are more accurate than those for smaller buffer sizes
in Table 7. This is a typical pattern for decomposition approaches.

We next varied the failure probability of Machine M3 from 0.01 to 0.2
for physical buffer sizes C;; of 2 and 8 and the fixed routing probability
dy3 = 0.9. The results in Tables 9 and 10 indicate that the production rate
estimate is still quite precise. The buffer level estimate deteriorates as the
system becomes more and more unbalanced.

Problem Classes S1C5 and S1C6 are like Problem Classes S1C3 and S1C4
except for a different routing probability d; 3 = 0.1 instead of 0.9. The results
in Tables 11 and 12 indicate that the algorithmic behavior is very similar
with respect to accuracy. However, the manufacturing system behavior is
completely different: In Classes S1C3 and S1C4, Machine M3 becomes a
bottleneck as its failure probability increases up to 0.2. This is because
Machine M3 has to process 90 % of the parts that leave Machine M;. When
we reduce the routing probability ds 3 to 0.1, Machine M3 does not become
a bottleneck for failure probabilities up to 0.2 and the production rate in
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Class S1C5: C;; =2,V(1,5); ps = 0.01,1 = 1,2,4;r; = 0.1,Vi; da 3 = 0.1

Case ps | Iter. BL % PRs; PRy, %
SiC5S1 | 0.01 | 12  7.453 .0779 £ .0005 .0796 2.2
S1C552 | 0.04 | 12  7.521 .0783 &£ .0004 .0794 1.4
S1C5S3 | 0.07 | 12 7.506 .0774 £+ .0004 .0791 2.3
S1C5S4 | 0.1 12 7.528 .0770 £ .0003 .0789 2.4
S1C5S5 | 0.2 12 7.585 .0764 £ .0004 .0780 2.1

Table 11: Results for Class S1C5 (Small Buffers)

Class S1C6: C;; = 8,Y(¢,7); pi =0.01,0 =1,2,4;7;, = 0.1,Ve;d23 = 0.1

Case ps | Iter. BL % PRgs; PR4, %
S1C6S51 | 0.01 | 12 2915 .0828 + .0005 .0834 0.7
S1C652 [ 0.04 | 12 2.996 .0826 + .0004 .0834 0.9
S1C6S3 |1 0.07 | 12 2970 .0820 + .0005 .0834 1.6
S1C654 | 0.1 12 2948 .0823 &+ .0004 .0833 1.2
S51C655 | 0.4 | 12 2.877 .0819 £ .0005 .0833 1.7

Table 12: Results for Class S1C6 (Larger Buffers)

Tables 11 and 12 remains almost unchanged.

In Problem Classes S1C7 and S1C8, we varied the failure probability of
Machine M; and set the routing probability d; 3 back to 0.9. Since all parts
have to be processed by machine M; and we start with a balanced system,
we observe in Tables 13 and 14 a strong reduction of the production rate
which is precisely predicted by the approximation approach.

Class S1C7: C;; = 2,Y(1,7); pi = 0.01,0 =2,3,4;7r;, = 0.1,V4;d23 = 0.9

Case P1 Iter. BL % PRSZ PRAp %
S1C7S1 1 0.01 | 13  7.473 .7010 £ .0021 .7165 2.2
S1C752 | 0.04 | 13  5.533 .5720 £ .0019 .5861 2.5
S1C7S3 1 0.07 | 13  5.927 .4841 £ .0019 .4935 1.9
S1C754 | 0.1 | 13 5.807 .4204 + .0014 .4257 1.2
S1C755 | 0.2 13 4.504 .2888 4+ .0015 .2913 0.9

Table 13: Results for Class S1C7 (Small Buffers)
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Class S1C8: C;; = 8,Y(i,7); pi = 0.01,1 = 2,3,4;7r; = 0.1,Vi;da 3 = 0.9

Case p | Iter. BL % PRg; PRy, %
S1C8S1 ] 0.01 | 13  2.967 .7431 £ .0020 .7502 1.0
S1C8S2 | 0.04 | 13  3.652 .6092 £ .0024 .6158 1.1
S1C8S3 1 0.01 ) 13  3.391 .5104 4+ .0024 .5153 0.9
S1C8S4 | 0.1 13 3.021 .4393 &+ .0017 .4418 0.6
S1C8S5 | 0.2 13 2.160 .2979 £+ .0015 .2981 0.1

Table 14: Results for Class S1C8 (Larger Buffers)

4.2.2 Structure S2

In a next step we added another machine downstream of Machine M,. The
resulting Structure S2 depicted in Figure 12 was evaluated for different rout-
ing probabilities. We asked for the production rate in the branch between
Machines My and M35. We again generated 100 random problems which were
sorted according to simulated production rates (see Figure 13). The routing
probabilities were dy3 = 0.9, da4 = 0.05, and dz4 = 0.05. The percentage
errors for each case are given in Figure 14. The algorithm converged in 99
out 100 cases and the average absolute value of the percentage error over the
99 random cases was 0.60 %. In the one case where the algorithm did not
converge, all repair probabilities were very close to 1.

1»@—»2{\—/;03—»4

Figure 12: Structure S2

In the second part of the experiments for Structure S2, we briefly eval-
uated the effect of different routing probabilities. The results reported in
Tables 15 and 16 show that the accuracy again increases as the buffer sizes
increase. The decrease of the approximated production rate of Machine M,
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S2: Random Cases
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Figure 13: Structure S2 - Simulated Production Rates for Random Problems
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Figure 14: Structure S2 - Percentage Errors for Random Problems
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in Table 15 from 0.7168 to 0.4843 is almost proportional to the decrease of
the routing probability d; 5 from 0.9 to 0.6.

Class S2C1: C;; = 2,¥(3,5); pi = 0.01,r; = 0.1,Vs

Case |dys dza das | Iter. BL % PRg; PR4s, %
S2C1S1 [ 0.9 0.05 0.05] 13 5752 .7016 + .0022 .7168 2.2
$2C182 1 0.8 0.1 0.1 | 13 6.035 .6283 +.0016 .6414 2.1
$2C1S3 1 0.6 0.3 0.1 | 13 6.146 .4754 4+ .0023 .4843 1.9

Table 15: Results for Class S2C1 (Small Buffers)

Class S2C2: C,',j = 8,V(Z,j), pi = 0.01,7"2' = Ol,Vl

Case | dps dsa dzs | Iter. BL% PRs; PR4s, %
S2C251 | 0.9 0.05 0.05| 13 2.488 .7430 & .0015 .7502 1.0
S2C252 1 0.8 0.1 0.1 13 2.175 .6651 £ .0019 .6715 1.0
S52C2583 1 0.6 0.3 0.1 12 2.184 5048 £+ .0012 .5081 0.7

Table 16: Results for Class S2C2 (Larger Buffers)

4.2.3 Structure S3

We next studied System S3 depicted in Figure 15, a network with multiple
split operations. In the first part of the study, we again generated 100 random
problems. In all of these problems, we set the routing probabilities to dy 3 =
0.9,dy5 =0.1,ds 6 = 0.5,ds 7 = 0.5 and asked for the production rate in the
branch between Machines M3 and Mj.

Since the procedure to generate the failure and repair probabilities leads
to machines with roughly similar isolated efliciencies, the random cases for
Structure S3 are extremely unbalanced. Due to the routing probabilities,
the average workload of Machine M, is 18 times as high as the workload
of Machines Mg or M7. Since we assume identical processing times at all
machines and generate similar isolated efficiencies, Machines Mg and M- are
idle most of the time. We created these artificial problems merely to show
the limits of the numerical method. Out of the 100 random problems, the
decomposition approach was able to analyze 83. It failed to converge in 17
cases. In Figure 16 we display the simulated production rate estimates for
these 83 cases, sorted according to the simulated production rate. Figure 17
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Figure 15: Structure S3

gives the respective percentage errors of the decomposition approach. The
average over the 83 absolute values of the percentage error was 1.26 %. That
is, the algorithm was less reliable for this larger and unbalanced system, but
when it converged the results were still accurate.

Class S3C1:

Ci,j = 2,V(l,])

pi=0.01,i=1,234;p; =0.1,i=56,7r =01,V

Case |dz3 dos dse dsz | Iter. BL % PRg; PRy, %

S3C1S1 109 0.1 05 05| 14 5.616 .6578 £.0025 .6813 3.6
S3C1S2 105 05 05 05| 14  6.213 .2876 +£.001  .3022 5.1

Table 17: Results for Class S3C1 (Small Buffers)

Class S3C2:
Ci,j = 87V(27])
p; =0.01,i=1,2,3,4;p, =0.1,i =5,6,7;r; = 0.1,Vi
Case d2’3 d2’5 d5’6 d5’7 Iter. BL % PRS@ PRAp %

S53C251109 01 05 05| 14 3.041 .7254 £ .0016 .7398 2.0
53C252 1 0.5 05 05 05| 14 2611 .3694 £ .0016 .3766 2.0

Table 18: Results for Class S3C2 (Larger Buffers)

We briefly studied different routing probabilities with a more evenly dis-
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Figure 16: Structure S3 - Simulated Production Rates for Random Problems
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tributed routing of the parts, for smaller as well as for larger buffer sizes.
The parameters and the respective results are given in Tables 17 and 18 for
the production rate in the branch between Machines M3 and Mj.

Note that the isolated efficiencies of the machines are not identical. The
results suggest that the deviation between simulated and approximated pro-
duction rates increases slightly as we add another split operation, but the
decomposition approach is still fairly accurate.

4.3 Pure Merge Networks
4.3.1 Structure M1

To study networks with merge operations, we started with Structure M1 in
Figure 18. In this structure, Machine M3 always tries to take the next part
from its priority one input buffer between Machines M; and M3;. We asked
for the production rate in the branch between Machines M3 and M. Out
of the 100 random problems generated for Structure M1, the decomposition
algorithm was able to solve 91. A general observation is that the algorithm
may fail to converge if the machine performing the merge operation is al-
most never starved and the starvation probability hence approaches zero.
A possible explanation is that this leads to numerical problems in the flow
rate-idle time equation (15) where a division by this starvation probability
is performed.

The simulated production rates for these 91 cases are displayed in Fig-
ure 19, sorted according to simulated production rates. Figure 20 gives the
respective percentage errors.

1

3

3 ()4

1
2
27

Figure 18: Structure M1
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Figure 19: Structure M1 - Simulated Production Rates for Random Problems
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Class M1C1: C;; =2,VY(1,7); pi = 0.01,2 = 2,3,4;r;, = 0.1, Vs

Case p1 | Iter. BL % PRg; PRa, %
M1C1S1 | 0.001 | 21  24.771 .8347 £ .0022 .8409 0.7
M1C1S2 | 0.01 18  20.318 .8326 + .0026 .8407 1.0
M1C1S3 | 0.04 17 16.085 .8271 £+ .0025 .8380 1.3
M1C1S4 | 0.07 17 14.382 .8229 + .0023 .8351 1.5
M1C1S5 | 0.1 17 14.094 .8160 &+ .0025 .8323 2.0
MI1C1S6 | 0.4 15 13.029 .7977 4+ .0025 .8211 2.9
M1C187 | 0.7 15 10.758 .7898 4+ .0026 .8143 3.1

Table 19: Results for Class M1C1 (Small Buffers)

The average absolute value of the percentage error was 0.29 % in the 91
cases where the algorithm converged. The convergence reliability for merge
systems is in general smaller than for split systems. However, the production
rate estimate for the merge machine is usually relatively accurate whenever
the algorithm converges.

We then asked for systematic effects with respect to the manufacturing
system behavior. In the first two classes of systems, we analyzed the impact
of the failure probability p; and the buffer size C; ;. The results in Tables 19
and 20 indicate the production rate estimate for the branch between Machines
Ma; and M, is still quite accurate. The accuracy increases as the buffer sizes
increase. We also see that there is only a modest decrease in the production
rates of Machines M3 and M, as the failure probability p; increases from
0.001 to 0.7. This is because of the high isolated efficiency of Machine Mj:
As Machine M; fails more frequently, Machine M; is blocked less often,
produces more and eventually carries the major part of the workload at this
production stage.

Tables 21, 22, and 23 give detailed results for failure probabilities 0.001,
0.07, and 0.7 and physical buffer sizes C; ; = 2. (The results for the simulated
buffer levels include the half-width of the 95 % confidence intervals.)

We see in Table 21 that the simulated production rate of Machine M, is
only 0.007 for p; = 0.001 and increases up to 0.6684 for p; = 0.7 (see Table
23). In this case (System M1C1S7), the isolated efficiency of Machine M, is
only Bﬁ% = 0.125 which is close to the simulated production rate of 0.1214.

The accuracy of the production rate estimate is now no longer the same
for all branches of the network. Tables 21 and 22 show that there may be
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Class M1C2: C;; = 8,Y(1,5); pi = 0.01,1 = 2,3,4;r; = 0.1, Vs

Case p1 Iter. BL % PRg; PRsy %
M1C2S1 | 0.001 | 22 9.872 .8502 + .0016 .8562 0.7
M1C2S2 | 0.01 | 19 8.033 .8535 + .0015 .8562 0.3
M1C2S3 | 0.04 18 8.215 .8500 4 .0024 .8557 0.7
M1C254 | 0.07 | 17 6.417 .8488 + .0018 .8545 0.7
M1C2S5 | 0.1 17 8.163 .8448 + .0021 .8538 1.1
M1C2S6 | 0.4 15 6.425 .8371 £ .0023 .8473 1.2
M1C2S7 | 0.7 15 4118 .8294 4+ .0019 .8436 1.7

Table 20: Results for Class M1C2 (Larger Buffers)

Line | BlLg; BLy, % PRg; PRs, %
(1,3)]215+£.002 3.06 228 .8277 +.0024 .8313 0.4
(2,3)]200+.000 3.98 49.5 .0070 &+ .0005 .0097 38.9
(3,4)]1.92+.004 200 20 .8347 £ .0022 .8409 0.7

Table 21: Results for Case M1C1S1 (Failure Probability p; = 0.001)

Line | BLsi Bl % PRs; PRy %
(1,3)]1.39£.006 1.68 7.2 5173 £.0025 4822 -6.8
(2,3)[201+.002 341 352 .3056+.0024 .3529 15.5
(3,4))1.89+.004 1.92 0.8 .8220+.0023 .8351 1.5

Table 22: Results for Case M1C1S4 (Failure Probability p; = 0.07)

Line | BlLg BLay % PRs; PRsy %

(1,3)(040 £.008 71 7.8 .1214 £ .0006 .1177 -3.1
(2,3)(200+.005 287 217 .6684+.0027 .6966 4.2
(3,4)]1.824.007 1.70 -2.8 .7898 +.0026 .8143 3.1

Table 23: Results for Case M1C1S7 (Failure Probability p; = 0.7)
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high relative deviations for the priority two input buffer between Machines
Mj, and Ms; if its production rate is very low in absolute terms. However,
due to the low absolute values this appears to be only a minor problem in
economic terms. It is interesting to compare some of the results for Structure
M2 to results for two-machine lines. The production rate of a two-machine
line consisting only of Machines M3 and M} as given in Table 19 is 0.8409. It
is an upper bound on the production rate the system in Problem Class M1C1.
Compare this upper bound with the result for Case M1C1S1 in Table 19: In
this case, Machine Mj is very rarely starved and the simulated production
rate is very close to the upper bound. The approximated production rate
also approaches this bound as Machine M, fails less frequently.

Class M1C3: Cz"j = Q,V(i,j); P = 0.01,i = 1,3,4; ry = OI,VZ

Case ps | Iter. BL % PRgs; PRsy, %
M1C3S1 | 0.001 | 18 20.565 .8331 4+ .0030 .8409 0.9
M1C3S2 | 0.01 18 20.360 .8326 &+ .0025 .8407 1.0
M1C3S3 | 0.04 19 19470 .8277 4+ .0021 .8398 1.5
M1C354 | 0.07 | 21 19.007 .8239 + .0028 .8394 1.9
M1C3S5 | 0.1 20  19.059 .8190 £ .0016 .8399 2.6
M1C356 | 0.4 29  18.892 .8016 £ .0023 .8398 4.8
M1C3S7 | 0.7 32 18.484 .7975 £ .0019 .8394 5.3

Table 24: Results for Class M1C3 (Small Buffers)

Class M1C4: C;; = 8,¥(1,7); ps =0.01,: = 1,3,4;r, = 0.1,Vs

Case py | Iter. BL % PRg; PRsa, %
M1C4S1 | 0.001 | 19 7.481 .8539 + .0013 .8562 0.3
M1C4S2 | 0.01 19 8.002 .8503 £ .0022 .8362 0.7
M1C4S3 | 0.04 25 7.668 .8511 £ .0021 .8560 0.6
M1C4S4 | 0.07 28 7.262 .8502 £ .0016 .8557 0.6
M1C4S5 | 0.1 27 6.487 .8473 £ .0020 .8552 0.9
M1C4S6 | 0.4 32 9.011 .8425 + .0026 .8560 1.6
M1C4S7 | 0.7 28 12,313 .8385 & .0022 .8562 2.1

Table 25: Results for Class M1C4 (Larger Buffers)

For the next two problem classes we varied ps, the failure probability of
the machine upstream of the priority two input buffer of Machine M;. We
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see in Tables 24 and 25 that this does again lead to a slight reduction of
the simulated production rate which is not very accurately predicted by the
decomposition approach.

Class M1C5: Ci; = 2,V(4,7); pi = 0.01,2 = 3,4;r; = 0.1,Vs

Case | p,=py|Iter. BL % PRg; PRs, %
M1C5S1 | 0.001 21  24.845 .8352 £ .0028 .8409 0.7
M1C5S2 0.01 18 20.284 .8323 + .0018 .8407 1.0
M1C5S3 0.04 18 12,561 .8079 4+ .0024 .8283 2.5
M1C554 | 0.07 17 13.666 .7650 + .0018 .8052 5.3
M1C555 0.1 18 7.272 7204 4+ .0023 .7567 5.0
M1C556 0.4 16 5.949 3812 £+ .0011 .3897 2.2
M1C557 0.7 15  4.135 .2468 4+ .0007 .2488 0.8

Table 26: Results for Class M1C5 (Small Buffers)
Class M1C6: C;; = 8,Y(4,7); pi =0.01,i = 3,4;7;, = 0.1,V2

Case | py =p; | Iter. BL % PRg; PRy, %
M1C6S1 | 0.001 22 9.868 .8530 + .0021 .8562 0.4
M1C6S2 0.01 19 8.040 .8509 + .0023 .8562 0.6
M1C6S3 0.04 24 5.285 .8437 £ .0016 .8527 1.1
M1C654 | 0.07 25  2.883 .8220 £ .0018 .8354 1.6
M1C655 0.1 26 4.960 .7873 £+ .0020 .8128 3.2
M1C656 0.4 16 3.741 .3983 £+ .0014 .3987 0.1
M1C6S7 0.7 14 1.816 .2499 4 .0007 .2500 0.0

Table 27: Results for Class M1C6 (Larger Buffers)

In Classes M1C1 to M1C4, Machines M; and M, had a joint isolated pro-
duction rate that was higher than the isolated production rates of Machines
M3 and M,y. We next studied the opposite situation and increased the failure
probabilities p; and p; simultaneously in order to make these machines the
bottleneck. Tables 26 and 27 show that there is now a strong decrease of the
production rate. In Case M1C6S7 in Table 27, both bottleneck machines fail
so often that they are almost never blocked and the simulated production
rate of the network is very close to the sum of the two isolated production

rates of Machines M; and M, of 0.25.
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Class M1CT7: C;; = 2,¥Y(4,7); p; = 0.01,: = 1,2,3;r; = 0.1, Vs
Case ps | Iter. BL % PR, PRs, %
M1C7S1 | 0.001 | 18 23.363 .8985 + .0021 .9021 0.4
M1C7S2 | 0.01 18 20.312 .8330 £+ .0026 .8407 0.9
M1C7S3 | 0.04 | 20 27.667 .6687 £+ .0029 .6758 1.1
M1C7S4 | 0.07 | 19 30.100 .5573 £+ .0024 .5635 1.1
M1C7S5 | 0.1 19  30.865 .4801 4+ .0026 .4830 0.6
M1C7S6 | 0.4 126 32.847 .1984 £ .0010 .1984 0.0
MI1CT7S7 | 0.7 | ¥FFx  Fkxx 1945 4 0006  rFkx wkkx

Table 28: Results for Class M1C7 (Small Buffers)

Class M1C8: C;; =8,V(4,7); pi = 0.01,i = 1,2,3;r, = 0.1, Vs
Case P4 Iter. BL % PRg; PRa, %
M1C8S1 | 0.001 | 18 10.885 .9050 4+ .0015 .9052 0.0
M1C8S2 | 0.01 19 8.052 .8h18 £ .0022 .8562 0.5
M1C8S3 | 0.04 19  11.103 .6896 £ .0023 .6921 0.4
M1C854 | 0.07 20 12.156 .5731 £ .0026 .5761 0.5
M1C8S5 | 0.1 24 12477 4928 £ .0021 .4926 0.0
MIC8S6 | 0.4 | *¥<x  Fkxk 10903 + (008  *¥¥*  krkx
MI1C8S7 | 0.7 | *xxx  xkxx 19248 + 0006  *rx  clrkx

Table 29: Results for Class M1C8 (Larger Buffers)

In a last experiment for Structure M2, we varied the failure probability
of Machine My, i.e. the bottleneck was now downstream of the merging
machine. We found in Tables 28 and 29 that if the algorithm converged, the
accuracy of the results was relatively high. However, for very low isolated
production rates of Machine M, of E&}m = 0.2 (System M1C8S6) or Fof(ﬁ =
0.125 (Systems M1C7S7 and M1C8S7), the algorithm failed to converge. In
these situations, the probability to have both input buffers of the merging
machine empty at the same time becomes very small and we conjecture that
this causes problems in the flow rate-idle time equation as the probability
that Machine M3 is starved approaches 0.
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4.3.2 Structure M2

We also examined the effect of having multiple merge operations and differ-
ent priority assignments. The structure in Figure 21 contains two machines
performing merge operations.

Figure 21: Structure for Class M2Cl1

We first generated 100 problems with machines of roughly the same iso-
lated efficiency. Due to the two merge machines in Structure M2, these
systems were strongly unbalanced and both of the merge machines were very
rarely starved. Out of these 100 random cases, the algorithm could solve only
25, i.e. it failed to converge for 75 cases out of 100. We conjectured that this
was due to the fact that the systems tended to be very unbalanced. In order
to test this hypothesis, we modified the failure probabilities of the machines
upstream of merge machines in order to create more balanced systems. For
the 100 random cases, we changed the failure probabilities of Machines M;,
M, and M5 in a way that reduced their isolated efficiencies by exactly 50 %
and those of Machines M3 and M, by exactly 75 % unless this resulted in
failure probabilities higher than 0.9. In these cases, we set the failure prob-
abilities to 0.9. Due to the merge operations, the systems were now more
evenly balanced.

All the repair probabilities and buffer sizes remained unchanged. Out
of these 100 random problems, the algorithm could solve 85 and failed to
converge for 15. The average absolute percentage error over the 85 solved
cases was 2.27 %. We conclude that structures with merge operations tend
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Figure 22: Structure M2 - Simulated Production Rates for Random Problems
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Figure 23: Structure M2 - Percentage Errors for Random Problems
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pr=p2=ps =0.1,p3 =ps = 0.2, ps = ps = 0.01

r, = OI,VZ
System CZVJ,V(Z,]) B3,5 B4,5 B2’6 B5’6
M2C1S1 2 Priority 1 | Priority 2 | Priority 1 | Priority 2
M2C152 8 Priority 1 | Priority 2 | Priority 1 | Priority 2
M2C2S1 2 Priority 1 | Priority 2 | Priority 2 | Priority 1
M2C252 8 Priority 1 | Priority 2 | Priority 2 | Priority 1
M2C351 2 Priority 2 | Priority 1 | Priority 1 | Priority 2
M2C352 8 Priority 2 | Priority 1 | Priority 1 | Priority 2
M2C451 2 Priority 2 | Priority 1 | Priority 2 | Priority 1
M2C452 8 Priority 2 | Priority 1 | Priority 2 | Priority 1
Table 30: Parameters for Cases M2C151 to M2C452
Case Iter. BL % PRg; PRs, %
M2C1S1 | 20 8.969 .6393 £ .0020 .6881 7.6
M2C1S2 | 18 8.024 .7470 £ .0018 .7786 4.2
M2C2S1 | 19 9.739 .6282 £ .0019 .6992 11.3
M2C2S52 | 27 7.862 .7407 £ .0017 .7619 2.9
M2C3S1 | 20 8.974 .6361 £ .0021 .6881 8.2
M2C3S2 | 18 8.009 .7463 £+ .0019 .7786 4.3
M2C4S1 | 19 9471 .6203 £+ .0023 .6992 12.7
M2C452 | 27 7.435 .7323 £.0019 .7619 4.0

Table 31: Results for Structure M2

to be more difficult to solve with respect to convergence reliability. The
production rates and percentage errors are displayed in Figures 22 and 23.

We next changed the priority assignments. The priority assignments for
the input buffers in Figure 21 are as in Cases M2C1S1 and M2C152 in Table
30. The results for the production rate in the branch between Machines Mg
and M- in Table 31 suggest that the quality of the approximation deterio-
rates slightly as we add machines performing merge operations. However,
for a physical buffer size C;; = 8, the maximum relative deviation between
approximated and simulated production rate was only 4.3 %. The priority
assignment did not appear to have a major impact on the production rate.

We conclude that the algorithm is somewhat less accurate and reliable
for pure merge networks than for pure split networks.
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4.4 Structures with Loops

The last part of our numerical experiment was directed at more general struc-
tures that contain both split and merge operations and have loops. These
loops in the flow of material occur if occasionally bad parts are produced,
reworked, and sent back into the main line. Machines that perform split
and merge operations are a building block of these more complex systems.
Given that our decomposition works reasonably for pure split and pure merge
structures, it remains to be shown that they can work together for a variety
of different structures with random routing and loops.

4.4.1 Structure L1

We started with Structure L1 which is depicted in Figure 24. At Machine
M3, good parts are sent to Machine M, and finally leave the line. Bad parts
are reworked at Machine M5 and then sent to Machine M, where they have
priority over the parts coming directly from Machine M;. We asked for the
production rate in the branch between Machines M3 and Mj.

Figure 24: Structure L1

We first tested the algorithm for 100 random cases with roughly similar
efficiencies over all machines. In these random cases, we assumed that 90 % of
the parts are good and 10 % are bad. Out of the 100 random cases, 99 could
be solved analytically by our decomposition approach. These were sorted
according to the simulated production rates and are displayed in Figures 25
and 26. The average absolute percentage error over the 99 cases was 0.99 %.

We next studied systematically generated cases with different buffer sizes,
frequencies of failures and repairs, and routing probabilities. Problem Classes
L1C1 and L1C3 in Table 32 differ with respect to the variability of failures
and repairs. In both cases, all machines have an isolated production rate
of about 0.9091. However, in Class L1C3 failures (and repairs) occur much
less often than in Class L1C1. The expected duration % of a repair is 10
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Figure 25: Structure L1 - Simulated Production Rates for Random Problems
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Figure 26: Structure L1 - Percentage Errors for Random Problems
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Class L1C1 Class L1C3

pi=0.0L,7 = 01,Vi,d50=09 | p: = 0.00L,r; = 0.01, %, dos = 0.9
SyStem Ciqj’v(i’j) Ni,j,v(i,j) SyStem Ci,jvv(l.aj) N,',]‘,V(Z',j)
L1C1S1 2 4 L1C3S1 2 4
L1C1S17 18 20 L1C3S517 18 20

Table 32: Parameters for Problem Classes L1C1 and L1C3

Class LL1C2 Class L1C4

pi = 0.0L,m; = 0.1,%,Cr; = 8,9(i,J) || p: = 0.00L,r; = 0.01, Vi, Cr; = 8,%(3, 7)
System ds 4 System ds 4

L1C2S1 0.9 L1C4S1 0.9

L1C259 0.1 L1C4S9 0.1

Table 33: Parameters for Problem Classes L1C2 and L1C4

time units in Class L1C1 and 100 time units in Class L1C3. Of the parts
processed by Machine M3, 90 % were routed to Machine Mj.

The graph in Figure 27 for Class L1C1 shows that the production rate
increases (from 0.666 to 0.767) as we add buffer spaces. The decomposition
approach overestimates the production rate slightly and becomes very ac-
curate for larger buffer sizes. Compare this to the graph for Class L1C3 in
Figure 28 with the larger expected repair times: First, there is almost no in-
crease of the (simulated) production rate as we add 16 spaces for each buffer.
This is due to the very large repair times: If a failure occurs, buffers become
full or empty long before the machine is repaired, even for ’larger’ buffer
sizes. This example shows how crucial the impact of infrequent failures with
long repair times is. The graph also shows that the decomposition approach
fails with respect to accuracy if buffer sizes are very small with respect to
repair times.

We now study the impact of the routing probability and vary ds4 from
0.9 to 0.1 for a physical buffer sizes C;; = 8, i.e. N(z,7) = 10 in all two-
machine models used in the decomposition. Figure 29 shows that there is
an almost perfectly linear decrease of the production rate as ds4 decreases
and ds5 increases. We also see that the approximation works reasonable
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Figure 27: Results for Class L1C1
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Figure 28: Results for Class L1C3
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L1C2: Production Rate vs. Routing Probability
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Figure 29: Results for Class L1C2

L1C4: Production Rate vs. Routing Probability

O Rel. Dev.
O PR(Sim)
8 PR(Appr)

PR(Appr)
PR(Sim)

08 7

0.6 Rel. Dev.

0.5 0.4

0.3
Routing Probability d, . 0.2

0.1

Figure 30: Results for Class L1C4
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Class L1C5

i = 0.01,7‘,' = 0.1,Vi, Ci,j = Q,V(Z,])
System ds 4

L1C5S1 0.9

L1C559 0.1

Table 34: Parameters for Problem Class L1C5

L1C5: Production Rate vs. Routing Probability

PR(Sim)

Rel. Dev.

Routing Probability d, 4 : 0.2 0.1

PR(Appr)

Figure 31: Results for Class L1C5

over a wide range of values. Again, this picture changes completely with
respect to accuracy if the variability increases: Figure 30 indicates that the
decomposition should not be used due to large deviations if high variability
and high feedback probabilities occur together.

ORel. Dev.
E31PR(Sim)
PR(Appr)

In a last experiment for Structure L1 (see Table 34), we studied the case
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of small buffer sizes (C;; = 2,V(7,7)), low variability, and varying routing
probabilities. The results in Figure 31 are satisfying for routing probabilities
ds 4 higher than 0.7. For the purpose of modeling rejection and rework, this
may still be acceptable. However, given the results in Figure 30, it is not



surprising that the approach failed to produce any useful results (which are
not reported here) when we combined the small physical buffer size (C;; =

2,Y(t,7)) with the high variability (p; = 0.001,r; = 0.01, V1).

4.4.2 Structure L2

To evaluate the effect of having a larger number of machines in the feedback
loop, we next studied Structure L2 in Figure 32. Note that the loop in
this structure consists of six machines as opposed to the three machines in
Structure L1 in Figure 24. In the 100 random problems for this structure,
we set the routing probabilities ds g = 0.9 and ds7 = 0.1, i.e. we assumed
that again 90 % of the parts are good. The algorithm converged in 95 out of
100 cases and the average absolute value of the percentage error was 1.38 %
in these 95 cases. The results are depicted in Figures 33 and 34.

1 2 3 4 5
10 2O AT OO
7 6
Y OO

Figure 32: Structure L2

In the systematic part of the study, we started with Problem Classes
L2C1 and L2C3 (see Table 35) which are analogous to L1Cl and L1C3.
Figure 35 suggests that the approximation is slightly less accurate than for
Structure L1 (compare with Figure 27). We observe a very similar increase
of the production rate as we add buffer spaces. However, if we compare the
results for the high-variability cases L2C3 in Figure 36 and L1C3 in Figure
28, we observe that for the larger network there are fewer cases where the
decomposition resulted in very large deviations. The reason for this behavior
does not appear to be obvious. We again observe that in the high-variability
cases of Class L2C3 adding only 16 spaces to each buffer has almost no impact
on the production rate (see Figure 36) as the amount produced during an
average failure is still more than five times higher than the maximum buffer
content.

A similar picture emerged when we varied the routing probability ds ¢ (see
Table 36). Compare Figures 37 and 29: The approximation appears to be
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L2: Random Cases

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

Production Rate [%]

30.00%

20.00%

Figure 33: Structure L2 - Simulated Production Rates for Random Problems

L2: Random Cases

6.00%

4.00%

2.00%

0.00%

-2.00%

Relative Deviation [%)]

-4.00%

-6.00%

Case

Figure 34: Structure L2 - Percentage Errors for Random Problems
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L2C1: Production Rate vs. Buffer Size

PR(Appr)
PR(Sim)
Rel. Dev.

CPR(SIm) 816 17 45 49
& PR(Appr) 20

Figure 35: Results for Class L2C1

L2C3: Production Rate vs. Buffer Size

PR(Sim)
PR(Appr)

ORel. Dev. Rel. Dev.

EPR(Appr)

E1PR(Sim)

Figure 36: Results for Class L2C3
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Class L2C1 Class L2C3

pi=001,r; =01,%,d5g =09 | p: = 0.00L,7; = 0.01,%,ds g = 0.9
System | Ci;,V(i,7) Nij,V(2,7) | System | C;;,V(z,7) N;;,V(,7)
L2C1S1 2 4 L2C351 4

L2C1S17 18 20 L2C3517 20

Table 35: Parameters for Problem Classes L2C1 and L2C3

Class L2C2 Class L2C4

p; =0.01,r; =0.1,V:,C; ; = 8,Y(¢,7) || pi = 0.001,r; =0.01,V:,C; ; = 8,V(s, )
System ds e System ds s

L2C2S1 0.9 L2C4S1 0.9

L2C259 0.1 L2C4S9 0.1

Table 36: Parameters for Problem Classes L2C2 and 1.2C4

more accurate for the larger loop. This does even hold for the high-variability
case L2C4S1 with the highest routing probability ds g = 0.9 (see Figure 38).

In Class L2C5 we studied the impact of very small buffers (see Table 37).
Figure 39 compared to Figure 31 shows again that the decomposition works
better for the larger loop as there are fewer extreme deviations.
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L2C2: Production Rate vs. Routing Probability d(5,6)

PR(Appr)
PR(Sim)

Rel. Dev.

i " T03 g2
Routing Probability d(5,6) - 0.1

Figure 37: Results for Class L2C2

L2C4: Production Rate vs. Routing Probability

PR(Appr)
PR(Sim)

0.6 05 Rel. Dev.

04 0.3
Routing Probability ds ¢ : 0.2 01

DORel. Dev.
@ PR(Sim)
B PR(Appr)

Figure 38: Results for Class L2C4
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Class L2C5

D = 0.01,7“1' = O.I,Vi, Ci’j - Q,V(i,j)
System ds 4

L2C5S51 0.9

L2C559 0.1

Table 37: Parameters for Problem Class L.2C5

L2C5: Production Rate vs. Routing Probability

PR{Appr)
PR(Sim)

0.6 Rel. Dev.
05 04

Routing Probability ds ¢ ) 02 g4

Figure 39: Results for Class L2C5
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4.4.3 Structure L3

In Structures L1 and L2 we studied loops where a fraction of the material was
randomly routed back to previous processing stages (feedback loop). We will
now study two structures with feedforward loops using a similar experimental
design. The first Structure L3 is depicted in Figure 40. In the 100 random
cases for this structure, we set the routing probabilities to d2 3 = dy 4 = 0.5.
Out of the 100 random problems, the decomposition approach solved 78.
The average error was 1.68 %. This suggest that feedforward loops are more
difficult to analyze than feedback loops. Other cases to be described below
confirm this impression. The results are depicted in Figures 41 and 42.

3 s {5
N’

Figure 40: Structure L3

In the next step, we again systematically varied buffer sizes and routing
probabilities. Figures 43 and 44 give the results for the parameters in Table
38. They suggest that the decomposition results in less extreme deviations
compared to what we saw for the feedback loops in Structures L1 and L3
(compare with Figures 27 and 28). Interestingly, the quality of the approxi-
mation does not become better as we add buffer spaces for this feedforward
structure.

We also varied the routing probability d; 3, see Table 39. Figure 45 shows
that the procedure worked reasonable for all values of dy 3 but 0.9. In this
case it failed to converge. Note that the simulated production rate is highest
for dy 3 = 0.5. This is what we would expect for a system where the parallel
branches have identical parameters. Unlike the results for structures with
feedback loops, we have reasonable results even for the high-variability case
in Figure 46.
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L3: Random Cases

100.00% +
90.00% -

80.00% -+

70.00% +
60.00% -
50.00% -+
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Production Rate [%]
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0.00%
0 20 40 60 80

Case

Figure 41: Structure L3 - Simulated Production Rates for Random Problems

L3: Random Cases
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Figure 42: Structure L3 - Percentage Errors for Random Problems
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Class L3C1 Class L3C3

p1=p2 =ps = ps = 0.01 p1 = p2 = ps = ps = 0.001

ps =ps =0.1 ps = pg = 0.01

ri =0.1,¥i,ds3 = d24 = 0.5 r; = 0.01,Ve,dy3 =dy s = 0.5
System Ci,jav(iaj) Ni,jvv(iaj) System Ci,j7v(i7j) Ni,jav(i7j)
L3C151 2 4 L3C3S1 2 4
L3C1S17 18 20 L3C3S17 18 20

Table 38: Parameters for Problem Classes L3C1 and L3C3

Class L3C2 Class L3C4
p1=p2=ps =ps = 0.01 || pp = p2 = ps = ps = 0.001
p3=ps=0.1 ps = py = 0.01
T‘iZO.l,\V/i r; 2001,VZ

Ci,j = S,V(l,]) Ci,j = S,V(Z,])

System da3 System da3
L3C251 0.1 L3C4S1 0.1
L3C259 0.9 L3C4S9 0.9

Table 39: Parameters for Problem Classes L3C2 and 1.3C4
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L3cH: Production Rate vs- puffer Size
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Figure 43: Results for Class L3CY
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L3C2: Production Rate vs. Routing Probability

PR(Appr)
PR(Sim)

Rel. Dev.

Routing Probability d, 5 . 0.8 0.9

ORel. Dev.
LIPR(SIm)
PR(Appr)

Figure 45: Results for Class L3C2

L3C4: Production Rate vs. Routing Probability

PR(Appr)
PR(Sim)

. - N 0.7 8
Routing Probability d 3 0. 09

Figure 46: Results for Class L3C4
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4.4.4 Structure L4

We now study Structure L4 depicted in Figure 47 with four instead of two
machines in the parallel branches. Remember that we observed a higher accu-
racy of the decomposition for larger feedback loops. The routing probabilities
in the 100 random cases were po3 = pa5 = 0.5. Out of these 100 random
cases, 77 could be solved with an average absolute value of the percentage
error of 1.77 %. The results for the random cases are given in Figures 48 and

49.

The results in Figure 50 and 51 for the parameters in Table 40 indicate
that the deviations get larger as we increase the number of machines in a
feedforward loop. This does also appear to hold for varying routing proba-

bilities (see Table 41 and Figures 52 and 53).

Figure 47: Structure L4

Class L4C1

Class L4C3

P = P2 =p7=p3=0.01
P3:p4:P5=P6=0-1

r;, = 01,\7/2, d273 = d2,5 = 0.5

p1 = p2 = pr = ps = 0.001
p3=p4=p5=p6:0.01

r, = OOI,VZ, d273 = d2,5 =0.5

System Cm‘,\v’(i,j) Niyj,‘v’(i,j) System Ci,]', V(l,]) Ni’j,V(i,j)
L4C151 2 4 L4C3S1 2 4
L4C1S17 18 20 L4C3517 18 20

Table 40: Parameters for Problem Classes L4C1 and L4C3
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L4: Random Cases

100.00%

90.00%
80.00%
70.00%
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Figure 48: Structure L4 - Simulated Production Rates for Random Problems

L4: Random Cases
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10.00%
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Figure 49: Structure L4 - Percentage Errors for Random Problems
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L4C1: Production Rate vs. Buffer Size

OPR(SIm)
PR(Appr)

6
ORel. Dev.

PR(Appr)
PR(Sim)
Rel. Dev.

Figure 50: Results for Class L4C1

L4C3: Production Rate vs. Buffer Size

DORel. Dev.
EIPR(Sim)
EPR(Appr)

PR(Appr)
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LLLLII )

7 8 g
10
1 12 13 14 15 16
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Figure 51: Results for Class L4C3
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Class L4C2 Class L4C4
p1=p2=pr=ps=0.01 || pr = p2 = pr = ps = 0.001
ps=ps=ps =ps=0.1 | ps=ps=ps=ps=0.01
T, = O.I,Vi r; = 0.01,\7’i

Ci,j = 8,V(Z,]) Ci,j = 8,\V’(2,])

System da 3 System da3
L4C2S1 0.1 L4C4S1 0.1
L4C2S9 0.9 L4C4S9 0.9

Table 41: Parameters for Problem Classes L4C2 and 1L4C4
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L4C2: Production Rate vs. Routing Probability

PR(Appr)
PR(Sim)

Rel. Dev.
Routing Probability d, 5 ’ 0.8

ORel. Dev.
CIPR(Sim)
PR(Appr)

Figure 52: Results for Class L4C2

L4C4: Production Rate vs. Routing Probability

PR(Appr)
PR(Sim)

Routing Probability d, . 08

Figure 53: Results for Class L4C4
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4.4.5 Structures L5 and L6

We next studied two different structures with multiple split and merge oper-
ations and a larger number of machines and buffers. Structure L5 is depicted
in Figure 54. We asked for the production rate in the branch between Ma-
chines Mg and M.

Figure 54: Structure L5

The routing probabilities in the 100 random cases were identical to those
of the systematic study of Class L5C1 as given in in the upper left part of
Table 42. 99 out of 100 random cases for Structure L5 could be solved with
an average absolute value of the percentage error of 1.55 %. The results are
given in Figures 55 and 56. For the systematically generated problems we
used the parameters in the left column of Table 42.

Class L5C1 Class L6C1

p; = 0.01,r;, =0.1,Vz p; = 0.01,r; =0.1,V2

d5’6 == 08, d5’11 = 015, d5’14 = 005 d479 - 07, d4’14 = 02, d4713 = 01

d718 = 07, d7’12 - 025, d7,13 - 005 dg,g == 07, d3’15 = 02, dg,lg - 01

dio11 = 0.65,d10,16 = 0.3, d1o,17 = 0.05

System Cm',\V/(Z',‘]') Ni’j,V(i,j) System Ci,j,V(i,j) Ni,j,V(i,j)
L5C181 2 4 L6C351 2 4
L5C1S17 18 20 L6C3517 138 20

Table 42: Parameters for Problem Classes L53C1 and L6C1

Figure 57 shows that the decomposition works surprisingly well even for
this rather complex structure if the number of the buffers is not too small.

We finally studied Structure L6 depicted in Figure 58 where we asked
for the production rate in the branch between machines M, and M;3. Note
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L5: Random Cases
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Figure 55: Structure L5 - Simulated Production Rates for Random Problems
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Figure 56: Structure L5 - Percentage Errors for Random Problems
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L5C1 Production Rate vs. Buffer Size

456 VS &G ; /
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Figure 57: Results for Class L5C1

that this is basically a large merge structure with some additional loops. We
used the routing probabilities in the upper right part of Table 42.

Given our experience with Structure M2, we expected this Structure to
be difficult to analyze if all machines have similar isolated efficiencies and the
system is hence very unbalanced. In fact, the algorithm converged for 62 out
of 100 cases. We conjectured that the convergence problems were due to the
merge operation performed by Machine My. For this reason, we modified the
failure probabilities of all machines upstream of Machine My in such a way
that their isolated efficiencies were reduced by exactly 50 % whereever this
was possible without exceeding an upper limit on the failure probabilities
of 0.9. (Compare this to the generation of random cases for Structure M2).
Out of these 100 modified random problems, the algorithm converged for 76
and failed for 24. The average absolute value of the percentage error was
1.65 %. We conclude that the convergence reliability decreases somewhat as
the complexity of the structure increases, but when the algorithm converges,
it still tends to produce surprisingly accurate results.

Figure 61 shows that the production rate increases in a way very similar
to Problem Class L5C1 for the parameters on the right side of Table 42.
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Figure 58: Structure L6
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Figure 59: Structure L6 - Simulated Production Rates for Random Problems
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L6: Random Cases
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Figure 60: Structure L6 - Percentage Errors for Random Problems

L6C1: Production Rate vs. Buffer Size

PR(Appr)
PR(Sim)
Rel. Dev.

Figure 61: Results for Class L6C1
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4.5 Summary of the Numerical Results

The numerical study shows that our decomposition approach provides good
production rate estimates for a wide range of systems that perform split
and/or merge operations. It appears to be very accurate and reliable for
systems that perform split operations only, i.e. systems without rework of
bad parts. For pure split structures, the accuracy increases as the buffer sizes
increase and the algorithm converges very quickly. It is therefore a valuable
tool for the evaluation of systems where bad parts are scrapped.

The decomposition for merge operations does provide very precise pro-
duction rate estimates for the machine that has two input buffers. However,
if the throughput of the priority two buffer is very low in absolute terms, the
production rate estimate for this priority two buffer tends to be very inaccu-
rate in relative terms. Since we assume that reworked parts in systems with
loops will always be routed to the priority one buffer, the priority two buffer
will usually not have such a low production rate unless almost all parts need
to be reworked.

The iterative algorithm may fail to converge if the merging machine is
almost never starved, for example because of an extreme bottleneck down-
stream. We conclude that the decomposition works well for a wide range of
parameters that may be of practical interest.

Our study of more general systems with loops in the flow of material sug-
gests that the method works well for a wide range of systems and parameters.
For systems with feedback loops, the method tends to fail if buffer sizes are
very small, compared to the number of parts processed during the expected
repair time and a very large fraction of the parts has to be reworked. How-
ever, for reasonable buffer sizes and rejection probabilities, the method works
well. Its accuracy appears to increase as buffer sizes increase.

For systems with feedforward loops, i.e. parallel branches, we observed
fewer very large deviations, but also fewer very small deviations. Surprisingly,
for this type of system the accuracy of the production rate estimate tended
to decrease as the number of buffers increased. The convergence reliability
appears to be lower than for feedback loops.

We eventually analyzed two larger systems with multiple loops and found
that unless buffer sizes are very small, useful production rate estimates can
be obtained even for systems with a much more complex flow of material
than in a transfer line for which the first decomposition approaches have
originally been developed.
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5 Conclusions and Suggestions for Further Re-
search

We have presented an approximate decomposition approach for unreliable
transfer lines with split and merge operations and limited buffer capacity.
We assumed identical deterministic processing times at all machines and took
the processing time as the time unit in a discrete time model. The model
as well as the decomposition equations are a generalization of the transfer
line model in [Gershwin, 1987]. The DDX-type of algorithm to solve the
equations is based on the work in [Dallery et al., 1988] and [Burman, 1995].
Despite some crude approximations, it was relatively tedious to develop some
of the decomposition equations. However, a numerical study of more than
1400 different artificial system with split and/or merge operations indicated
that the method works reasonable for a wide range of cases. It was even
possible to analyze systems with loops in the flow of material.

Several extensions to our work are possible and important: It should be
rather straightforward to combine the model presented in this paper and the
assembly/disassembly model in [Gershwin, 1991, Gershwin, 1994] as both
are generalizations of the transfer line model in [Gershwin, 1987]. It should
also be possible to include split and merge operations in models with expo-
nentially distributed processing times, times to failure and times to repair
and the respective decomposition approaches. Since in reality machines of-
ten have deterministic but different processing times, it should be worth-
while to include split and merge operations in the continuous material model
in [Burman, 1995]. Preliminary results in this area are encouraging, but the
derivation of approximation equations is not easier. Another important field
of study is the optimization of storage allocation. It should be possible to
use an algorithm like the one developed in [Schor, 1995] to find the buffer al-
location that maximizes the system production rate given the total available
buffer space.
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